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Abstract

Drug development involves a deep understanding of the mechanisms of action and possible side effects of each drug, and
sometimes results in the identification of new and unexpected uses for drugs, termed as drug repurposing. Both in case of
serendipitous observations and systematic mechanistic explorations, confirmation of new indications for a drug requires
hypothesis building around relevant drug-related data, such as molecular targets involved, and patient and cellular
responses. These datasets are available in public repositories, but apart from sifting through the sheer amount of data
imposing computational bottleneck, a major challenge is the difficulty in selecting which databases to use from an
increasingly large number of available databases. The database selection is made harder by the lack of an overview of the
types of data offered in each database. In order to alleviate these problems and to guide the end user through the drug
repurposing efforts, we provide here a survey of 102 of the most promising and drug-relevant databases reported to date. We
summarize the target coverage and types of data available in each database and provide several examples of how
multi-database exploration can facilitate drug repurposing.

Key words: drug repositioning; biomolecular databases; drug databases; disease databases; drug–target interaction
databases

Introduction

Drug repurposing/repositioning is the process of assigning indi-
cations for drugs other than the one(s) that they were originally
developed for. This definition is somewhat subjective; the cases
where drugs are assigned uses in different forms of a class
of indications, such as, in different cancer types, which could
have been expected, particularly if the mechanism of action is
the same, and thus, may not be considered repurposing. Drug

repositioning implies the involvement of an unexpected element
and is usually distinguished from the utility extension, in which
a drug is launched for different forms or stages of the same
indication, sharing the same mode of action. Examples of utility
extension include the approval of dasatinib for newly diagnosed
chronic myeloid leukaemia (CML), having first been approved
only for imatinib-relapsed CML [1], and antiangiogenic antibody
bevacizumab gaining approval first in colon cancer and later in
other solid cancers. Utility extension is also known as market
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expansion and is a central drug development strategy for the
pharmaceutical industry to ensure revenue as the average cost of
developing a drug from scratch ranges from 1 to 2 billion dollars
[2, 3], while drugs granted extended uses mainly incur only
the regulatory and administrative costs. Discovery of entirely
new indications for drugs is also highly lucrative as several
development steps can be minimized. For example, clinical trial
data existing on adult individuals for the ‘morning sickness’ drug
thalidomide contributed to its approval for multiple myeloma
in 2012 at an estimated cost of only $40–80 million [4]. Another
example of a profitable genuine drug repositioning is Minoxidil,
which was originally developed for hypertension but was later
repositioned to treat male hair loss [5]. Similarly, kinase inhibitor
imatinib was developed and first approved to target BCR-ABL in
CML but was later was found to be effective in targeting KIT in
gastrointestinal stromal tumors (GIST) [6].

Apart from drug repositioning and utility extension, in many
cases, a distinction can be made for drug development reposi-
tioning (sometimes called drug rescue), where a drug candidate
developed for a certain indication fails but ends up being used
for a different indication [7]. An example of this type of repo-
sitioning is Sildenafil (Viagra), which failed to meet its primary
endpoints in angina pectoris and hypertension, but instead is
very successful as a medicine for erectile dysfunction [8]. Other
examples of such drug repositioning include cancer drugs crizo-
tinib, sorafenib, azacitidine and decitabine, all of which failed
to reach the markets in their original indications, yet now are
important tools in the treatment of other types of cancers [9].

Underlying both traditional drug development and drug repo-
sitioning are mechanistic explanations, which depend on suffi-
cient drug target and phenotypic annotations. Since the 1990s
and onwards, rapid development in the high throughput screen-
ing technologies has created an environment for expediting the
discovery process by enabling huge libraries of compounds and
molecular targets to be interrogated in a short amount of time.
At the same time, advances in the computational methods and
availability of public databases have vastly increased the pos-
sibility to create novel models and hypotheses for drug mech-
anisms and to narrow down the top hits by in silico validations
[10–15].

This has created opportunities to assess the potential for
new drug uses even before the experimental testing, which
has proven particularly attractive for orphan diseases, in which
traditional drug development is limited [16, 17]. In the United
States, drug development and clinical research for rare diseases
is encouraged by fast track FDA approval and marketing protec-
tion and tax alleviations, creating a niche for drug repositioning
efforts that can offset the smaller revenue expectations arising
from the limited number of patients.

