Abstract

Fluorescein is a marker-dye customary applied to the evaluation of tight-junctional permeability of epithelial cell monolayers. However, the true mechanism for the permeation has not been elucidated. Transepithelial transport of fluorescein in Caco-2 cell monolayers was therefore examined. Fluorescein transport was dependent on pH, and in a vectorical way in the apical-basolateral direction, but it was independent of the tight-junctional permeability of monolayers of these human intestinal cells. The permeation of fluorescein was concentration-dependent and saturable; the Michaelis constant was 7.7 mM and the maximum velocity was 40.3 nmol min−1 (mg protein)−1. Benzoic acid competitively inhibited fluorescein transport, suggesting that fluorescein is transported by a monocarboxylic acid transporter (MCT). Antioxidative polyphenolic compounds such as ferulic acid from dietary sources, competitively inhibited the permeation of fluorescein. These compounds probably share a transport carrier with fluorescein. Measurement of the effects of phenolic acids on fluorescein transport across Caco-2 monolayers would be a useful way to evaluate the intestinal absorption or bioavailability of dietary phenolic acids.

References

1) Steinmetz, K. A., and Potter, J. D., Vegetables, fruit, and cancer prevention. J. Am. Diet. Assoc., 96, 1027-1039 (1996).

2) Criqui, M. H., and Ringel, B. L., Does diet or alcohol explain the French paradox? Lancet, 344, 1719-1723 (1994).

3) Adlercreutz, H., and Mazur, W., Phyto-oestrogens and Western diseases. Ann. Med., 29, 95-120 (1997).

4) Hollman, P. C. H., van Trijp, J. M. P., Buysman, M. N. C. P., van der Gaag, M. S., Mengelers, M. J. B., de Vries, J. H. M., and Katan, M. B., Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett., 418, 152-156 (1997).

5) Nakagawa, K., Okuda, S., and Miyazawa, T., Dose-dependent incorporation of tea catechins, (−)-epigallocatechin-3-gallate and (−)-epigallocatechin, into human plasma. Biosci. Biotechnol. Biochem., 61, 1981-1985 (1997).

6) Bourne, L. C., and Rice-Evans, C., Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 253, 222-227 (1998).

7) Gopalan, V., Pastuzyn, A., Galey, W. R., and Glew, R. H., Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic β-glucosidase. J. Biol. Chem., 267, 14027-14032 (1992).

8) Day, A. J., Dupont, M. S., Ridley, S., Rhodes, M. J. C., Morgan, M. R. A., and Williamson, G., Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett., 436, 71-75 (1998).

9) Strassburg, C. P., Nguyen, N., Manns, M. P., and Tukey, R. H., UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology, 116, 149-160 (1999).

10) Mojarrabi, B., and Mackenzie, P. I., Characterization of two UDP glucuronosyltransferases that are predominantly expressed in human colon. Biochem. Biophys. Res. Commun., 247, 704-709 (1998).

11) Scalbert, A., and Williamson, G., Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S-2085S (2000).

12) Tsuji, A., and Tamai, I., Carrier-mediated intestinal transport of drugs. Pharm. Res., 13, 963-977 (1996).

13) Oh, D. M., Han, H. K., and Amidon, G. L., Drug transport and targeting. Pharm. Biotechnol., 59-88 (1999).

14) Halestrap, A. P., and Price, N. T., The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J., 343, 281-299 (1999).

15) Broer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., and Magistretti, P. J., Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT1) expressing Xenopus laevis oocytes. J. Biol. Chem., 272, 30096-30102 (1997).

16) Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L., cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J. Biol. Chem., 270, 1843-1849 (1995).

17) Wilson, M. C., Jackson, V. N., Heddle, C., Price, N. T., Pilegaard, H., Juel, C., Bonen, A., Montgomery, I., Hutter, O. F., and Halestrap, A. P., Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J. Biol. Chem., 273, 15920-15926 (1998).

18) Juel, C., and Halestrap, A. P., Lactate transport in skeletal muscle: role and regulation of the monocarboxylate transporter. J. Physiol., 517, 633-642 (1999).

19) Broer, S., Schneider, H. P., Broer, A., Rahman, B., Hamprecht, B., and Deitmer, J. W., Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J., 333, 167-174 (1998).

20) Lin, R. Y., Vera, J. C., Chaganti, R. S. K., and Golde, D. W., Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem., 273, 28959-28965 (1998).

21) Kuwayama, K., Miyauchi, S., Tateoka, R., Abe, H., and Kamo, N., Fluorescein uptake by a monocarboxylic acid transporter in human intestinal Caco-2 cells. Biochem. Pharmacol., 63, 81-88 (2002).

22) Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736-749 (1989).

23) Hilgers, A. R., Conradi, R. A., and Burton, P. S., Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res., 7, 902-910 (1990).

24) Artursson, P., and Karlsson, J., Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun., 175, 880-885 (1991).

25) Hidalgo, I. J., and Borchardt, R. T., Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1028, 25-30 (1990).

26) Hidalgo, I. J., and Borchardt, R. T., Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta, 1035, 97-103 (1990).

27) Dantzig, A. H., and Bergin, L., Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta, 1027, 211-217 (1990).

28) Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn., 4, 879-885 (1981).

29) Hashimoto, K., Matsunaga, N., and Shimizu, M., Effect of vegetable extract on the transepithelial permeability of the human intestinal Caco-2 cell monolayer. Biosci. Biotechnol. Biochem., 58, 1345-1346 (1994).

30) Terao, T., Hisanaga, E., Sai, Y., Tamai, I., and Tsuji, A., Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol., 48, 1083-1089 (1996).

31) Kim, M., Kometani, T., Okada, S., and Shimizu, M., Permeation of hesperidin glycosides across Caco-2 cell monolayers via the paracellular pathway. Biosci. Biotechnol. Biochem., 63, 2183-2188 (1999).

32) Sakai, M., Imai, T., Ohtake, H., Azuma, H., and Otagiri, M., Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: assessment by confocal laser scanning microscopy. J. Pharm. Sci., 86, 779-785 (1997).

33) Lindmark, T., Kimura, Y., and Artursson, P., Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther., 284, 362-369 (1998).

34) Sai, Y., Kajita, M., Tamai, I., Wakama, J., Wakamiya, T., and Tsuji, A., Adsorptive-mediated transcytosis of a synthetic basic peptide, 001-C8 in Caco-2 cells. Pharm. Res., 15, 1305-1309 (1998).

35) Price, N. T., Jackson, V. N., and Halestrap, A. P., Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J., 329, 321-329 (1998).

36) Tsuji, A., Takanaga, H., Tamai, I., and Terasaki, T., Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Pharm. Res., 11, 30-37 (1994).

37) Takanaga, H., Tamai, I., and Tsuji, A., pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. J. Pharm. Pharmacol., 46, 567-570 (1994).

38) Pool, R. C., and Halestrap, A. P., Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol., 264, C761-C782 (1993).

39) Rahman, B., Schneider, H. P., Broer, A., Deitmer, J. W., and Broer, S., Helix 8 and Helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry, 38, 11577-11584 (1999).

40) Ogihara, T., Tamai, I., and Tsuji, A., Structural characterization of substrates for the anion exchage transporter in Caco-2 cells. J. Pharm. Sci., 88, 1217-1221 (1999).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)