Abstract

Vitamin D has a pivotal role in a many biological processes, including the maintenance of calcium homeostasis, cell differentiation and proliferation. Most of these actions are mediated by transcriptional regulation of target genes through vitamin D receptor (VDR), a member the steroid/thyroid hormone receptor superfamily. Thus, it is important to understand vitamin D biosynthesis into an active form that regulates VDR transcriptional functions. The active form of vitamin D, 1α,25(OH)2D3, derived by vitamin D3 1alpha hydroxylase, 1α(OH)ase in renal proximal tubule cells is a ligand for VDR. We have identified the 1α(OH)ase gene, which uses a novel expression cloning method derived from VDR deficient mice that have excess amounts of active vitamin D3 in the serum. Identification of 1α(OH)ase gene had lead us to understand not only the biological significance of active vitamin D3 synthesis, but also a novel mechanism of VDR-mediated transcriptional regulation. The gene expression of 1α(OH)ase is positively and negatively regulated by parathyroid hormone (PTH) and active vitamin D3 respectively. In this review, we describe switching between positive and negative transcriptional modulation by the VDR, together with recent findings on the mechanisms of VDR-mediated epigenetic regulation in the 1α(OH)ase gene.

Reference

1) Bouillon R, Okamura WH, and Norman AW, Endocr. Rev., 16, 200–257 (1995).

2) Walters MR, Endocr. Rev., 13, 719–764 (1992).

3) Norman AW, Roth J, and Orci L, Endocr. Rev., 3, 331–366 (1982).

4) DeLuca HF, Adv. Exp. Med. Biol., 196, 361–375 (1986).

5) Henry HL, J. Cell. Biochem., 49, 4–9 (1992).

6) Tanaka Y and DeLuca HF, Science, 183, 1198–1200 (1974).

7) Ikeda K, Abe M, Araki Y, and Kinoshita M, Acta Neurol. Scand., 92, 503–504 (1995).

8) Kawashima H, Torikai S, and Kurokawa K, Nature, 291, 327–329 (1981).

9) Beckman MJ, Johnson JA, Goff JP, Reinhardt TA, Beitz DC, and Horst RL, Arch. Biochem. Biophys., 319, 535–539 (1995).

10) Henry HL, Midgett RJ, and Norman AW, J. Biol. Chem., 249, 7584–7592 (1974).

11) Burgos-Trinidad M, Ismail R, Ettinger RA, Prahl JM, and DeLuca HF, J. Biol. Chem., 267, 3498–3505 (1992).

12) Wakino S, Meguro M, Suzuki H, Saruta T, Ogishima T, Shimada H, Ishimura Y, Shinki T, and Suda T, Gerontology, 42, 67–77 (1996).

13) Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, and Jurutka PW, J. Bone Miner. Res., 13, 325–349 (1998).

14) Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, and Evans RM, Cell, 83, 835–839 (1995).

15) McKenna NJ and O’Malley BW, Cell, 108, 465–474 (2002).

16) Glass CK and Rosenfeld MG, Genes Dev., 14, 121–141 (2000).

17) McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, and FitzGerald GA, Cell, 105, 877–889 (2001).

18) Nissen RM and Yamamoto KR, Genes Dev., 14, 2314–2329 (2000).

19) Schule R and Evans RM, Trends Genet., 7, 377–381 (1991).

20) Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, and Jameson JL, J. Biol. Chem., 276, 13615–13621 (2001).

21) Hu X and Lazar MA, Trends Endocrinol. Metab., 11, 6–10 (2000).

22) Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, and Kato S, Nat. Genet., 16, 391–396 (1997).

23) Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, and Kato S, Science, 277, 1827–1830 (1997).

24) St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, and Glorieux FH, J. Bone Miner. Res., 12, 1552–1559 (1997).

25) Shinki T, Shimada H, Wakino S, Anazawa H, Hayashi M, Saruta T, DeLuca HF, and Suda T, Proc. Natl. Acad. Sci. USA, 94, 12920–12925 (1997).

26) Usui E, Noshiro M, and Okuda K, FEBS Lett., 262, 135–138 (1990).

27) Itoh S, Yoshimura T, Iemura O, Yamada E, Tsujikawa K, Kohama Y, and Mimura T, Biochim. Biophys. Acta, 1264, 26–28 (1995).

28) Nelson DR, Arch. Biochem. Biophys., 369, 1–10 (1999).

29) Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, and Kato S, N. Engl. J. Med., 338, 653–661 (1998).

30) Monkawa T, Yoshida T, Wakino S, Shinki T, Anazawa H, Deluca HF, Suda T, Hayashi M, and Saruta T, Biochem. Biophys. Res. Commun., 239, 527–533 (1997).

31) Demay MB, Kiernan MS, DeLuca HF, and Kronenberg HM, Proc. Natl. Acad. Sci. USA, 89, 8097–8101 (1992).

32) Falzon M, Mol. Endocrinol., 10, 672–681 (1996).

33) Russell J, Ashok S, and Koszewski NJ, J. Bone Miner. Res., 14, 1828–1837 (1999).

34) Dostert A and Heinzel T, Curr. Pharm. Des., 10, 2807–2816 (2004).

35) Murayama A, Kim MS, Yanagisawa J, Takeyama K, and Kato S, EMBO J., 23, 1598–1608 (2004).

36) Vierra CA and Nelson C, Mol. Endocrinol., 9, 64–71 (1995).

37) Henry HL, Endocrinology, 116, 503–510 (1985).

38) Rost CR, Bikle DD, and Kaplan RA, Endocrinology, 108, 1002–1006 (1981).

39) Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, and Kato S, Biochem. Biophys. Res. Commun., 249, 11–16 (1998).

40) Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, and Kato S, Endocrinology, 140, 2224–2231 (1999).

41) Kim MS, Fujiki R, Kitagawa H, and Kato S, Mol. Cell. Endocrinol., 265–266, 168–173 (2007).

42) Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, Matsumoto T, Fujiyama S, Shirode Y, Yamaoka I, Kitagawa H, Takeyama K, Shibuya H, Ohtake F, and Kato S, Nature, 461, 1007–1012 (2009).

43) Fuks F, Burgers WA, Brehm A, Hughes-Davies L, and Kouzarides T, Nat. Genet., 24, 88–91 (2000).

44) Ballestar E and Wolffe AP, Eur. J. Biochem., 268, 1–6 (2001).

45) Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, and Jost JP, Nucleic Acids Res., 28, 4157–4165 (2000).

46) Potts JT and Gardella TJ, Ann. NY Acad. Sci., 1117, 196–208 (2007).

47) Trojer P and Reinberg D, Mol. Cell, 28, 1–13 (2007).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)