Public data repositories are a considerable asset to drug
development, but one of the biggest challenges of elevating
drug repositioning to an informed and consistent parallel
alternative to primary indication-oriented drug development
has been mapping of the mechanisms of action and downstream
interactions of the agents [13, 18]. Several reviews have been
published highlighting the tools and methodologies leading to
drug repositioning. For instance, Dudley et al. [19] have published
a review on computational methods for drug repositioning
and classified the methodologies either as drug or disease-
based repositioning. Jin et al. [20], have linked existing drug-
repositioning methods with their integrated biological and phar-
maceutical knowledge and have discussed how to customize a
new drug-repositioning pipeline for specific studies. Sam et al.
[21] have presented web-based tools that can aid in repositioning

of the drugs. Li et al. [22] have summarized recent progress in
computational drug repositioning into four parts: repositioning
strategies, computational approaches, validation methods and
application areas. Song et al. [23] have discussed major tools
and resources that have been developed for repositioning the
drugs, and Yang et al. [24] have recently provided an extensive
review on the use of artificial intelligence for drug repurposing.
Several databases are being developed every year to support the
drug repositioning and are published in the database-related
issues of the journals. For instance, Nucleic Acids Research
Database Issue contains information on more than 1700 unique
databases and 64 new databases [25]. However, another major
challenge in drug repositioning is that the mechanistic and
phenotypic data necessary to distil new purposes for the ‘old’
drugs are spread out over a vast and increasing number of data
repositories, with data that may vary significantly in quality
and reliability. In this review, we have provided a comprehensive
review of such publicly available databases by placing them into
four categories: chemical, biomolecular, drug-target interaction
and disease databases and then further dividing each into
subcategories. Furthermore, we have compared the databases
using various parameters, such as the number of chemicals,
genes, diseases, etc., in order to facilitate the researchers in
selecting appropriate databases for specific purposes. We also
highlight several new databases that have not been previously
covered in any review (e.g. [10, 23]), including: DepMap [26],
cBioPortal [27], Probes & Drugs portal [28], DrugComb [29],
DrugTargetCommons(DTC) [30], DrugTargetProfiler (DTP) [31],
IDAAPM [32], PharmacoDB [33] and DisGeNet [34]. Some of these
databases can provide additional datasets and create news
ways to support drug repurposing. For example, DrugComb
[29] provides combination responses in terms of sensitivity
and synergy measures; PharmacoDB [33] has integrated and
standardized several drug sensitivity resources and DTC [30]
provides a crowd sourcing platform to integrate drug target
interactions. The present survey will provide readers a useful
comparison on drug repurposing databases and help them to
select right database for their analysis.

The rest of the manuscript is structured into three sections,
starting in Section 2 by providing an overview about all the
databases, including data statistics and subcategories. Section 3
further highlights the recommended databases for each subcat-
egory based on data quality and comprehensiveness. In Section
4, we have provided representative applications of the databases
and shown how these databases can be used for drug reposition-
ing. Finally, Section 5 concludes the manuscript with key points.

Databases providing drug repositioning
information
The databases covered in this research are divided into four
main categories i.e. chemical, biomolecular, drug–target inter-
action and disease databases. The main category names are
defined after the compilation of database list and assessing
their scope. These categories are further divided into subcate-
gories and explained in subsequent sections. Each main section
contains a table, providing short introduction and summary
statistics for the databases in terms of various parameters (e.g.
number of citations, application programming interface (API),
number of proteins, chemicals, diseases and protein to disease
associations) falling in each of the subcategories for that section.

Several databases fall into more than one subcategory
because of the multiple data types. In Figure 1, we have
highlighted only those databases that belong to more than
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Figure 1. Drug repositioning databases categorized into more than one subcategory. Some subcategories are shown more than once in order to facilitate the

interpretation of database relationships.

one subcategory in order to highlight heterogeneity in the data
types. The subcategories are color coded according to four main
categories and the links are also color coded. Drug repositioning
can be a complicated process that involves various steps and
may require various types of data analysis and experimental
validation. Figure 1 can help the researchers to select the most
relevant databases, as required by their repositioning applica-
tions. In the Tables 1–4, we have listed the databases as a single
main category, with the explicit acknowledgement that the
databases may also belong to other categories using color-coding
scheme as shown in Figure 1. A single main or subcategory
for the databases was assigned after thoroughly reading the
database descriptions and analyzing data types to determine
which datatype is the primary focus and main strength of a
database. For example, main strength of the KEGG [35] database
is the pathway information, but it also contains additional
datatypes, such as drug target interactions, as shown in Figure 1.
Hence, we assigned ‘Pathways’ as primary subcategory for KEGG,
which is listed under the main category ‘biomolecular’, as shown
in Table 2. Similarly, main strength of DrugBank [36] is drug
target interactions data, which is clearly visible by reading its
description and checking the data statistics, but it also provides
clinical, drug classification, chemical structures, pathways and
drug combination information. Figure 1 can be especially helpful
for researchers who are interested in various datatypes or cross-
database comparative analysis.

