Abstract

Plants synthesize isopentenyl diphosphate (IPP) via the mevalonate pathway and the methylerythritol phosphate (MEP) pathway. IPP is condensed to its allylic isomer, dimethylallyl diphosphate, to yield geranylgeranyl diphosphate, a common precursor for the production of cyclic diterpenoids. Studies of subcellular localization and of transgenic plants defective in the enzymes involved in the pathway have revealed that the synthesis processes of plastidic diterpenoids are metabolically separated in the plastids. Ditepenoid phytoalexins are synthesized through the plastidic MEP pathway in rice. The biosynthetic genes responsible for diterpenoid phytoalexins are clustered on the rice chromosomes, and the expression of them was coordinately regulated under stress conditions. Furthermore, a basic leucine zipper transcription factor, OsTGAP1, which is induced by the fungal chitin oligosaccharide elicitor, was identified as a key regulator of coordinated expression of the clustered biosynthetic genes for phytoalexin production in rice.

Reference

1) Sacchettini JC and Poulter CD, Science, 277, 1788–1789 (1997).

2) Cane DE, Ciba Found Symp., 171, 163–176 (1992).

3) Mayer MP, Hahn FM, Stillman DJ, and Poulter CD, Yeast, 8, 743–748 (1992).

4) Lichtenthaler HK, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 47–65 (1999).

5) Rohmer M, Nat. Prod. Rep., 16, 565–574 (1999).

6) Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, and Yamaguchi S, J. Biol. Chem., 277, 45188–45194 (2002).

7) Croteau R, Ketchum REB, Long RM, Kaspera R, and Wildung MR, Phytochem. Rev., 5, 75–97 (2006).

8) Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, and Yamane H, Plant Mol. Biol., 65, 177–187 (2007).

9) Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, and Sahm H, J. Am. Chem. Soc., 118, 2564–2566 (1996).

10) Estevez JM, Cantero A, Romero C, Kawaide H, Jimenez LF, Kuzuyama T, Seto H, Kamiya Y, and Leon P, Plant Physiol., 124, 95–104 (2000).

11) Estevez JM, Cantero A, Reindl A, Reichler S, and Leon P, J. Biol. Chem., 276, 22901–22909 (2001).

12) Kuzuyama T, Shimizu T, Takahashi S, and Seto H, Tetrahedron Lett., 39, 7913–7916 (1998).

13) Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS, and Kamiya Y, Planta, 215, 339–344 (2002).

14) Heintz R, Benveniste P, Robinson WH, and Coates RM, Biochem. Biophys. Res. Commun., 49, 1547–1553 (1972).

15) Nes WD and Venkatramesh M, Crit. Rev. Biochem. Mol. Biol., 34, 81–93 (1999).

16) Lange BM and Ghassemian M, Plant Mol. Biol., 51, 925–948 (2003).

17) Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, and Eisenreich W, Proc. Natl. Acad. Sci. USA, 99, 1158–1163 (2002).

18) Campbell M, Hahn FM, Poulter CD, and Leustek T, Plant Mol. Biol., 36, 323–328 (1998).

19) Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, and Muranaka T, Plant J., 37, 750–761 (2004).

20) Guevara-Garcia A, Roman CS, Arroyo A, Cortes ME, Gutierrez-Nava ML, and Leon P, Plant Cell, 17, 628–643 (2005).

21) Hsieh MH and Goodman HM, Plant Physiol., 138, 641–653 (2005).

22) Bick JA and Lange BM, Arch. Biochem. Biophys., 415, 146–154 (2003).

23) Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, and Lange M, Proc. Natl Acad. Sci. USA, 100, 6866–6871 (2003).

24) Cartwright DW, Langcake PW, Pryce RJ, Leworthy DP, and Ride JP, Phytochemistry, 20, 535–537 (1981).

25) Yamada A, Shibuya N, Komada O, and Akatsuka T, Biosci. Biotechnol. Biochem., 57, 405–409 (1993).

26) Umemura K, Ogawa N, Koga J, Iwata M, and Usami H, Plant Cell Physiol., 43, 778–784 (2002).

27) Akatsuka T, Takahashi N, Kodama O, Sekido H, Kono Y, and Takeuchi S, Agric. Biol. Chem., 49, 1689–1694 (1985).

28) Kato H, Kodama O, and Akatsuka T, Phytochemistry, 33, 79–81 (1993).

29) Kato H, Kodama O, and Akatsuka T, Phytochemistry, 36, 299–301 (1994).

30) Tamogami S, Mitani M, Kodama O, and Akatsuka T, Tetrahedron, 49, 2025–2032 (1993).

31) Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, and Ogasawara N, Tetrahedron, 51, 7907–7918 (1995).

32) Koga J, Ogawa N, Yamauchi T, Kikuchi M, Ogasawara N, and Shimura M, Phytochemistry, 44, 249–253 (1997).

33) Kodama O, Miyakawa J, Akatsuka T, and Kiyosawa S, Phytochemistry, 31, 3807–3809 (1992).

34) Otomo K, Kenmoku H, Oikawa H, Konig WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, and Toyomasu T, Plant J., 39, 886–893 (2004).

35) Cho EM, Okada A, Kenmoku H, Otomo K, Toyomasu T, Mitsuhashi W, Sassa T, Yajima A, Yabuta G, Mori K, Oikawa H, Toshima H, Shibuya N, Nojiri H, Omori T, Nishiyama M, and Yamane H, Plant J., 37, 1–8 (2004).

36) Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, Oikawa H, Toshima H, Itoh H, Matsuoka M, Sassa T, and Toyomasu T, Biosci. Biotechnol. Biochem., 68, 2001–2006 (2004).

37) Nemoto T, Cho EM, Okada A, Okada K, Otomo K, Kanno Y, Toyomasu T, Mitsuhashi W, Sassa T, Minami E, Shibuya N, Nishiyama M, Nojiri H, and Yamane H, FEBS Lett., 571, 182–186 (2004).

38) Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, and Matsuoka M, Plant Physiol., 134, 1642–1653 (2004).

39) Toyomasu T, Biosci. Biotechnol. Biochem., 72, 1168–1175 (2008).

40) Atawong A, Hasegawa M, and Kodama O, Biosci. Biotechnol. Biochem., 66, 566–570 (2002).

41) Wang Q, Hillwig ML, and Peters RJ, Plant J., 65, 87–95 (2011).

42) Swaminathan S, Morrone D, Wang Q, Fulton DB, and Peters RJ, Plant Cell, 21, 3315–3325 (2009).

43) Qi X, Bakht S, Leggett M, Maxwell C, Melton R, and Osbourn A, Proc. Natl. Acad. Sci. USA, 101, 8233–8238 (2004).

44) Field B and Osbourn AE, Science, 320, 543–547 (2008).

45) Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, and Gierl A, Science, 277, 696–699 (1997).

46) Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A, Melton R, and Osbourn A, Proc. Natl. Acad. Sci. USA, 103, 18848–18853 (2006).

47) Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, and Yamane H, J. Biol. Chem., 284, 26510–26518 (2009).

48) Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, and Hirochika H, Plant Mol. Biol., 63, 625–635 (2007).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)