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The Marginal Value Theorem (MVT) is the dominant paradigm in predicting patch use and numerous tests support its quali-
tative predictions. Quantitative tests under complex foraging situations could be expected to be more variable in their support
because the MVT assumes behavior maximizes only net energy-intake rate. However across a survey of 26 studies, foragers rather
consistently “erred” in staying too long in patches. Such a consistent direction to the errors suggests that the simplifying
assumptions of the MVT introduce a systematic bias rather than just imprecision. Therefore, I simulated patch use as a state-
dependent response to physiological state, travel cost, predation risk, prey densities, and fitness currencies other than netrate
maximization (e.g., maximizing survival, reproductive investment, or mating opportunities). State-dependent behavior consis-
tently results in longer patch residence times than predicted by the MVT or another foraging model, the minimize p/g rule,
and these rules fail to closely approximate the best behavioral strategy over a wide range of conditions. Because patch residence
times increase with state-dependent behavior, this also predicts mass regulation below maximum energy capacities without direct
mass-specific costs. Finally, qualitative behavioral predictions from the MVT about giving-up densities in patches and the effects
of travel costs are often inconsistent with state-dependent behavior. Thus in order to accurately predict patch exploitation
patterns, the model highlights the need to: (1) consider predator behavior (sit-and-wait versus actively foraging); (2) identify
activities that can occur simultaneously to foraging (i.e., mate search or parental care); and (3) specify the range of nutritional
states likely in foraging animals. Future predictive models of patch use should explicitly consider these parameters. Key words:
marginal value theorem, predation risk, foraging, patch use, stochastic dynamic programming, state-dependent behavior. [Behav

Ecol 12:71-83 (2001)]

ptimal foraging theory is an important tool for increas-
ing our understanding of animal behavior. One opti-
mality model that has been particularly widely used is the Mar-
ginal Value Theorem (MVT), which predicts the behavior of
foraging animals collecting energy within patches. Patch de-
pletion will eventually force the animal to move. If the ani-
mal’s goal is to maximize net rate of energy intake, it should
leave a patch when its foraging rate drops to the overall av-
erage intake for the entire habitat (Charnov, 1976). The MVT
further predicts that if an animal encounters a series of patch-
es of varying quality, it should bias its foraging efforts such
that eventually all patches are depleted to an equal prey den-
sity. The prey density at which a forager leaves a patch is
known as the giving-up density, or GUD, and therefore opti-
mal foraging should result in all exploited patches having sim-
ilar GUDs.

The MVT has been extensively applied and tested. Many
studies have shown good qualitative support for MVT predic-
tions such as animals preferring richer food patches over
poorer ones and patch residence time (PRT) correlating with
patch quality (see Stephens and Krebs, 1986: Table 9.1). How-
ever, quantitative tests of MVT predictions have been less suc-
cessful in that observed behavior often deviates measurably
from predicted behavior. One reason why quantitative predic-
tions may be less accurate is due to the difficulty of objectively
measuring payoff rates of various behavioral options. This is
a significant problem for both the foraging animal (which
may often need to sample changing or unpredictable envi-
ronments), and for the researcher in determining and mea-
suring the fitness of behaviors.

Address correspondence to P. Nonacs. E-mail: nonacs@biology.
ucla.edu.
Received 23 August 1999; revised 5 May 2000; accepted 6 June 2000.

© 2001 International Society for Behavioral Ecology

Methodological problems aside, a review of quantitative
tests of the MVT shows a definite pattern (Table 1). When
quantitative predictions of the MVT fail it is far more common
for animals to stay longer in patches than predicted. In 23 of
26 studies, quantitative observations differed from the pre-
dicted MVT optima. In most studies there was considerable
variance in patch usage across subjects and across trials within
subjects. Some stayed too long while others left too early. How-
ever, in 19 studies the more common or average deviation
from MVT predictions was to stay too long. In two cases both
leaving too early or too late were relatively equally observed
either for individual animals or across sets of conditions. In
the other two cases, the average deviation was in leaving patch-
es too quickly. In another seven studies the results could not
be entirely consistent with MVT quantitative predictions (e.g.,
animals stayed equal lengths of time in good and poor patch-
es), but the direction in which the animals deviated could not
be determined.

Consistent patterns in deviations from a model’s predic-
tions strongly suggest that instead of mere imprecision result-
ing in random errors, something fundamental is missing. Two
major aspects of biological realism are absent from the MVT.
First, animals are probably simultaneously doing more than
just searching for food. For example, patch use patterns may
often be affected by predators, either through their physical
presence or by the foragers having to be vigilant for their
appearance (Brown, 1988; Lima and Dill, 1990; Newman,
1991; Nonacs and Dill, 1990). Besides negative factors such as
predation risk, foragers may also be looking for positive ben-
efits such as mating opportunities.

The effect of predation risk on optimal foraging strategies
has been extensively modelled, with the general result that
net intake-rate maximization is not always the best strategy.
Instead, strategies that maximize long-term survival trade off
between foraging gain and exposure to risk do better (Mc-
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Table 1

Summary of studies testing quantitative predictions of the Marginal Value Theorem