Chemical databases

There are 12 chemical databases, which have been further
divided into four subcategories: drug combination, drug
classification, chemical structures and drug omics databases.
The subcategory ‘Drug combination’ contains databases with
screening data for combinatorial therapies. Drug classification
databases provide classification for the drugs based on the
mechanism of action, structure similarity or other parameters.
The subcategory ‘Chemical Structures’ contains databases with
data on chemical structures. Drug omics databases contain
drug response data for various cancer cell lines. The detailed
information about individual databases is shown in Table 1.

Most of the databases that fall into the chemical category do
not provide application programming interface (API) i.e. no
tick mark under API column in the Table 1. The last column
(Cit) shows the sum of the citations for all publications on a
database and was computed on 25 May 2019, 18:00 CET. This
number might increase as more and more researchers will be
citing these databases, but it can give an idea about which of
the databases are being mostly used. Reference information for
some of the databases is missing as we could not find associated
publications.

Biomolecular databases

There are 52 biomolecular databases that we have covered
in this review. For a better understanding, we have divided
the databases into seven subcategories: genomics, proteomics,
protein classification, protein 3D structures, molecular omics,
protein-protein interactions and pathways databases. Genomics
databases comprise of gene visualizations, whereas proteomics
databases contain protein sequences and visualizations.
Protein 3D structure databases have comprehensive data on
protein structures. Molecular omics databases comprise RNA
or protein expression-related information. The subcategory
‘protein–protein interactions’ contains databases on protein-
protein interactions and protein complexes. The subcategory
‘pathways’ lists databases with signaling pathways and ‘protein
classification’ comprises databases that can provide some sort
of classification system for proteins or genes. More details
on individual databases are shown in Table 2, and in case the
information is not available, those sections in the table are left
blank and the column headers are abbreviated at the bottom of
the table.

Drug–target interactions databases

We have divided this category into three subcategories:
bioactivity data, drug–target binary interactions and drug–target
interaction visualizations. We covered 17 databases, which
contain data on either bioactivity or drug–target interactions.
The subcategory ‘bioactivity data’ lists only those databases that
report compound-target interactions in terms of dose response
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Figure 2. Disease-based drug repurposing workflow using databases listed in Tables 1–4. Databases are mentioned inside brackets. Dark font shows recommended

databases and normal font shows alternative databases. The workflow describes steps for disease-based computational drug repurposing for AML; however, the same

sequence of steps and the listed databases can be used for other diseases.

measurements (e.g. IC50, Kd, Ki) whereas drug–target interaction
databases report quantitative data (binary interactions). The
drug-target interaction visualization databases in addition
to providing information on bioactivity or drug-target binary
interactions also provide visualizations for interaction networks,
which can be exported as figures. Databases are assessed using
parameters, such as the number of compounds (C), number
of targets (T), number of compound-target interactions (I),
number of citations (Cit) and API, as shown in Table 3. Citation
information was computed on 25 May 2019, 18:00 CET. Table 3
contains further details and statistics on individual databases.

Disease databases

There are 19 databases in this category as shown in Table 4.
Databases under disease subcategory mostly contain disease-
gene associations. The subcategory ‘clinician information’ con-
tains databases that report clinical studies and disease indi-
cations while the subcategory ‘side effects’ represents those
databases that show possible side effects of the drugs in diseased
patients. The databases in disease category are represented
using parameters, such as the number of compounds, proteins,

diseases, protein-disease associations, API (tick-marked if data
access is provided by API) and number of citations (citation
information was computed on 25 May 2019, 18:00 CET).

Recommended databases in each subcategory
Tables 1–4 provide short descriptions, statistics, datatypes for
subcategories and other characteristics for individual databases,
but it is still difficult to select best databases from a compre-
hensive list of 102 databases using 4 main categories and 17
subcategories. Hence, in this section, we have tried to suggest the
best database(s) for each subcategory based on statistics, quality,
availability, data redundancy, features, variety of data types and
database usage (based on citations).

