-
PDF
- Split View
-
Views
-
Cite
Cite
Mi-Young PARK, Hoon-Jeong KWON, Mi-Kyung SUNG, Evaluation of Aloin and Aloe-Emodin as Anti-Inflammatory Agents in Aloe by Using Murine Macrophages, Bioscience, Biotechnology, and Biochemistry, Volume 73, Issue 4, 23 April 2009, Pages 828–832, https://doi.org/10.1271/bbb.80714
Close -
Share
Abstract
The aloe ingredients responsible for physiological effects and the concentrations required to exert their biological activities are not fully understood. This study compares the anti-inflammatory effects of aloin and aloe-emodin with other polyphenols. Our results demonstrated that aloe-emodin dose-dependently inhibited inducible nitric oxide synthase (iNOS) mRNA expression and nitric oxide (NO) production at 5–40 μm. In addition, the levels of cyclooxygenase-2 (COX-2) mRNA and prostaglandin E2 (PGE2) production were suppressed by 40 μm aloe-emodin. Aloin also suppressed the production of NO at 5–40 μm, although it did not suppress PGE2 production. The present results indicate that aloin and aloe-emodin possibly suppress the inflammatory responses by blocking iNOS and COX-2 mRNA expression. The anti-inflammatory effect of aloe-emodin was comparable to that of kaempferol and quercetin, indicating aloe-emodin as a possible key constituent responsible for the anti-inflammatory activity of aloe.
Reference
2) Hattori M, Kanda T, Shu YZ, Akao T, Kobashi K, and Namba T, Chem. Pharm. Bull. (Tokyo), 36, 4462–4466 (1988).
4) Hatano T, Kusuda M, Inada K, Ogawa TO, Shiota S, Tsuchiya T, and Yoshida T, Phytochemistry, 66, 2047–2055 (2005).
5) Andersen DO, Weber ND, Wood SG, Hughes BG, Murray BK, and North JA, Antiviral Res., 16, 185–196 (1991).
6) Arosio B, Gagliano N, Fusaro LM, Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C, and Annoni G, Pharmacol. Toxicol., 87, 229–233 (2000).
10) Somboonwong J, Thanamittramanee S, Jariyapongskul A, and Patumraj S, J. Med. Assoc. Thai., 83, 417–425 (2000).
11) Korkina L, Suprun M, Petrova A, Mikhal’chik E, Luci A, and DeLuca C, Biofactors, 18, 255–264 (2003).
12) Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, and Hellstrom PM, World J. Gastroenterol., 7, 3386–3392 (2006).
13) Sakaguchi Y, Shirahase H, Ichikawa A, Kanda M, Nozaki Y, and Uehara Y, Life Sci., 24, 2257–2267 (2004).
16) Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, and Hwang D, J. Biol. Chem., 25, 25934–25938 (1992).
18) Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, and Shyur LF, Br. J. Pharmacol., 146, 352–363 (2005).
19) Heiss E, Herhaus C, Klimo K, Bartsch H, and Gerhauser C, J. Biol. Chem., 276, 32008–32015 (2001).
20) Sartor L, Pezzato E, Dell’Aica I, Caniato R, Biggin S, and Garbisa S, Biochem. Pharmacol., 64, 229–237 (2002).
21) Gil B, Sanz MJ, Terencio MC, Ferrandiz ML, Bustos G, Paya M, Gunasegaran R, and Alcaraz MJ, Life Sci., 54, PL333–PL338 (1994).
23) Mutoh M, Takahashi M, Fukuda K, Matsushima-Hibiya Y, Mutoh H, Sugimura T, and Wakabayashi K, Carcinogenesis, 21, 959–963 (2000).
25) Matsuda H, Morikawa T, Toguchida I, Park JY, Harima S, and Yoshikawa M, Bioorg. Med. Chem., 9, 41–50 (2001).
30) Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, and Green SJ, Science, 263, 1612–1615 (1994).
33) Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW, Kong QY, and Liu J, Int. J. Mol. Med., 16, 41–47 (2005).
35) Mijatovic S, Maksimovic-Ivanic D, Radovic J, Popadic D, Momcilovic M, Harhaji L, Miljkovic D, and Trajkovic V, Cell. Mol. Life Sci., 61, 1805–1815 (2004).