Behavioral Ecology Vol. 12 No. 1

Study: Species Location  Experimental design Results
Survival
Alonso et al. (1995): Field Patches are farm fields and variable in  Correlations between initial and quitting
European crane (Grus grus) quality, patch quality estimated by distance  intake rates across patch qualities. Suggests
from roost. birds either left good patches too quickly or
bad patches too slowly. Flock size increases
patch residence. (?)
Cassini et al. (1990): Lab Two patches, with one better than the other.  Consistent with qualitative MVT predictions
Armadillo (Chaetophracus vellerosus), Animals must move between patches. in most trials. Errors always in staying too
Guinea pig (Cavia porcellus) long. Overall, stayed too long in 10/21 trials
with better environment, 5/21 trials in
poorer. (+)
Cassini et al. (1993): Lab Design similar to above. In 12 trials, quantitative predictions of MVT
Guinea pig (C. porcellus) met; in 6 trials foragers stayed too long. (+)
Cowie (1977): Aviary Several patches all of equal initial quality. ~PRTs are variable, with both longer and
Great tit (Parus major) Travel times and costs varied. shorter times than predicted by the MVT.
Longer PRTs more common. (+)
Crowley et al. (1990): Ponds Four patches of equal initial density. Fish ~ Variable PRTs, but on average, fish stayed
Bluegill (Lepomis macrochirus) made to move sequentially between patches.  4-157% longer than predicted by the MVT.
Different prey densities across trials. (+)
Cuthill et al. (1990): Lab Patches of equal quality, with variable travel ~ PRTs respond to short-term variation in
Starlings (Sturnus vulgaris) times within a trial. travel time (e.g., birds stay longer if last
travel time was longer), while MVT predicts
no effect. (?)
Cuthill et al. (1994): Lab Patches of equal quality, with variable travel =~ PRTs identical to MVT predictions in 11 of
Starlings (S. vulgaris) times within a trial. 12 birds (0)
Formanowicz (1984): Aquaria Constant density of prey within a trial. Patch ~ Beetle larvae partially consume prey as
Diving beetle (Dytiscus verticalis) = prey item, with measure being how much  predicted at high densities, but handle too
prey to consume. long at low prey densities. (+)
Gaines (1989): Field Five patch qualities, energetic costs related  Birds spend, on average, equal time in
Tree sparrow (Spizella arborea) to daily temperatures. patches of all qualities, but PRTs are highly
variable. Cannot estimate under- or overuse
relative to MVT, but observations cannot be
quantitatively correct. (?)
Hansen (1987): Lab Single patch, measuring how long animal  On average, stay too long in all patches, but
Pigeon (Columbia livia) stays. more so in better patches. (+)
Hansen and Green (1989): Lab Can switch within a trial between richer and  Stay too long in all patches, but with high
Pigeon (C. livia) poorer patches. variance in PRTs. Trend is exaggerated
when overall habitat quality is poorer. (+)
Howell and Hartl (1980, 1982), Field 20-artificial flower patches, all with equal  On average, stayed too long. (+)
Schulter (1982): initial volumes. Departure rules estimated
Bat (Leptonycteris sanborni) relative to patterns observed.
Hubbard and Cook (1978): Lab Measured departure time from patch. Excessive use of less profitable patch which
Parasitoid wasp (Nemeritis canescens) Variable densities of hosts across patches. declines with experience. (+)
Kacelnik and Todd (1992): Lab Identical patches across trials, but with travel ~ Patch residence times respond to short-
Pigeon (C. livia) times having different variances. term variation in travel time (i.e., birds
affected by last travel time experienced)
rather than the mean travel time as
predicted by MVT. (?)
Kamil et al. (1988): Lab Patches are either empty or contain one  Stay longer than predicted in empty patch
Bluejay (Cyanocitta cristata) prey item. PRTs measured for the empty if rate-maximizing. (+)
patch.
Kamil et al. (1993): Lab Same as above, except travel times varied. Stay too long in empty patches and travel
Bluejay (C. cristata) time has an effect when it should not.
Prefeeding increases overstaying (i.e., birds
not underestimating environment). (+)
Kotler et al. (1994): Field Three patch qualities, but only one type GUD correlates with initial patch density,
Ibex (Capra ibex) presented per day. contrary to MVT predictions, but cannot
estimate under- or overuse relative to MVT.
@)
Lima (1984): Field Pairs of patches presented, one empty and  Birds, on average, sampled too many holes
Downy woodpecker (Picoides pubescens) one with variable amount of prey. Predicted  on empty patches. Effect more pronounced
PRTs in empty patch. when overall habitat is richer. (+)
Lima (1985): Aviary Pairs of patches presented, one empty and  Highly variable PRT’s with both over and

Starling (S. vulgaris)

one with variable amount of prey. Predicted
PRTs in empty patch.

understaying. On average, birds stayed too
long. (+)
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Table 1, continued
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Study: Species Location  Experimental design Results
Mellgren (1982): Arena Variable densities of food in patches. Rats visit all patches, which results in an
Rat (Rattus norvegicus) overuse of bad patches and underuse of
good patches. (*)
Munger (1984): Field Patches are ant colonies and variable in  Large variance in PRTs across individuals,

Horned lizard (Phyrnosoma cornutum,
P. modestum)

Podolsky and Price (1990):
Kangaroo rat (Dipodomys deserti) lab

Roitberg and Prokopy (1982): Large flight

Roitberg (1990): cage
Fruit fly (Rhagoletis pomonella)

Todd and Kacelnik (1993): Lab
Pigeon (C. livia)
Tome (1988): Pool
Ruddy duck (Oxynura jamaicensis)
van Alphen and Gallis (1983): Lab
Parasitoid wasp (Asorbara tabida)
Ydenberg (1984): Lab
Great tit (P major)

Reproduction
Best and Bierzychudek (1982): Field

Bumblebee (Bombus flavifrons)

Hodges and Wolf (1981): Field
Bumblebee (B. appositus)

Kacelnik (1984): Field
Starling (S. vulgaris)

Pyke (1978): Field
Hummingbird (Selasphorus rufa, S.
platcercus)

Mating
Grether et al. (1992): Field
Gibbons (Hylobates lay, H. syndactylus)

Parker (1978): Field
Dung fly (Scatophaga stercoraria)

Field and

quality.

Large and small seed patches of varying
densities presented together.

Hawthorn trees with set numbers of fruit,
but different distances apart across trials.

Two patches with different mean travel
times.

Either single or two patch densities per trial.

Variable number of hosts across trials, but
single density in patch within a trial.

Patches of high or low quality and bird
decides when to leave to go to next patch.

Natural patches of flowers.

Individual flowers with variable nectar
levels.

Single patch delivering mealworms at a
declining rate.

Artificial inflorescences in patches with
identical nectar contents.

Fruit trees variable in time and space.

Patch = female, measured length of time
spent in copulation.

with a mean close to the MVT prediction.
On average, animals stayed slightly too long.
(+)

GUD equal across patches in field, but
contrary to the MVT, correlated with initial
densities in the lab. No estimate to compare
with MVT. (?)

Variation in individual fly behavior, with
some consistently staying too long in trees
(up to 25X longer than predicted) and
others leaving too early. Staying too long is
more common. (+)

High variability in PRTs, but on average
birds stay too long. No reduction in PRT
variance with experience. (+)

Close to MVT prediction. Misses usually
from staying too long. (+)

Concludes too much time spent in low
density patches, but quantitative basis for
prediction unclear. (+)

On average, birds leave rich patches too
quickly and poor patches too slowly. (*)

Number of flowers visited not different
from MVT predictions, although prediction
is a range and individual variance is high.
(0)

Queen bees left patches slightly too fast
although quantitative difference is not
significantly different from MVT. (—)
Large variability in PRTs. Behavior best
predicted by birds maximizing energy for
chick growth. Birds stayed too long more
often than left too early relative to MVT.
(+)

Close to MVT prediction, with some staying
longer than predicted, others shorter than
predicted. (0)

Contrary to MVT predictions, entry and
exit foraging rates of patches are correlated,
but cannot estimate under- or overuse of
patches. Pairs may be patrolling territories.
@)

Males understay in copulation by 14%, but
no range of values was given. (—)