Chemical databases

Among drug combination databases, DrugComb [29] and Drug-
CombDB [37] provide qualitative drug combination responses
in terms of sensitivity and synergy measures. Additionally,
DrugComb also provides visualization of drug combination data
for >4500 drugs; hence, we recommend DrugComb for drug
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combination data mining. For Drug omics, we propose GDSC [42]
as it is one of the most comprehensive drug omics database with
>1000 cancer cell lines and with data from >75 000 experiments.
GDSC also provides API to programmatically access data and
linked drug omics with molecular omics, as shown in Table 1.

Biomolecular databases

Among genomics databases, we suggest Ensembl [47] as it is very
comprehensive, focusing on >5000 species with deep curation
and API access. Furthermore, it contains data for protein vari-
ants, genomic visualizations, linked pathways and molecular
omics information. Among the proteomics databases, UniProt
[118] could be the one choice as it integrates a wide variety of
data types, such as pathways, protein-protein interactions (PPI),
molecular omics, protein sequences, structures, classification
and protein disease associations, as shown in Figure 1. UniProt
is quite comprehensive, focusing on ∼1 million species and
also contains data on protein variants, which can be accessible
using APIs (Table 2). Among PPI databases, BioGRID [66] could be
used as it contains 1.3 million nonredundant PPIs. Additionally,
BioGRID has associated PPI data with drug target interactions
with few minimized steps for drug repurposing applications.
Among molecular omics databases, we suggest CCLE [76] as it
links drug omics with molecular omics and contain comprehen-
sive data on 1457 cell lines, 84 434 genes, ∼1 million mutations
and 400 million methylation scores. If someone is interested in
interactive visualization of molecular and drug responses across
cancer cell lines, then CellMiner CDB [83] could be a good choice.
Among pathway databases, KEGG [85] is one of the most com-
prehensive and nonredundant database (0.6 million pathways).
It contains pathways for >6000 species with this information
linked to diseases and drug target interaction information, as
shown in Table 2. It is also the most cited among the pathway
databases and contains some variant data. PDB [119] is one of
the most comprehensive databases when it comes to protein 3D
structures, with >140 K protein structures accessible via API.

Drug target interaction databases

Among bioactivity or drug target interactions databases, Pub-
Chem [120] and ChEMBL [95] could be the databases of choice as
these contain enormous nonredundant bioactivity datasets with
more than 15 million curated bioactivities. Additionally, both
have linked bioactivity data with several other datatypes, such
as chemical structures and physiochemical properties, clinical
data and disease indications. STITCH [107] and DTP [31] are good
if someone is interested in drug target interaction visualization,
as can be seen in Table 3. DTP is based on curated bioactivates
whereas STITCH combines bioactivities with predicted com-
pound target interactions using a weighted mechanism.

Disease databases

OpenTargets [108] and DisGeNET [34] are the most comprehen-
sive databases when it comes to protein and disease associ-
ations, both having information on >17K proteins and >10K
diseases. DisGeNET, additionally, has associated protein variants
with human diseases. If someone is specifically interested in
cancer biomarkers, COSMIC [109] could be a good choice as it
contains comprehensive and curated list of somatic mutations
associated with different cancers, as shown in Table 4. Clinical

trials (https://clinicaltrials.gov/) is one of the most comprehen-
sive clinical DBs, containing information on both failed and
successful trials, as well as drug combinatorial studies for 0.3
million clinical studies. The problem with most of the clinical
databases is that the data are not in structured format and are
not downloadable in case of some databases (require manual
copy/paste or web scrapping). Among the side effects databases,
we suggest Sider [116] as it has a structured format that is easily
downloadable and quite comprehensive (5868 side effects for
1430 drugs).

Examples of drug repositioning, database use,
methods and limitations
In this section, to illustrate how databases can be used for
drug repositioning, we provide examples of the prerequisites
and methods of drug activity prediction and the databases that
have been used. We also illustrate a few important issues that
affect several types of data and influence both the primary drug
development and repositioning efforts. For specific examples
of drug repositioning other than the ones provided below, the
reader is referred to the Drug Repurposing Portal (http://www.
drugrepurposingportal.com/).

