Abstract

Adipic acid is produced industrially by the oxidation of cyclohexanone and cyclohexanol with nitric acid. Dinitrogen oxide (nitrous oxide, N2O), a non-CO2 greenhouse gas, is produced as a by-product in this process. We have investigated an industrial process for the production of adipic acid without the generation of N2O. When acetic acid was used as a solvent and Mn(OAc)2/Co(OAc)2 were used as catalysts under atmospheric pressure of pure O2 at 70 °C, the selectivity of adipic acid was 77% and the combined selectivity of carboxylic acids, which consisted of adipic acid, glutaric acid, and succinic acid, was 93% for the 100% conversion of cyclohexanone. We presume that adipic acid is generated via 6-oxohexanoic acid. Glutaric acid was probably generated via 5-oxopentanoic acid in the reaction path that branched at 6-oxohexanoic acid. When air containing less than 10 vol % of oxygen was used at 1.22 MPa in order to avoid explosion hazards, the selectivity of adipic acid was 78% for a 99.3% conversion of cyclohexanone. We conclude that the present reaction can be used as an industrial process for adipic acid production.

References

1)

Y. Chin, “Adipic acid,” Report No. 3B, SRI Consulting, California (1996), p. 5-2.

2)

M. H. Thiemens and W. C. Trogler, Science, 251, 932 (1991).

3)

International Panel on Climate Change, “IPCC guide lines for national greenhouse gas inventories, chapter 4, Agriculture, Nitrous oxide from agricultural soils and manure management,” OECD, Paris, France (1997).

4)

R. F. Weiss, J. Geophys. Res., 86, 7185 (1981).

5)

M. A. K. Khalil and R. A. Rasmussen, Tellus, Ser. B, 35, 161 (1983).

6)

A. Shimizu, K. Tanaka, and M. Fujimori, Chemosphere: Global Change Sci., 2, 425 (2000).

7)

K. Tanaka, Shokubai, 17, 197 (1975).

8)

K. Tanaka, CHEMTECH, 1974, 555.

9)

K. Tanaka, Hydrocarbon Process., 53, 114 (1974).

10)

J. Kollar, WO9407833 A1 (1994);

J. Kollar, Chem. Abstr., 120, 322757 (1994).

11)

M. Constantini and E. Fache, EP 870751 A1 (1998);

M. Constantini and E. Fache, Chem. Abstr., 129, 261033 (1998).

12)

E. Fache, P. Leconte, and G. Marin, EP 847980 A1 (1998);

E. Fache, P. Leconte, and G. Marin, Chem. Abstr., 129, 54701 (1998).

13)

A. M. Rostami, D. C. Decoster, E. Vassiliou, and M. W. Dassel, WO9820966 A1 (1998);

A. M. Rostami, D. C. Decoster, E. Vassiliou, and M. W. Dassel, Chem. Abstr., 129, 29380 (1998).

14)

M. W. Dassel, D. C. Decoster, A. M. Rostami, E. Vassiliou, and S. M. Aldrich, WO9749485 A1 (1997);

M. W. Dassel, D. C. Decoster, A. M. Rostami, E. Vassiliou, and S. M. Aldrich, Chem. Abstr., 136, 248042 (2002).

15)

Y. Ishii, S. Sakaguchi, and T. Iwahama, Yuki Gosei Kagaku Kyokaishi, 57, 38 (1999).

16)

T. Iwahama, K. Syojyo, S. Sakaguchi, and Y. Ishii, Org. Process Res. Dev., 2, 255 (1998).

17)

Y. Ishii, J. Mol. Catal. A: Chem., 117, 123 (1997).

18)

Y. Ishii, T. Iwahama, S. Sakaguchi, K. Nakayama, and Y. Nishiyama, J. Org. Chem., 61, 4520 (1996).

19)

N. Hirai, JP 10114702 A2 (1998);

N. Hirai, Chem. Abstr., 128, 192222 (1998).

20)

T. Nakano and Y. Ishii, EP 858835 A1 (1998);

T. Nakano and Y. Ishii, Chem. Abstr., 129, 190734 (1998).

21)

Y. Ishii and T. Nakano, JP 9327626 A2 (1997);

Y. Ishii and T. Nakano, Chem. Abstr., 127, 206051 (1997).

22)

U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinacé, and E. L. Pires, Appl. Catal. A, 211, 1 (2001).