“Survival” refers to studies in which the forager is most likely maximizing its survival or a parasitoid that is maximizing its rate of host
encounters. “Reproduction” refers to studies where the foragers are likely to have dependent offspring. “Mating” refers to studies where the
forager appears to be maximizing encounters with mates or territorial intruders. Experimental location varied in degree of artificiality
ranging from free-foraging natural populations (Field), to captive animals in simulated field conditions in aviaries and ponds, to operant-
trained animals responding to lights and bar presses (Lab). The results are categorized as consistent with MVT quantitative predictions (0);
having foragers stay too long (+); having foragers leave too early (-); or staying too long and leaving too early occurring about equally (*).
In some studies, the results could not be consistent with quantitative MVT predictions, but the direction of the error could not be
determined (?). In the majority of studies, a range of behavior was observed with foragers both over and understaying, but the study was
categorized as best as possible in relation to the authors’ conclusions about the general trend in quantitative errors. No effort was made to
check the accuracy of the assumptions and calculations presented in the studies.
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Namara, 1990). Consequences of such trade-offs have been
predicted to affect: (1) the amount of fat foragers were willing
to accumulate (Bednekoff and Houston, 1994; Clark and Ek-
man, 1995; Houston and McNamara, 1993; Houston et al.,
1997; Lima, 1986; McNamara and Houston, 1990); (2) activity
regimes over a day (Clark, 1994; Houston et al., 1993; Mc-
Namara et al., 1994); (3) reproductive and mating strategies
(Houston and McNamara, 1986; McNamara and Houston,
1997) and (4) population-level mortality rates (Houston and
McNamara, 1993; McNamara and Houston, 1987, 1990).

Most of the above examinations of predation risk and for-
aging gain have numerically solved for optimal behavior. A
different analytical approach in combining foraging gain with
avoiding predation risk yields the minimize w/g rule (Werner
et al., 1983). Over a given time period, foragers maximize
their survival by choosing the patch that has the smallest ratio
of expected predation rate (u) to growth rate (g), subject to
the constraints that g is positive and there is no opportunity
for reproduction. Although the minimize p/g rule does not
predict optimal behavior under conditions of strong seasonal
effects or discrete time horizons (Ludwig and Rowe, 1990),
patch choice decisions in juvenile fish have been accurately
predicted in several species (Gilliam and Fraser, 1987; Werner
et al,, 1983). However, the extent to which the qualitative and
quantitative predictions of the MVT and minimize p./g rules
differ has not been rigorously examined.

A second aspect of biological realism lacking in the MVT is
that all animals are not the same. Foragers differ in their hun-
ger states, energy reserves, susceptibility to predators, and pa-
rental demands. Environments can also vary over time in their
harshness, stability, or predictability, so that the animal’s ex-
pectation of overall patch quality may be continually in flux.
Although for any animal facing any given set of circumstances,
a unique MVT prediction can be derived, in practice the mod-
el has been applied only to the average animal in relation to
the average state of the environment (Stephens and Krebs,
1986). When a forager’s fitness depends on more than the
food it collects, state-dependent behavior may again be a bet-
ter strategy than rate maximization (Houston, 1990; McNa-
mara et al., 1987).

Despite the tacit consensus that natural foraging situations
are much more complex than net rate of energy-intake max-
imization, qualitative predictions that follow from the MVT
are still often made and tested (e.g., the studies in Table 1).
Some of these include: (1) better food patches are used more
than poorer patches; (2) giving up densities are equalized
across foraged patches, with the corollary that unequal GUDs
imply particular cognitive processes or predation risk differ-
ences in the patches; and (3) increased patch residence time
and lower GUDs with both increased travel costs or decreased
overall prey density. However, few theoretical extensions of
foraging models have directly compared the expected fitness
of foraging as predicted by the MVT versus the more complex
and realistic state-dependent models. If foraging according to
the MVT performs poorly, it can be said to have a high ca-
nonical cost and it would be predicted that significant selec-
tion would favor behavior different from pure netrate maxi-
mization (McNamara and Houston, 1986). With high canon-
ical costs, it is possible that some of the qualitative predictions
of the MVT will also not hold.

In this article, I will derive sets of optimal behaviors for a
foraging animal that is faced with simultaneous problems of
survival (i.e., gaining food and avoiding predators) and pro-
visioning young or finding mates. I will compare the relative
fitness of hypothetical foragers that use either state-dependent
behavior (SDB), a strategy predicted by the MVT, or a strategy
predicted by the minimize p/g rule. The goal is to identify
sets of conditions under which the MVT or the minimize p/
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g rule either approximate optimal behavior or do not have
high canonical costs. Additionally, if the quantitative predic-
tions significantly diverge, I will test if the qualitative predic-
tions of the MVT are also inconsistent with more complex
behavior.

Models of patch choice

My model uses Stochastic Dynamic Programming (as de-
scribed in Clark and Mangel, 2000; Mangel and Clark, 1988)
to predict the optimal set of strategies for a foraging animal
under a wide variety of conditions and assumptions. The el-
ements of the baseline conditions are as follows.

Food patches

All food patches are assumed to have 20 possible hiding places
(slots) for prey items. A forager staying in a patch randomly
hunts in one slot per time period. Foragers do not systemat-
ically search through the patch, so revisits of empty slots are
possible. The patches are either rich (initially 12 prey items
scattered in the 20 slots); medium (eight prey items); and
poor (four prey items). Rich, medium and poor patches occur
at equal frequency. Once in the patch, the forager is assumed
to be able to recognize and track its overall quality, but not
which slots contain food. If a forager encounters a prey item
during time ¢, the number of prey in the patch at time ¢ + 1
is decreased by one. Patches do not replenish during a for-
ager’s visit and overall habitat quality is stable within a simu-
lation. Foragers traveling between patches encounter the
three types randomly and have to spend at least one time
period in each encountered patch (i.e., they cannot recognize
a poor patch before entering and thus avoid it). This can be
thought of as a sampling constraint. There is only one prey
type and it contains 5 units of energy. The forager expends 1
unit of energy per time period as a basal metabolic rate
(BMR), independent of what it is doing.

Predation risk

This situation is modeled as if a sit-and-wait predator is pre-
sent in only some of the patches and infrequently moves be-
tween them. Therefore the longer a forager is in a patch with-
out encountering a predator, the more likely it is that the
patch has no hidden predator. This decline in probability of
encountering a predator with patch residence time is set as
an exponential function, so that: g = ae **" D, where a = 0.1
and b = 0.2. The minimum predation risk is set as p, at ¢ =
30, so that patches never become totally safe. Any encounter
with a predator results in death for the forager.