Drug repositioning is facilitated by molecular target
annotation

Approval of small molecule compounds for new indications
requires a sufficient degree of mechanistic insight, which in turn
is dependent on identifying the drug binding partners at molec-
ular level. Several endeavors are underway to catalogue com-
prehensive binding profiles of existing small molecules and cel-
lular macromolecules [121–124]. To facilitate drug-target anno-
tation efforts, an open annotation and query platform called
Drug Target Commons (DTC) [30], which provides a summary
of currently known molecular targets for thousands of drugs,
has recently become available. Of all the molecular targets,
kinase inhibitors are among the most studied as they function
both as therapeutics and as molecular tools to examine cellular
processes. Because of the conserved nature of the ATP binding
pocket of the kinases, kinase inhibitors are more than likely to
bind and inhibit several targets. This implies that repurposing
of such inhibitors is a task requiring cataloguing affinities and
assigning functional ranking to the targets. For example, Abl
kinase-inhibitor imatinib has found use outside chronic myeloid
leukaemia, as it also targets at least wild type c-Kit and PDGFR
receptor tyrosine kinases within a well-tolerated clinical con-
centration range [125]. Another example of repurposing effort
that relied on drug annotation information is the repurposing
of SRC kinase inhibitor saracatinib. It was originally developed
for several types of cancers but was abandoned due to poor
efficacy. Later on, it was known to possess affinity toward FYN
kinase and was proceeded to Phase II testing for Alzheimer’s
disease, in which FYN plays an important pathogenic role [126,
127]. While that 159 Alzheimer patient trial unfortunately did not
show clinical benefits for saracatinib, brain imaging indicated
that the drug may have influenced some pathological processes
[126], which possibly can support generation of new combina-
tion regimens for this devastating disease in the future. Other
examples include anti-inflammatory asthma medication mon-
telukast, which was found to bind dipeptidyl peptidase IV [128], a
promising drug target in type II diabetes. Diclofenac, simvastatin,
ketoconazole and itraconazole, on the other hand, were found to
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bind to estrogen receptors, whereby they potentially could find
uses in targeting estrogen-dependent cancers [128].

In addition to knowing which targets small molecules can
bind, it is important to know the mode of action (inhibitory/ac-
tivating). For example, anti-helminthic agent pyrvinium binds
to and activates CK1α kinase, which has a net inhibitory effect
on the Sonic Hedgehog pathway by virtue of CK1α acting as an
endogenous antagonist for this pathway [129]. However, even
drugs with broad or only partially defined molecular target
ranges can be repurposed. One such example is the famous
drug disulfiram, also known as Antabuse, that has been used
to treat alcohol abuse since 1948 because one of its metabolites
inhibits aldehyde dehydrogenase (ALDH), generating discom-
fort upon alcohol consumption. However, it displays anti-cancer
effects which are still incompletely understood and are at least
independent of the ALDH-inhibitory function and associated
with protein accumulation of nuclear protein NPL4 in a copper-
dependent fashion [130].

Drug-induced cellular responses and conditional cell
states can be matched to facilitate drug repositioning

Drug repositioning often begins from observations in large phe-
notypic screens, which can then be matched to underlying muta-
tions and gene expression patterns. The National Cancer Insti-
tute cell line panel (NCI-60), the Cancer Cell Line Encyclopedia
(CCLE) and the collaborative Genomics of Drug Sensitivity in
Cancer (GDSC) databases constitute the largest collections of
genomic and drug response data from different cancer types
to date. The data in these databases can be accessed, explored
and visualized using the highly useful CellminerCDB portal [83].
The databases offer drug response measurements, transcrip-
tion levels and mutation data, where CCLE features a greater
number of mutations in at least KRAS, PTEN, BRAF, NRAS and
MSH6 than in the GDSC or NCI-60 databases due to greater
sequencing depth. GDA [131] is similar to CellminerCDB in many
aspects: to simplify the user experience, expression data from
both NCI-60 and CCLE have been combined into a single data
point for each gene as the data between these databases are
highly concordant. Transcriptomic and drug response data in
databases, such as GDA, CCLE and GDSC, can be correlated to
reveal drug mechanisms. In one study, high gene expression
levels of fatty acid desaturase 2 (FADS2) were identified as a
common denominator among ∼19 000 basal transcript levels
across 823 different human cancer cell lines responding to the
poorly characterized anti-cancer agent ML239. Subsequently, the
anti-cancer potency of ML239 was demonstrated to be reduced in
the cells knocked out for FADS2 or simultaneously treated with
FADS2 inhibitor [132, 133].

