-
PDF
- Split View
-
Views
-
Cite
Cite
Hiroyuki SAKAKIBARA, Saki YOSHINO, Yoshichika KAWAI, Junji TERAO, Antidepressant-Like Effect of Onion (Allium cepa L.) Powder in a Rat Behavioral Model of Depression, Bioscience, Biotechnology, and Biochemistry, Volume 72, Issue 1, 23 January 2008, Pages 94–100, https://doi.org/10.1271/bbb.70454
Close - Share Icon Share
Abstract
The present study evaluated the antidepressant-like effect of the quercetin-rich vegetable, onion, by using the rat behavioral model of depression, the forced swimming test (FST). Daily administration of onion powder at a dosage of 50 mg/kg of body weight/day for 14 days significantly reduced the immobility time in FST without changing the motor dysfunction, indicating that the daily consumption of onion exerted antidepressant-like activity. The plasma corticosterone level was elevated after an FST trial, and pretreatment with onion powder did not modulate this elevation. Although the FST trial tended to increase the dopaminergic activity in the rat hypothalamus, the administration of onion powder (50 mg/kg) suppressed the increase in the turnover of this neurotransmitter. However, the same prevention was also observed with a higher dosage of onion, in which no significant antidepressant effect was apparent. The results of the present study suggest that onion exerted antidepressant-like activity in a behavioral model that acted independently of the hypothalamic-pituitary-adrenal axis.
Reference
1) Blazer, D. G., Mood disorders: epidemiology. In “Comprehensive Textbook of Psychiatry,” eds. Sadock, B. J., and Sadock, V. A., Lippincott Williams & Wilkins, New York, pp. 1298–1308 (2000).
2) Anisman, H., and Zacharko, R. M., Depression: the predisposing influence of stress. Behav. Brain Sci., 5, 89–137 (1982).
4) Chambers, C. D., Hernandez-Diaz, S., Van Marter, L. J., Werler, M. M., Louik, C., Jones, K. L., and Mitchell, A. A., Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med., 354, 579–587 (2006).
5) Markowitz, J. S., Donovan, J. L., DeVane, C. L., Taylor, R. M., Ruan, Y., Wang, J. S., and Chavin, K. D., Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA, 290, 1500–1504 (2003).
6) Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., and Kanazawa, K., Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 51, 571–581 (2003).
7) Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., Nedeljkovic, S., Pekkarinen, M., Simic, B. S., Toshima, H., Feskens, E. J. M., Hollman, P. C. H., and Katan, M. B., Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 155, 381–386 (1995).
8) Skibola, C. F., and Smith, M. T., Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., 29, 375–383 (2000).
9) Dajas, F., Rivera-Megret, F., Blasina, F., Arredondo, F., Abin-Carriquiry, J. A., Costa, G., Echeverry, C., Lafon, L., Heizen, H., Ferreira, M., and Morquio, A., Neuroprotection by flavonoids. Braz. J. Med. Biol. Res., 36, 1613–1620 (2003).
10) Butterweck, V., Jurgenliemk, G., Nahrstedt, A., and Winterhoff, H., Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med., 66, 3–6 (2000).
11) Butterweck, V., Nishibe, S., Sasaki, T., and Uchida, M., Antidepressant effects of Apocynum venetum leaves in a forced swimming test. Biol. Pharm. Bull., 24, 848–851 (2001).
12) Noldner, M., and Schotz, K., Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med., 68, 577–580 (2002).
13) Porsolt, R. D., Le Pichon, M., and Jalfre, M., Depression: a new animal model sensitive to antidepressant treatments. Nature, 266, 730–732 (1977).
14) Carlini, E. A., Contar, J. de D. P., Silva-Filho, A. R., de Silveira-Filho, N. G., Frochtengarten, M. L., and Bueno, O. F., Pharmacology of lemongrass (Cymbopogon citratus Stapf). I. Effects of teas prepared from the leaves on laboratory animals. J. Ethnopharmacol., 17, 37–64 (1986).
15) Lakshmana, M. K., and Raju, T. R., An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat. Anal. Biochem., 246, 166–170 (1997).
16) Vaarmann, A., Kask, A., and Maeorg, U., Novel and sensitive high-performance liquid chromatographic method based on electrochemical coulometric array detection for simultaneous determination of catecholamines, kynurenine and indole derivatives of tryptophan. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 769, 145–153 (2002).
17) Porsolt, R. D., Behavioral despair. In “Antidepressants: Neurochemical, Behavioral and Clinical Perspectives,” eds. Enna, S. J., Malick, J. B., and Richelson, E., Raven Press, New York, pp. 121–139 (1981).
18) Sakakibara, H., Ishida, K., Grundmann, O., Nakajima, J., Seo, S., Butterweck, V., Minami, Y., Saito, S., Kawai, Y., Nakaya, Y., and Terao, J., Antidepressant effect of extracts from Ginkgo biloba leaves in behavioral models. Biol. Pharm. Bull., 29, 1767–1770 (2006).
19) Bokkenheuser, V. D., Shackleton, C. H., and Winter, J., Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem. J., 248, 953–956 (1987).
21) Murota, K., and Terao, J., Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 417, 12–17 (2003).
22) Paulke, A., Schubert-Zsilavecz, M., and Wurglics, M., Determination of St. John’s wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 832, 109–113 (2006).
23) Racca, S., Spaccamiglio, A., Esculapio, P., Abbadessa, G., Cangemi, L., DiCarlo, F., and Portaleone, P., Effects of swim stress and alpha-MSH acute pre-treatment on brain 5-HT transporter and corticosterone receptor. Pharmacol. Biochem. Behav., 81, 894–900 (2005).
24) Connor, T. J., Kelliher, P., Shen, Y., Harkin, A., Kelly, J. P., and Leonard, B. E., Effect of subchronic antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test. Pharmacol. Biochem. Behav., 65, 591–597 (2000).
25) Hill, M. N., Brotto, L. A., Lee, T. T., and Gorzalka, B. B., Corticosterone attenuates the antidepressant-like effects elicited by melatonin in the forced swim test in both male and female rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, 905–911 (2003).
26) Zhu, W., Ma, S., Qu, R., and Kang, D., Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Life Sci., 79, 749–756 (2006).
27) Drossopoulou, G., Antoniou, K., Kitraki, E., Papathanasiou, G., Papalexi, E., Dalla, C., and Papadopoulou-Daifoti, Z., Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience, 126, 849–857 (2004).
28) Chimenti, F., Cottiglia, F., Bonsignore, L., Casu, L., Casu, M., Floris, C., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Trombetta, G., Loizzo, A., and Guarino, I., Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J. Nat. Prod., 69, 945–949 (2006).