Traveling between patches

Travel between patches occurs instantaneously, in that the for-
ager does not spend a given number of time steps in transit.
Travel costs are therefore incorporated as added energetic
demands on top of BMR. Because fitness results directly from
net foraging intake, when the model reaches stationarity (see
below) traveling-cost effects are identical if considered either
as an extra energy expenditure rather than several time steps
in which the animals reserves decline due to not foraging.
However, it is computationally much easier to have a single
cost rather than simultaneously considering the effects of de-
cisions over multiple time steps. Travel has an added preda-
tion risk of a 0.05 probability of dying while moving between
patches.

State variable
The forager’s energy resource (S) is the state variable, from
which its fitness will be determined. S can have integer values
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from 0 to a maximum of 50. If S = 0 the individual has starved
and is dead.

Fitness functions

The model finds the set of state-dependent behaviors that
maximize fitness under three different assumptions. The first
function maximizes the forager’s long-term probability of sur-
vival. The terminal fitness function is positive and equal for
all energy states greater than zero (i.e., there is no benefit for
surviving at a larger size). There are no mating or reproduc-
tive opportunities. These “Survival” conditions approximate
the classic problem of a “bird in winter,” whose only goal is
to survive (e.g., Lima, 1986; McNamara and Houston, 1990;
McNamara et al., 1994). Maximizing fitness is thus a matter
of avoiding predators and starvation. If there is no predation
risk then the optimal solution approximates the maximization
of net intake rates. An analogous situation described by this
model would be for a parasitoid that lays eggs on individual
hosts, so that instead of maximizing caloric intake rates, the
animal should maximize the number of hosts encountered
over its lifetime.

The second fitness function, ‘“Reproduction,” assumes a
parent caring for offspring, where fitness is maximized by col-
lecting the most food over a lifetime to invest in offspring.
Thus, the animal must avoid starvation and predation (as in
the Survival model), and provision offspring. The terminal
fitness function is zero for all final states in this model because
animals can accrue fitness through reproduction at every time
step rather than reproducing after a set period of foraging.
In constructing the set of optimal behaviors, a successful for-
aging animal must decide between eating the prey itself or
provisioning young. Once a prey item is obtained, the eat/
feed decision is maximized for lifetime reproductive output
identically for the SDB, MVT, and p/g strategies. Therefore,
the three strategies differ only in regards to patch use patterns
and are independent of allocation strategy to self versus off-
spring. The Reproduction conditions are also applicable to
parasitoids that both feed and lay eggs on the same host. Such
a parasitoid also faces a similar trade off in that the more it
eats (and improves its condition), the less there is for its off-
spring.

The third fitness function, “Mating,” assumes an animal
that is searching a patch for both prey and mating opportu-
nities. Each patch contains four possible mates in the 20 slots
(i.e., rich prey patches do not have more potential mates).
The probability of successfully mating, if a potential mate is
encountered, is a linear function of size so that large animals
are more likely to be successful than are small animals. Thus
under these conditions, fitness accrues as a function of mate
encounter rate, foraging success, and predator avoidance. As
with the Reproduction function, fitness accrues at each time
step rather than at the end through a terminal fitness func-
tion. The Mating conditions are also applicable to territorial
animals that must patrol for intruders. Successful guarding of
territory boundaries is likely to be a function of both the ter-
ritory holder’s physical state and search strategy.

Running the simulations

In all cases, the models were iterated backwards for 250 time
steps. An individual in a patch has two options: it can continue
to forage in that patch, or it can travel on to the next patch.
On the last day of the model (¢ = 250), the stay/go decisions
are numerically solved for every combination of the forager’s
energy state (1 = S = 50), possible number of food items still
in the patch (0 to a maximum of 12), and the level of risk
(from ¢ = 1 to 30) in the patch. The optimal decision is the
one which gives the highest expected fitness and it is recorded
in an optimal decision matrix. The process is repeated step-
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wise for ¢ = 249, which uses the &y, decision matrix as its
fitness function, and then for ¢ = 248, and so on.

The optimal decision matrix at ¢ has reached stationarity,
where patch residence decisions are affected only by processes
occurring within the time step and are no longer affected by
the initial terminal fitness function at ¢ = 250. Therefore, the
optimal behavior for any given set of states and options does
not change from one time step to the next (Clark and Man-
gel, 2000; Mangel and Clark, 1988). Given this fact, I could
use ¢ matrices to simulate the equilibrium behavior and suc-
cess of hypothetical populations of foragers. When simulating
behavior at stationarity, the results are independent of the
assumed terminal fitness function.

In the simulations I started 20,000 foragers, with S drawn
randomly from values between 10 and 40 and having just en-
tered a randomly-determined new patch (t = 1). Each forager
stays or leaves patches depending on the rule they are follow-
ing (see below). Foraging success, patch type encounters and
predator encounters were stochastically drawn from the ex-
pected probability distributions. For each individual, the sim-
ulation ran until it starved or was killed by a predator. There
was no upper limit to the number of patches potentially en-
countered. Across the 20,000 simulations I calculated:

(1) Mean fitness in the assumed currency

(2) The mean and distribution of patch residence times in
the three patch types

(3) The mean giving-up densities at which foragers chose

to leave patches for each patch-entry state.
For comparing the overall mean GUDs of the different patch
types, I simulated behavior from the decision matrices, but
without predation so that foragers would not die. I started
1000 foragers at every possible state (from one to 50) in each
patch type and calculated the mean GUD. In calculating the
equilibrium energy reserves, I started 1000 foragers at ran-
domly drawn states between 10 and 40, in randomly-deter-
mined patches and let them forage for 250 time steps (again
with no predation to assure survival). Mean equilibrium en-
ergy state was defined as the average energy reserves over the
last 50 days.

For contrast to state-dependent behavior, I repeated the
simulations for foragers behaving as predicted by either the
MVT (i.e., maximizing the long-term net rate of energy intake
in the environment), or the minimize p/g rule where a for-
ager leaves a patch when the patch’s ratio exceeds the expec-
tation averaged across randomly encountered new patches.

Other models of patch choice

Two previous models also examined how patch choice might
differ from MVT predictions when there are trade-offs be-
tween foraging gain and predation risk or other activities.
Methodologically, however, there are significant differences
between these models and the one presented here. First,
Brown (1988) considered trade-offs in terms of energy (e.g.,
how much foraging success is an animal willing to give up to
be safer?). Thus, the optimal predicted harvest rate at which
an animal quits a patch (H) would be the sum of the energetic
cost of foraging (C), energetic equivalent for predation risk
(P), and the energetic equivalent of missed opportunity costs
(MOC) for personal maintenance, mating opportunities, or
finding alternative food sources.

