Abstract

Plant elongation growth on a day-to-day basis is enhanced under specific photoperiod and temperature conditions. Circadian clock is involved in the temperature adaptive photoperiodic control of plant architecture, including hypocotyl elongation in Arabidopsis thaliana. In this regulation, phytochrome interacting transcriptional factors, PIF4 and PIF5, are activated at the end of night under short photoperiod or high temperature conditions, due to the coincidence between internal (circadian rhythm of the transcripts) and external (length of dark period) time cues. It is previously found that biosynthesis or metabolism of phytohormones including auxin, and their signal transduction-related genes are downstream targets of circadian clock and PIF4/PIF5 mediated external coincidence mechanism. Brassinosteroid and gibberellic acid played a positive role in the hypocotyl elongation of seedlings under light and dark cycle conditions. On the other hand, cytokinin and jasmonic acid played an opposite role. In this study, diurnal expresson profile of a gene encoding a sulfotransferase family protein that is involved in the jasmonic acid metabolism, ST2A, was examined. It was found that transcription of ST2A is induced at the end of night under LD/22 °C and SD/28 °C conditions according to the external coincidence mechanism. The results of this study support the idea that the circadian clock orchestrates a variety of hormone-signaling pathways to regulate the photoperiod and temperature-dependent morphogenesis in A. thaliana.

Reference

1) Nemhauser JL, Curr. Opin. Plant Biol., 11, 4-8 (2008).

2) Lau OS and Deng XW, Curr. Opin. Plant Biol., 13, 571-577 (2010).

3) Yamashino T, Biosci. Biotechnol. Biochem., 77, 10-16 (2013).

4) Niwa Y, Yamashino T, and Mizuno T, Plant Cell Physiol., 50, 838-854 (2009).

5) Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, and Maloof JN, Nature, 448, 358-361 (2007).

6) Lorrain S, Allen T, Duek PD, Whitelam GC, and Fankhauser C, Plant J., 53, 312-323 (2008).

7) Shen Y, Khanna R, Carle CM, and Quail PH, Plant Physiol., 145, 1043-1051 (2007).

8) Kunihiro A, Yamashino T, and Mizuno T, Biosci. Biotechnol. Biochem., 74, 2538-2541 (2010).

9) Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, and Mizuno T, Plant Cell Physiol., 44, 619-629 (2003).

10) Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, and Mizuno T, Plant Cell Physiol., 52, 1315-1329 (2011).

11) Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, and Franklin KA, Curr. Biol., 19, 408-413 (2009).

12) Stavang JA, Gallego-Bartolome J, Gomez MD, Yoshida S, Asami T, Olsen JE, Garcia-Martinez JL, Alabadi D, and Blazquez MA, Plant J., 60, 589-601 (2009).

13) Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, and Mizuno T, Plant Cell Physiol., 53, 1965-1973 (2012).

14) Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, and Mizuno T, Plant Signal. Behav., 8, e22863 (2012).

15) Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK et al., Proc. Natl. Acad. Sci. USA, 108, 20231-20235 (2011).

16) Sun J, Qi L, Li Y, Chu J, and Li C, PLoS Genet, 8, e1002594 (2012).

17) Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K et al., Plant J., 71, 699-711 (2012).

18) Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, and Nagatani A, Plant Physiol., 153, 1608-1618 (2010).

19) Keuskamp DH, Sasidharan R, Vos I, Peeters AJ, Voesenek LA, and Pierik R, Plant J., 67, 208-217 (2011).

20) Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F et al., Cell, 133, 164-176 (2008).

21) Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, and Chory J, PLoS Biol., 6, e225 (2008).

22) Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, and Mizuno T, Plant Cell Physiol., 53, 1950-1964 (2012).

23) Zhao S and Fernald RD, J. Comput. Biol., 12, 1047-1064 (2005).

24) Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman JM, Speed TP, and Quail PH, PLoS Genet., 9, e1003244 (2013).

25) Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, and Alonso JM, Cell, 133, 177-191 (2008).

26) Keuskamp DH, Pollmann S, Voesenek LA, Peeters AJ, and Pierik R, Proc. Natl. Acad. Sci. USA, 107, 22740-22744 (2010).

27) Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, and Wang ZY, Nat. Cell Biol., 14, 810-817 (2012).

28) Gallego-Bartolome J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadi D, and Blazquez MA, Proc. Natl. Acad. Sci. USA, 109, 13446-13451 (2012).

29) Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, and Ruberti I, Genes Dev., 19, 2811-2815 (2005).

30) Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, and Ruberti I, Genes Dev., 21, 1863-1868 (2007).

31) Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, and Quail PH, Plant Cell, 21, 3535-3553 (2009).

32) Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, Erickson E, and Quail PH, Plant Cell, 24, 1398-1419 (2012).

33) Nozue K, Harmer SL, and Maloof JN, Plant Physiol., 156, 357-372 (2011).

34) Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J et al., Genes Dev., 26, 785-790 (2012).

35) Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, and Varin L, J. Biol. Chem., 278, 17895-17900 (2003).

36) Klein M and Papenbrock J, J. Exp. Bot., 55, 1809-1820 (2004).

37) Matsuzaki Y, Ogawa-Ohnishi M, Mori A, and Matsubayashi Y, Science, 329, 1065-1067 (2010).

38) Whitford R, Fernandez A, Tejos R, Perez AC, Kleine-Vehn J et al., Dev Cell, 22, 678-685 (2012).

39) Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, and Mizuno T, Plant Signal. Behav., 8, e23390 (2013).

40) Schmulling T, Werner T, Riefler M, Krupkova E, and Bartrina y Manns I, J. Plant Res., 116, 241-252 (2003).

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)