Abstract

Zearalenones are mycotoxins with estrogenic activity consisting of a resorcinol moiety fused to a 14-membered macrocyclic lactone and are produced by various Fusarium species. We found that Clonostachys rosea IFO 7063 was effectively capable of converting zearalenone (1) to cleavage product (2), 1-(3,5-dihydroxyphenyl)-10′-hydroxy-1′E-undecene-6′-one. Moreover, cleavage product 2 did not show potent estrogenic activity like that of 1 and 17β-estradiol in the human breast cancer MCF-7 cell proliferation assay.

References

1) Mirocha, C. J., Christensen, C. M., and Nelson, G. J., F-2 (zearalennone) estrogenic mycotoxin from Fusarium. In “Microbial Toxins” vol. VII, eds. Kadis, S., Ciegler, A., and Ajl, S. J., Academic Press, New York, pp. 107-138 (1971).

2) Mirocha, C. J., Pathre, S. V., and Christensen, C. M., Zearalenone. In “Mycotoxins in human and animal health”, eds. Rodricks, J. V., Hesseltine, C. W., and Mehlman, M. A., Pathotox Publishers, Park Forest South, IL, pp. 345-364 (1977).

3) Ruddick, J. A., Scott, P. M., and Harwig, J., Teratological evaluation of zearalenone administered orally to rat. Bull. Environ. Contam. Toxicol., 15, 678-681 (1976).

4) Hidy, P. H., Baldwin, R. S., Greasham, R. L., Keith, C. L., and McMullen, J. R., Zearalenone and some derivatives: production and biological activities. Adv. Appl. Microbiol., 22, 59-82 (1977).

5) Ghédira-Chékir, L., Maaroufi, K., Creppy, E. E., and Bacha, H., Cytotoxic and genotoxic effects of zearalenone: prevention by vitamin E. J. Toxicol. Toxin Rev., 18, 355-368 (1999).

6) Sáenz de Rodriguez, C. A., Bougiovanni, A. M., and Conde de Borrego, L., An epidemic of precocious development in Puerto Rican children. J. Pedatr., 107, 393-396 (1985).

7) Kuiper-Goodman, T., Scott, P. M., and Watanabe, H., Risk assessment of the mycotoxin zearalenone. Reg. Toxicol. Pharmacol., 7, 253-306 (1987).

8) FAB-MS (m/z: positive): 293 (M+H)+. EI-MS: 292 (M+, 8%), 274 (M+-H2O, 24%), 162 (100%), 161 (86%), 112 (30%). IR max (neat) cm-1: 3230, 2920, 1695, 1650, 1540, 1150, 1000. Rf=0.2 (CHCl3- acetone=4:1 on pre-coated silica gel 60F254, Merck). Rt=14.4 min. [detector wave length, 215 nm; column, PEGASIL ODS (4.6 i.d.×250 mm, Senshu Scientific Co., Tokyo, Japan); solvent, a linear gradient of aetonitrile-water from 20:80 to 100% acetonitrile in 30 min.; flow rate, 1 ml/min].

9) Martin, P. M., Horwitz, K. B., Ryan, D. S., and McGuire, W. L., Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology, 103, 1860-1867 (1978).

10) Ahamed, S., Foster, J. S., Bukovsky, A., and Wimalasena, J., Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearelenone-induced cell-cycle progression in MCF-7 cells. Mol. Carcinog., 30, 88-98 (2001).

11) Kamimura, H., Conversion of zearalenone to zearalenone glycoside by Rhizopus sp. Appl. Environ. Microbiol., 52, 515-519 (1986).

12) El-Sharkawy, S., and Abul-Hajj, Y. J., Microbial transformation of zearalenone. 1. Formation of zearalenone-4-O-β-glucoside. J. Nat. Prod., 50, 520-521 (1987).

13) El-Sharkawy, S., and Abul-Hajj, Y. J., Microbial transformation of zearalenone. 2. Reduction, hydroxylation and methylation products. J. Org. Chem., 53, 515-519 (1988).

14) El-Sharkawy, S., and Abul-Hajj, Y. J., Microbial cleavage of zearalenone. Xenobiotica, 18, 365-371 (1988).

15) Urry, M. H., Wehrmeister, H. L., Hodge, E. B., and Hidy, P. H., The structure of zearalenone. Tetrahedron Lett., 27, 3109-3114 (1966).

16) Hurd, R. N., Structure activity relationships in zearalenones. In “Mycotoxins in human and animal health”, eds. Rodricks, J. V., Hesseltine, C. W., and Mehlman, M. A., Pathotox Publishers, Park Forest South, IL, pp. 379-391 (1977).

17) Shier, W. T., Shier, A. C., Xie, W., and Mirocha, C. J., Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon., 39, 1435-1438 (2001).

18) Takahashi-Ando, N., Kimura, M., Kakeya, H., Osada, H., and Yamaguchi, I., A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem. J., 365, 1-6 (2002).

19) Matsumura, F., Mechanism of action of dioxin-type chemicals, pesticides, and other xenobiotics affecting nutritional indexes. Am. J. Clin. Nutr., 61, 695S-701S (1995).

20) Daston, G. P., Gooch, G. W., Breslin, W. J., Shuey, D. L., Nikiforov, A. I., Fico, T. A., and Gorsuch, J. W., Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reprductive Tox., 11, 465-481 (1997).

21) Ahmed, S. A., The immune system as a potential target for environmental estrogens (endocrine disrupters): a new emerging field. Toxicology, 150, 191-206 (2000).

22) Toi, M., Bicknell, R., and Harris, A. L., Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res., 52, 275-279 (1992).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)