If the values of P and MOC are known or biologically rea-
sonably functions that can be estimated, then analytical solu-
tions give the optimal patch exploitation pattern. In practice,
however, quantitative predictions from the H = C + P + MOC
rule may be difficult to obtain (Brown, 1992). Nevertheless, by
holding all variables except one constant, the model does pre-
dict qualitative shifts in patch use patterns. Tests of the model
in kangaroo rats (Brown, 1988) and fox squirrels (Brown et al.,
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Table 2
Sets of simulation conditions

Behavioral Ecology Vol. 12 No. 1

Maximum predation risk

Decline
Travel Travel Rich Medium  Poor in risk
cost risk patch patch patch with PRT
Simulation condition
Baseline* 1 0.05 0.1 0.1 0.1 rapid
MVT conditions* 1 0 0.05 0.05 0.05 none
Low overall risk 1 0.005 0.01 0.01 0.01 rapid
Travel effects
No travel cost 0 0.05 0.1 0.1 0.1 rapid
High travel cost 4 0.05 0.1 0.1 0.1 rapid
No travel risk* 1 0 0.1 0.1 0.1 rapid
Patch effects
80% rich patches 1 0.05 0.1 0.1 0.1 rapid
80% poor patches 1 0.05 0.1 0.1 0.1 rapid
Constant risk in patch 1 0.05 0.05 0.05 0.05 none
High risk 1 0.05 0.1 0.1 0.1 slow
Risk trade-off 1 0.05 0.1 0.05 0.025 rapid
Constant risk + trade-off 1 0.05 0.1 0.05 0.025 none

MVT conditions are sets of values most similar to the assumptions of the Marginal Value Theorem.
* These conditions also simulated with a refuge patch (no food and no risk) for the Survival scenario.

1992) found that, as predicted, patch use went down with in-
creased predation risk and missed opportunity costs. Neither
result would be predicted by the MVT because of its insensitivity
to factors other than the net rate of food intake.

Brown’s model, however, is based on the assumptions of the
MVT. If predation risk and missed opportunities are absent or
are equal across patches then both the quantitative and qual-
itative predictions are identical to MVT. The model does not
predict behavior in currencies of fitness besides energy gain.
Instead, it assumes the animal will “pay” for gaining safety or
non-foraging opportunities by sacrificing energy intake rate.
Although optimal behavior can be observed and measured in
this context, a priori predictions about quantitative patterns
of patch use are difficult to make. Therefore, the SDB model
presented here is a numerical method of analyzing optimal
behavior conceptualized in the Brown model under condi-
tions where P and MOC may or may not vary across patches.

Newman (1991) used an SDB model to predict foraging
behavior under predation hazard and to see how similar the
predicted behavior might appear to an MVT model. The tech-
niques employed by Newman are similar to those presented
here, but there are substantial differences in the assumptions
and goals of the models. Major differences in the Newman
model are: (1) only two patches are available in any simula-
tion, a refuge and a foraging patch; (2) predation risk does
not change within patches and there are no predation costs
for travelling; (3) behavior is modelled to the end of set time
period, so the terminal fitness function has an effect; and (4)
only survival is used as a fitness currency. One model should
not be thought of as being better than the other, as they are
geared towards different problems. Newman’s model predicts
foraging behavior over 1 day, while the one presented here is
designed more towards identifying longer term patterns.

Sensitivity analyses

Food patches

I examined the effects on the predicted behaviors of overall
habitat quality by changing the probabilities of encountering
various patch types (Table 2). In a good habitat, rich patches
occurred 80% of the time, medium patches and poor patches

each 10% of the time. In a bad habitat there are: 80% poor,
10% medium, and 10% rich patches.

Predation risk
Six quantitative and qualitative changes in the predation risk
functions were examined.

1. Low predation risk, where risk in the patch and traveling
were each reduced by a factor of 10.

2. High risk, where risk in a patch declined inversely to the
baseline exponential function resulting in an initial slow de-
cline in risk with patch residence time.

3. Constant risk per any time period across all patches, with
a = 0.05 and b = 0. This is analogous to the predator also
being an active forager moving frequently between patches.

4. A predation-risk/foraging-gain trade-off, where: a = 0.1,
0.05 or 0.025 for rich, medium and poor patches, respectively.
This simulates a situation where a forager’s predators and prey
are most likely to be found in the same place.

5. Constant predation risk (b = 0) with a = 0.1, 0.05 or
0.025 for rich, medium, and poor patches, respectively.

6. No predation risk in traveling between patches.

Traveling between patches

Three quantitative changes to traveling were examined. First,
travel costs were set to zero, so that it cost the forager no extra
energy above BMR to switch patches. Second, travel costs were
set high (= 4 units), so that travel + BMR would cost one
captured prey item. Note that this would be equivalent in time
to where foragers can instantly switch patches or have to take
four time steps to move.

Marginal value theory conditions

As a reference point for all other simulations, all parameters
were set to most closely resemble the basic assumptions of the
MVT. These are: (1) a constant per time predation risk of 0.05
so that neither patch choice or residence times have effects
on mortality from predation; (2) no added predation risk for
traveling; and (3) a constant travel cost of one unit plus BMR.
Under such conditions, the state-dependent solution should
be very similar if not identical to the solution from the MVT.
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Percentage fitness for foraging as predicted by the Marginal Value Theorem (MVT) or p/g rules relative to the SDB strategy, under scenarios

where survival, reproduction or mating opportunities are maximized

Survival Reproduction Mating
MVT w/g MVT w/g MVT w/g
Simulation condition
Baseline 21.27 32.18 77.97 86.72 45.00 60.36
MVT conditions 98.19 98.09 98.81 98.58 91.24 89.75
Low overall risk 75.03 86.37 79.16 78.78 97.14 89.40
Travel effects
No travel cost 17.68 31.18 63.87 85.95 40.43 59.93
High travel cost 41.39 36.04 71.25 69.15 68.18 54.93
No travel risk 23.62 35.36 81.61 90.66 50.86 65.96
Patch effects
80% Rich patches 16.63 28.69 76.49 86.16 42.86 62.73
80% Poor patches 42.38 39.68 76.03 70.48 64.60 56.72
Constant risk in patch 77.92 79.77 96.10 96.76 84.36 86.33
High risk 72.69 74.33 96.61 95.87 89.38 86.70
Risk trade-off 18.63 28.16 69.34 75.00 35.04 45.33
Constant risk + trade-off 41.44 50.81 68.74 75.18 53.73 67.13
RESULTS difference in success between following a /g strategy or a

There are four main outcomes from the simulations:

1. Behaving as predicted by the MVT or the /g rule often
substantially reduces survival, mating opportunities, or off-
spring production.

2. Predation risk strongly influences patch use patterns if
foragers can affect the level of risk by their patch residence
times.

3. Qualitative predictions from the MVT concerning patch
depletion patterns, GUDs, and the effects of travel costs do
not often result from state-dependent behavior.