23)

Y. Kamiya and M. Kotake, Bull. Chem. Soc. Jpn., 46, 2780 (1973).

24)

Y. Kamiya, Kogyo Kagaku Zasshi, 74, 91 (1971).

25)

M. Ogawa, M. Kusunoki, and M. Kitabatake, Kogyo Kagaku Zasshi, 70, 60 (1967).

26)

M. Ogawa, Kogyo Kagaku Zasshi, 71, 147 (1968).

27)

S. S. Kamath and S. B. Chandalia, J. Appl. Chem. Biotechnol., 23, 469 (1973).

28)

Y. Ohashi and H. Mizutani, Kogyo Kagaku Zasshi, 44, 68 (1941).

29)

H. Shen and H. Weng, Ind. Eng. Chem. Res., 27, 2246 (1988).

30)

D. G. Rao and T. S. Raghunathan, J. Chem. Tech. Biotechnol., 34A, 381 (1984).

31)

M. Constantini and L. Krumenacker, FR 2541993 A1 (1983);

M. Constantini and L. Krumenacker, Chem. Abstr., 102, 25201 (1985).

32)

K. Tanaka, Y. Matsuoka, and A. Shimizu, JP 2001213841 A2 (2001);

K. Tanaka, Y. Matsuoka, and A. Shimizu, Chem. Abstr., 135, 154342 (2001).

33)

J. Brégeault, F. Launay, and A. Atlamsani, C. R. Acad. Sci., Paris, Série IIc, Chimie/Chemistry, 4, 11 (2001).

34)

J. C. Béziat, M. Besson, and P. Gallezot, Appl. Catal. A, 135, L7 (1996).

35)

T. Ide, Y. Sakai, K. Yamataka, and N. Inamori, JP 5178787 A2 (1993);

T. Ide, Y. Sakai, K. Yamataka, and N. Inamori, Chem. Abstr., 119, 250719 (1993).

36)

K. Sato, M. Aoki, and R. Noyori, Science, 281, 1646 (1998).

37)

H. S. Bruner, Jr., S. L. Lane, and B. E. Murphree, US 5710325 (1998);

H. S. Bruner, Jr., S. L. Lane, and B. E. Murphree, Chem. Abstr., 128, 89227 (1998).

38)

D. L. Packett, J. R. Briggs, D. R. Bryant, and A. G. Phillips, WO9740003 (1997);

D. L. Packett, J. R. Briggs, D. R. Bryant, and A. G. Phillips, Chem. Abstr., 127, 3212047 (1997).

39)

E. Baer, J. Am. Chem. Soc., 64, 1416 (1942).

40)

K. Tanaka and A. Shimizu, JP 2001253845 A2 (2001);

K. Tanaka and A. Shimizu, Chem. Abstr., 135, 227681 (2001).

41)

G. N. Kulrestha and I. S. De Roch, GB1237479 A (1969);

G. N. Kulrestha and I. S. De Roch, Chem. Abstr., 73, 66033 (1970).

42)

M. Nishino, T. Ishitobi, and Y. Yasuhara, JP 5129427 (1976);

M. Nishino, T. Ishitobi, and Y. Yasuhara, Chem. Abstr., 85, 63621 (1976).

43)

M. Kusunoki and M. Ogawa, JP 44005858 (1969);

M. Kusunoki and M. Ogawa, Chem. Abstr., 71, 2982 (1969).

44)

H. Shinohara, M. Tanaka, K. Konno, and K. Uchimura, JP 469449 B4 (1971);

H. Shinohara, M. Tanaka, K. Konno, and K. Uchimura, Chem. Abstr., 75, 64577 (1971).

45)

H. Shinohara, S. Tanaka, and H. Ohashi, JP 47033326 B4 (1972);

H. Shinohara, S. Tanaka, and H. Ohashi, Chem. Abstr., 78, 58989 (1973).

46)

H. Shinohara, H. Ohashi, and K. Konno, JP 49040205 B4 (1974);

H. Shinohara, H. Ohashi, and K. Konno, Chem. Abstr., 82, 156976 (1975).

47)

W. Pritzkow, Chem. Ber., 87, 1668 (1954).

48)

J. D. Druliner and E. Wasserman, J. Am. Chem. Soc., 110, 5270 (1988).

49)

A. Thomas Fanning, “Acetic Acid and Its Derivatives,” ed by V. H. Agreda and J. R. Zoeller, Marcel Dekker, Inc., New York (1993), pp. 20–21.

50)

T. I. McMillan, “Terephthalic Acid and Dimethyl Terephthalate,” Report No. 9E, SRI Consulting, California (1997), pp. 5-1–5-30.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)