Abstract

The aloe ingredients responsible for physiological effects and the concentrations required to exert their biological activities are not fully understood. This study compares the anti-inflammatory effects of aloin and aloe-emodin with other polyphenols. Our results demonstrated that aloe-emodin dose-dependently inhibited inducible nitric oxide synthase (iNOS) mRNA expression and nitric oxide (NO) production at 5–40 μm. In addition, the levels of cyclooxygenase-2 (COX-2) mRNA and prostaglandin E2 (PGE2) production were suppressed by 40 μm aloe-emodin. Aloin also suppressed the production of NO at 5–40 μm, although it did not suppress PGE2 production. The present results indicate that aloin and aloe-emodin possibly suppress the inflammatory responses by blocking iNOS and COX-2 mRNA expression. The anti-inflammatory effect of aloe-emodin was comparable to that of kaempferol and quercetin, indicating aloe-emodin as a possible key constituent responsible for the anti-inflammatory activity of aloe.

Reference

1) Saccù D, Bogoni P, and Procida G, J. Agric. Food Chem., 49, 4526–4530 (2001).

2) Hattori M, Kanda T, Shu YZ, Akao T, Kobashi K, and Namba T, Chem. Pharm. Bull. (Tokyo), 36, 4462–4466 (1988).

3) Che QM, Akao T, Hattori M, Kobashi K, and Namba T, Planta Med., 57, 15–19 (1991).

4) Hatano T, Kusuda M, Inada K, Ogawa TO, Shiota S, Tsuchiya T, and Yoshida T, Phytochemistry, 66, 2047–2055 (2005).

5) Andersen DO, Weber ND, Wood SG, Hughes BG, Murray BK, and North JA, Antiviral Res., 16, 185–196 (1991).

6) Arosio B, Gagliano N, Fusaro LM, Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C, and Annoni G, Pharmacol. Toxicol., 87, 229–233 (2000).

7) Esmat AY, Tomasetto C, and Rio MC, Cancer Biol. Ther., 5, 97–103 (2006).

8) Groom QJ and Reynols T, Planta Med., 53, 345–348 (1987).

9) van Wyk BE, van Rheede, van Oudtshoorn MC, and Smith GF, Planta Med., 61, 250–253 (1995).

10) Somboonwong J, Thanamittramanee S, Jariyapongskul A, and Patumraj S, J. Med. Assoc. Thai., 83, 417–425 (2000).

11) Korkina L, Suprun M, Petrova A, Mikhal’chik E, Luci A, and DeLuca C, Biofactors, 18, 255–264 (2003).

12) Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, and Hellstrom PM, World J. Gastroenterol., 7, 3386–3392 (2006).

13) Sakaguchi Y, Shirahase H, Ichikawa A, Kanda M, Nozaki Y, and Uehara Y, Life Sci., 24, 2257–2267 (2004).

14) Huynh T, Lemasters JJ, Bracey LW, and Baker CC, Shock, 14, 555–560 (2000).

15) Watanabe K, Kawamori T, Nakatsugi S, and Wakabayashi K, Biofactors, 12, 129–133 (2000).

16) Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, and Hwang D, J. Biol. Chem., 25, 25934–25938 (1992).

17) Kim IT, Park YM, Won JH, Park HJ, Choi JW, and Lee KT, Biol. Pharm. Bull., 28, 94–100 (2005).

18) Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, and Shyur LF, Br. J. Pharmacol., 146, 352–363 (2005).

19) Heiss E, Herhaus C, Klimo K, Bartsch H, and Gerhauser C, J. Biol. Chem., 276, 32008–32015 (2001).

20) Sartor L, Pezzato E, Dell’Aica I, Caniato R, Biggin S, and Garbisa S, Biochem. Pharmacol., 64, 229–237 (2002).

21) Gil B, Sanz MJ, Terencio MC, Ferrandiz ML, Bustos G, Paya M, Gunasegaran R, and Alcaraz MJ, Life Sci., 54, PL333–PL338 (1994).

22) Jung WJ and Sung MK, Biofactors, 21, 113–117 (2004).

23) Mutoh M, Takahashi M, Fukuda K, Matsushima-Hibiya Y, Mutoh H, Sugimura T, and Wakabayashi K, Carcinogenesis, 21, 959–963 (2000).

24) Cai Y, Sun M, Xing J, and Corke H, J. Agric. Food Chem., 29, 7884–7890 (2004).

25) Matsuda H, Morikawa T, Toguchida I, Park JY, Harima S, and Yoshikawa M, Bioorg. Med. Chem., 9, 41–50 (2001).

26) Lee HZ, Hsu SL, Liu MC, and Wu CH, Eur. J. Pharmacol., 23, 287–295 (2001).

27) Kuo PL, Lin TC, and Lin CC, Life Sci., 6, 1879–1892 (2002).

28) Lin JG, Chen GW, Li TM, Chouh ST, Tan TW, and Chung JG, J. Urol., 175, 343–347 (2006).

29) Chen HC, Hsieh WT, Chang WC, and Chung JG, Food Chem. Toxicol., 42, 1251–1257 (2004).

30) Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, and Green SJ, Science, 263, 1612–1615 (1994).

31) Vila-del Sol V, Díaz-Muñoz MD, and Fresno M, J. Leukoc. Biol., 81, 272–283 (2007).

32) Kim YM, Ko CB, Park YP, Kim YJ, and Paik SG, Mol. Cells, 9, 99–109 (1999).

33) Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW, Kong QY, and Liu J, Int. J. Mol. Med., 16, 41–47 (2005).

34) Chen Y, Yang L, and Lee TJ, Biochem. Pharmacol., 59, 1445–1457 (2000).

35) Mijatovic S, Maksimovic-Ivanic D, Radovic J, Popadic D, Momcilovic M, Harhaji L, Miljkovic D, and Trajkovic V, Cell. Mol. Life Sci., 61, 1805–1815 (2004).

36) Rice-Evans CA, Miller NJ, and Paganga G, Free Radic. Biol. Med., 20, 933–956 (1996).

37) Wang J and Mazza G, J. Agric. Food Chem., 50, 850–857 (2002).

38) Sin BY and Kim HP, Arch. Pharm. Res., 28, 1152–1155 (2005).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)