4. Mass regulation occurs in foragers (i.e., maintaining body
mass below an obtainable maximum). This regulation results
from indirect rather than direct costs of predation risk. Fatter
birds were never assumed to be directly more at risk because
of their weight. Rather, body mass is regulated through de-
creasing dangerous foraging activity.

Fitness consequences

The behaviors predicted by the SDB model always have higher
fitness than behaviors predicted by the MVT and minimize ./
g strategies (Table 3). If the foraging situation approximates
the assumptions of the MVT model, then there are small ca-
nonical costs to deviating from state-dependent behavior.
However, when these assumptions are relaxed, state-depen-
dent behavior does considerably better in increasing survival,
mating opportunity and reproductive success. In all cases, the
SDB strategies have higher fitness through equal or longer
patch residence times in at least one of the three patch types
than predicted by the MVT. The fact that the SDB model
consistently predicts longer PRTs than the MVT under all sce-
narios fits with the predominant trend in the quantitative tests
of the MVT (Table 1).

Not surprisingly, because the /g rule was derived to in-
clude both predation risk and foraging gain in patch use, be-
havior that minimizes /g is intermediate in fitness between
the MVT and SDB under most simulation conditions of the
Survival scenario (Table 3). Minimizing /g is generally a bet-
ter behavioral strategy than netrate maximization without
traveling costs or risks or when risk in the patches is inter-
mediate or constant. It is a poorer strategy whenever /g pre-
dicts shorter PRTs than does the MVT. However, overall the

MVT strategy is small. Minimizing /g does not approximate
state-dependent solutions significantly better than does the
MVT.

Predation risk

Predation risk greatly affects foraging patterns when behavior
is state-dependent. SDB foraging reduces risk through staying
longer in patches and moving less often. SDB also predicts
that within-patch risk has greater effects than risk associated
with moving between patches, in that GUDs change more
from the baseline conditions when the dynamics of risk within
patches are altered than when traveling risk is removed. Al-
though the addition of predation risk in these models predicts
patch use patterns quite different from the MVT, the canon-
ical cost for non-optimal behavior is not equal across all levels
of risk. When risk levels are high or low, the MVT and /g
rules predict much higher GUDs than the SDB model, but all
patch use patterns have relatively similar fitnesses (Table 3).

In the above simulations there were no explicit refuge
patches where the animal cannot forage but is also absolutely
safe from predators. Although foragers make patches refuge-
like with long stays, it may be that such behavior would not
be predicted with a true refuge possibility. Thus, for three sets
of conditions in the Survival scenario (Table 2), I added a
refuge as third option for a foraging animal (i.e., stay in cur-
rent foraging patch, go to another foraging patch, or use a
refuge). Under baseline and the no predation risk while trav-
eling conditions, there is a trivial effect of the refuge. Overall,
the animals spend only 0.5 and 4.9% of their time in the
refuges. There is no effect on patch use patterns during time
spent foraging. Under MVT conditions, however, animals
spend 47.9% of their time in the refuge. If predation risk is
reduced from 0.05 to 0.01 per time step, there is almost no
effect on the use of the refuge with MVT conditions (animals
spend 49.3% of their time in the refuge). This latter result
further reinforces the finding that changes in risk with time
spent in patches are more important than the absolute level
of risk within a patch.

Qualitative predictions

State-dependent foraging behavior does not predict the same
general results as the MVT. First, giving-up densities are not
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Figure 1

Mean giving-up densities in rich and medium patch types under the SDB and MVT models for all possible states under the various sets of
conditions (see Table 2). In graphs where there are two dotted lines for MVT predictions, the higher value is for the predicted GUD in the
rich patch, the lower for the medium patch. The fitness currency is survival for the longest period of time. Mean GUD in the rich patch is
given relative to mean GUD in the medium patch, calculated from the simulations of lifetime fitness of 20,000 foragers [relative GUD =

(GUD

rich

equalized across the utilized patches. In the simulations, the
MVT predicted differences in GUD’s between the rich and
medium patches in the range from 0-16% of remaining prey
density. However, state-dependent behavior produced larger
mean differences in the majority of simulations (Figures 1-
3). Furthermore, the expected GUDs for both the rich and
medium patches were strongly affected by energy state of the
forager and the effects of state differed across simulations.
Thus, increasing a forager’s state can either increase or de-
crease the difference in expected GUDs as well as switch
which patch would be expected to be the more heavily ex-
ploited. When GUDs are equalized across patches, it most of-
ten results from foragers staying much longer than predicted
by the MVT in rich and medium patches and reducing both
to very low prey densities. This effect is also state-dependent
with generally lower GUDs in all patches when foragers have
high energy reserves.

Second, GUDs are affected by environmental quality and
foraging costs, but the effects are not always in the direction
predicted by the MVT. Consistent with the MVT, increasing
travel costs decreased GUDs where increasing overall environ-
mental quality increased GUDs in medium quality patches
(panels E versus F and H versus G in Figures 1-3). However
contrary to MVT predictions, GUDs always slightly increased
in good patches with increased travel costs and decreased with
overall environmental quality in both the Survival and Mating
scenarios.

— GUD,,qium) / GUD,;, 1. All simulations begin with a rich patch having 33% more prey than a medium patch.

Mass regulation

By the choice of when to leave patches (and if to feed off-
spring), the forager directly controls its energy reserves, which
can be considered as the animal’s body size or fat reserves.
Energy held in reserve is strongly affected by which fitness
currency is assumed. Under the baseline conditions, the equi-
librium energy states (out of a maximum of 50) for the Sur-
vival, Reproduction, and Mating scenarios are: 38.2, 8.3, and
41.5, respectively. In the Reproductive scenario energy is in-
vested in offspring, while in the Mating scenario reproductive
success is a positive function of size. These differences de-
crease and increase the equilibrium energy state relative to
the Survival scenario. Under all three scenarios, however, the
equilibrium energy state is 15-25% lower than the equilibri-
um reached by animals foraging according to the MVT. For
the Survival scenario, I calculated the equilibrium energy
states for all sets of the conditions in Table 2. Only if condi-
tions approximate the assumptions of the MVT, is the maxi-
mum attainable energy state also the equilibrium energy state.
For all other permutations, the equilibrium energy states
range from a low of 66% (in the Constant risk + risk trade-
off situation) to a maximum of 84% (in the Low overall risk
situation) of the equilibrium predicted by the MVT.

These results show that mass regulation below maximum
levels can occur without direct mass specific costs in increased
predation risk. This is a contested point. McNamara (1990)
found no mass regulation without mass specific costs and
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Figure 2

Mean giving-up densities in rich and medium patch types under the SDB and MVT models for all possible states under the various sets of
conditions. Details same as Figure 1, except that the fitness currency is investment of resources in reproduction.

Houston et al. (1997) pointed out three errors in formulating
SDB models that can produce results that mimic the appear-
ance of mass regulation. These include: (1) numerical impre-
cision, in that after many iterations, differences in the out-
comes between optimal and non-optimal behaviors can be
rounded off to the same value, (2) choice of inappropriate
time scales such that behavioral or physiological processes are
not correctly modeled, and (3) sensitivity to the maximum
energy state that can be achieved by a forager. The first two
errors were suggested as explaining Clark’s (1994) results of
mass-regulation through indirect costs. Error 1 may be pre-
sent because foraging and resting have been rounded off to
the same fitness value. Error 2 had birds with maximum en-
ergy reserves being able to survive for an unrealistic 267 days
without foraging. Since the model ran for only 80 days, indi-
viduals with higher reserves never needed to forage. The first
error was avoided in the Survival scenario by using double
rather than single precision (see Houston et al., 1997). The
other two scenarios (Reproduction and Mating) are immune
to this problem because fitness is continually accrued at each
time step rather than at the end of some time period. The
second error is avoided by modelling behavior at a stage
where the model is stationary in its patch choice predictions
and foragers at the maximum energy state still have a non-
zero chance for starving.

The models are, however, sensitive to the upper limit for
energy reserves. For example, if maximum state is raised from
50 to 60, then the equilibrium state for the baseline Survival
scenario increases from 38 to 46. Nevertheless, I would argue
that the results are not simply a numerical artifact, but instead
that the sensitivity to the upper limit illustrates an interesting

point. If the models are recast such that the maximum energy
state is 10 or 30, the same mass regulation phenomenon
emerges. As when S, = 50, the equilibrium mass is always
approximately 75% of the given maximum energy state (Fig-
ure 4). If the simulations are begun with all foragers at S ..,
their states will converge on the same lower equilibria values.
Finally, foragers can be simulated using optimal strategy sets
derived from higher maximum energy state models (i.e., Fig-
ure 4A; a forager behaves as if it could reach an energy re-
serve of 70, but its actual maximum energy state is only 10).
The equilibria energy states for such strategies also remain
considerably below the states reached by foragers using MVT
rules, and where they differ from the calculated optimal rule,
their fitness is reduced (e.g., the lifespan of foragers behaving
as if S, = 60, when S, ,, = 50 is, on average, 97.2% that of
optimal). In summary for the models presented here, the best
long term strategy is to keep mass below the maximum attain-
able by behaving as predicted by the MVT.

As the maximum energy state decreases, the degree of ap-
parent mass regulation decreases as well. When S, = 10, the
SDB equilibria energy state is 89.8% that of MVT state, while
with S« = 50, the SDB strategy is 79.7% of the MVT strategy.
This suggests that the degree to which an optimally foraging
animal exhibits mass regulation is dependent on the scale at
which it usually changes its energy state. The finer the scale
of this control, the more evident mass regulation should be.
Therefore, I ran the Survival scenario again under baseline
conditions, but with patches containing one, two, or three
prey items of size 20, so that the amount of food per patch
type and overall environment is the same, but it come in
much bigger pieces. With this set of conditions, the equilib-
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Figure 3

Mean giving-up densities in rich and medium patch types under the SDB and MVT models for all possible states under the various sets of
conditions. Details same as Figure 1, except that the fitness currency is maximizing mating opportunities.

rium energy states for SDB and MVT rules were 35.6 and 39.1,
respectively. Thus, the SDB strategy equilibrium was 91% that
of the MVT when control of energy state was more coarse-
grained. This result is consistent with previous models on mass
regulation: An increase in environmental variability favors car-
rying closer to the maximum possible levels of fat (Bednekoff
and Houston, 1994; Houston and McNamara, 1993; Lima,
1986).

DISCUSSION

The Marginal Value Theorem predicts patch use patterns
based on maximization of long term net energy-intake rates.
However, quantitative predictions of the MVT differ from oth-
er theoretical models that include avoiding predation (Bed-
nekoff and Houston, 1994; Houston and McNamara, 1993;
Houston et al., 1993; Lima, 1986; McNamara, 1990; McNa-
mara and Houston, 1990) or reproductive behavior (Houston
and McNamara, 1986; McNamara and Houston, 1997). Ex-
periments with the MVT also show consistent deviations from
quantitative predictions (Table 1). Thus, it is not surprising
that state-dependent behavior does better than “simpler” be-
haviors predicted from the MVT or the w/g rules. What is
important, however, are the wide range of conditions that pre-
dict poor performance for foragers following those rules.
Only under limited conditions are they good ‘“rules of
thumb” that approach optimal behavior. Furthermore, qual-
itative general predictions that follow from the MVT about
patch residence times and giving up densities may also often
be inconsistent with state-dependent behavior. The results af-
fect five predictions about foraging behavior.

In the SDB model, patch residence times are longer, re-
sulting in significantly lower GUDs than predicted by the
MVT. The MVT and state-dependent strategies are more likely
to predict similar behavior or to have similar fitness when food
is immediately invested in reproduction, predation risk is ei-
ther very low or high, foragers cannot reduce risk by moving
less often between patches, foragers have low energy reserves;
or food comes in large pieces. As in the majority of tests of
the MVT such factors are not explicitly described, it is difficult
to correlate how any of these factors affect the outcome of
the tests. For example, a clear need in quantitative tests of
foraging models is to examine more situations where animals
are either feeding offspring or simultaneously looking for
mating opportunities as these type of situations are greatly
underrepresented in the existing tests of patch use (Table 1).

Decreased travel costs or an increase in overall environ-
mental quality may result in more frequent moves between
poorer patches as predicted by the MVT. However, a forager
exhibiting SDB may treat the best patches as predation ref-
uges, moving less often between them than predicted by the
MVT (which does not incorporate predation risk).

The likelihood of observing equal giving-up densities across
patches depends on how closely the situation corresponds to
MVT assumptions. Unequal GUDs are an almost ubiquitous
consequence of state-dependent foraging and can result from
various departures from MVT assumptions. For example, dif-
ferences in GUDs are predicted and observed across patches
that differ in predation risk (Bouskila, 1995; Brown, 1988;
Brown et al., 1992; Kotler, 1997). However, an observation that
GUDs differ across two patches does not mean they must dif-
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The equilibrial energy reserves for foragers that maximize survival
or forage as predicted by the MVT. In (A), the maximum energy
reserves = 10 and the state versus time relationships are plotted for
the optimal strategy (10), state-dependent strategies that derived
from situations where maximum energy reserves range from 30 to
70, and the MVT strategy. Initial energy reserves are randomly
assigned with values between 10 and 40, except for where all
foragers follow the optimal strategy but begin at the maximum state
(e.g., 10 at 10). (B) and (C) are as (A) except the maximum state
is 30 or 50, respectively.
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fer in predation risk or other non-foraging opportunities. If
perceived predation risk declines with time in a patch, un-
equal GUDs are likely to result without any difference in ini-
tial predation risk across the patches. The better patches will
simply also function as predation refuges.

Equal GUDs are more likely with foragers that have signif-
icant energy reserves, but quantitatively this results from stay-
ing in patches far longer than predicted by the MVT and thus
reducing them to similar, very low densities. When patches
are not reduced to similar GUDs, correlations between initial
prey density and final density result. The correlations are neg-
ative if the forager overuses the rich patch relatively more
than the other patches and positive if vice versa. Positive cor-
relations between initial patch density and the GUD have
been proposed to indicate that foragers are Bayesian in their
estimation of overall habitat quality (Alonso et al., 1995; Va-
lone, 1991). However, positive correlations are also predicted
when conditions are similar to the assumptions of the MVT,
when there are trade-offs between risk and food, so that the
best food patches are also perceived as the most risky, or when
the foragers are simultaneously searching for food, mates, or
territory intruders. In all of these situations, animals with
higher energy reserves might appear Bayesian in their behav-
ior, without actually being so.

Predation risk strongly affects patch use patterns, but only
if there are time-dependent or movement-dependent effects.
The overall level of risk for foraging has little effect, if it can-
not be decreased by staying longer in patches or moving less
often between them. This is complementary to results found
by Newman (1991) and Bednekoff and Houston (1994), who
also predict no effect of increasing risk per time unit of for-
aging activity. In total this suggests that patch use may be
greatly influenced by how a forager expects to encounter its
predators. The response to ambush or sit-and-wait predators
may be to stay longer in individual patches, but not reduce
the overall time spent foraging. Conversely, the response to
actively foraging predators may be rate-maximizing GUDs, but
reduced overall foraging and more time spent in refuges. As
a hypothetical example, desert rodents may spend more time
foraging with lower GUDs per patch if they are avoiding rat-
tlesnakes rather than owls. Predation risk from snakes would
be reduced by staying longer in patches, and predation risk
from owls would be reduced by hiding in refuges.

Mass regulation below an attainable maximum follows from
behavioral patterns that reduce foraging activity in order to
reduce encounters with predators (similar results are found
in Clark and Ekman, 1995; Lima, 1986; and Newman, 1991).
As such, these conclusions are contradictory to those made by
Bednekoff and Houston (1994) and Houston et al. (1997)
who predict mass regulation only with direct mass-specific
costs. The differences between these findings may relate to
how the effect of predation risk is interpreted or how maxi-
mum attainable weight is defined.

Bednekoff and Houston (1994) found a large effect of
mass-dependent risk and almost no effect of increasing per
unit exposure risk over four orders of magnitude. However,
all their simulations included a mass-specific predation cost,
which may have masked the effects of increased exposure risk.
Thus, it is appropriate to conclude that variation in mass-de-
pendent costs predicts larger effects than variation in expo-
sure costs, but not that exposure, per se, has no effect. The
latter would only be true if the mass of a forager experiencing
no risk at all were similar to those experiencing exposure risk.
Houston et al. (1997) reject Clark and Ekman’s (1995) con-
clusion about mass regulation from exposure costs based on
the sensitivity of the predicted optimal body mass to the upper
constraint in maximum body mass. However, the predicted
optimum remains consistently proportional to the upper con-
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straint (see Houston et al., 1987: Figure 2). Thus, as in the
models presented here, Clark and Ekman’s predictions may
be valid if viewed as a proportion of attainable body mass
rather than a specific value. Without comparing Clark and
Eckman’s results to the expected body mass with no predation
risk, it cannot be concluded that mass regulation was truly
absent.

Mass regulation without direct cost should not be taken to
imply that such mass-specific costs do not exist. There are
certainly ample reasons to believe that carrying extra weight
imposes metabolic and agility costs on animals (e.g., Witter et
al., 1994) and in theoretical considerations such costs have
always predicted large behavioral effects (Bednekoff and
Houston, 1994; Lima, 1986). However, one cannot infer direct
mass-dependent costs if foragers in a Survival-type scenario
are simply observed to “not keep reserves at the maximum
possible level” (e.g., Houston et al., 1997: 331). This conve-
nient shortcut to the difficult proposition of measuring the
survival costs of extra weight in natural situations is not justi-
fied.

The Marginal Value Theorem has served as a valuable heu-
ristic tool in behavioral ecology, but there is too large of a
disconnection between the modeling and the testing of the
foraging process. Models strongly suggest that optimal behav-
ior is not synonymous with net intake-rate maximization, but
rarely explicitly examine the degree to which the MVT may
fail. Experimenters may realize that the quantitative predic-
tions of the MVT are unlikely to be upheld in the field but
continue to assume that the qualitative patterns of the MVT
will hold. The goal of this article is to bring these issues into
focus.

A state-dependent approach to describing foraging is, by its
nature, unlikely to generate broadly applicable predictions
about patch use as does the MVT. The model presented here
identifies sets of conditions where particular types of behavior
may occur, but the testing of these predictions will be case-
specific in adapting the model. The experimenter may have
to know the nature of predation risk, what is important to the
forager besides its food, the general quality of the environ-
ment that determines the forager’s access to resources, and
the likely energy state the tested animal will have. This is not
as daunting a task as it may seem and including state-depen-
dent behavior can certainly lead to new insights. An example
of this approach is Roitberg’s (1990) work with fruit flies
(Rhagoletis pomella). Female flies lay eggs on fruit hosts and
there is considerable variation in search times within trees
across females. With an SDB model, Roitberg predicted de-
cisions as a function of: (1) current and average patch quali-
ties, (2) patch densities, (3) time of day, and (4) egg load. He
also varied fly behavior in terms of whether flies used a rule
of thumb that over or underestimated their rates of locating
patches (“optimists” versus “pessimists’’). Overall, both strat-
egies performed nearly as well as the optimal behavior, when
the patch estimate errors were small or moderate. However,
as errors increased in magnitude, pessimists did worse than
optimists, which led Roitberg to further predict (and confirm
by observation) that the rule of thumb for optimistic behavior
is more common in natural fly populations than pessimistic
behavior. In summary, state-dependent optimality models cre-
ate logical constructs against which actual behavior can be
matched to test the validity of the assumptions (Nonacs and
Dill, 1993). Models like the MVT are a reasonable starting
point, but natural complexity has to be incorporated in both
the derivations of foraging and patch use predictions and
their tests.
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