Cell-intrinsic changes, including epigenetic modulation and
mutations, and external factors, such as cell-cell contacts;
stroma and matrix; soluble signalling mediators; pressure
and oxygen tension; may influence cell, tissue and body-
wide transcriptional landscapes. Some of the molecular
alterations are conserved across patients, mutations, and
specific conditions, and can be categorized as disease- or state-
associated/enriched (Table 2) [134, 135], which is the basis for
drug connectivity mapping. As an example, the gene expression
alterations triggered by three candidate compounds, disulfiram
(Antabuse), metropolol, a beta1-receptor blocker used to treat
high blood pressure, and nonsteroidal anti-inflammatory agent
sulindac, were observed to match the gene expression patterns
enriched in the neurocognitive disorder Fragile X, as reported
in NCBI GEO and in unpublished sources [136]. These agents

improved cognitive performance as measured in Fmr1 KO2 mice,
which serve as an animal model of Fragile X. However, in most
cases, rapidly fluctuating and heterogeneous transcriptomes
necessitate feature selection. This means filtering of only the
most relevant genes for predictive modelling, or, conversely,
eliminating irrelevant genes that might confound correlative
drug response analyses [137]. A form of feature selection
useful for bulk transcriptomic data is deconvolution, whereby
diverse cellular background signals can be separated from the
gene expression changes associated with and predicting drug
responses. As an example, the gene expression signatures of
coding mutations across a large number of different cell types,
called core transcriptomes, were filtered out from the gene
expression changes triggered by the drugs to reveal the drug-
specific, tissue-independent effects [137]. In this study, after
core transcriptome filtering, several novel AKT inhibitors or
FOXO and AMPK activators were found, which were able to
extend C. elegans nematode lifespan, similar to the known agents
affecting these pathways. The approach offered a promising
strategy to complement other deconvolution tools, such as
CIBERSORT, ImmuCC and DeMixT, which will likely prove useful
in repurposing drugs based on mixed transcriptomes [138–140].
Tissue-specific transcriptomes can be accessed via Genotype-
Tissue Project (GTEx) [141].

Computational tools and machine learning facilitate
drug structure-guided target prediction and
repositioning

Concomitant with experimental drug-target discovery efforts
that provide quantitative molecular affinity data, computational
tools are being built to predict/infer new molecular targets using
orthogonal drug-target space deconvolution, where the molec-
ular structures of both the drugs and targets help guide pre-
dictions [105, 142]. As an example of drug-target prediction
based on molecular docking, antipsychotic agent thioridazine
was found among 1500 FDA-approved compounds to possess
anti-inflammatory activity by binding and inhibiting IKK, critical
for the NF-κB pathway, which was also validated in experimen-
tal assays [143]. Similarly, virtual docking predicted inhibitory
activity for five compounds from a collection of more than 1400
FDA-approved drugs against Pseudomonas aeruginosa quorum-
sensing (population-wide virulence) mechanisms, with antipsy-
chotic agent pimozide displaying in vitro activity in inhibiting
bacterial virulence gene expression [144]. A recent study intro-
duced CDRscan, an algorithm that incorporates drug response
assay data from GDSC, genomic data from CCLE and virtual
docking based on structural fingerprints, including quantitative
structure activity relationships (QSAR) information from Drug-
Bank [145]. CDRscan predicted anti-cancer activity for 176 of
1385 approved nononcology drugs, with 27 compounds showing
strong predicted efficacy for at least one of the 25 cancer types
in at least 10% of the cell lines evaluated, and four agents being
assigned predicted anticancer activity against more than 90% of
all cancer types.

Incorporating more omics variables creates new in silico
drug repositioning opportunities awaiting clinical
translation

New algorithms display ever increasing accuracy to match
observed drug response patterns when additional variables are
incorporated, such as drug-protein-interactions and protein-
protein interactions (PPI). Addition of PPI data from STRING [72]
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generated a new method, termed HNMDRP, that outperformed
several state-of-the-art machine learning-based methods in
correctly correlating responses of the drugs with the underlying
combined weighted scores, calculated using drug structural,
target cell mutational, drug-protein and PPI data [147]. Cross-
database deep learning models have been used to predict drug
responses and drug synergies based on drug-induced transcrip-
tional changes [148, 149] and KEGG-defined signaling pathways
[150]. Yet another promising computational repurposing tool
is Dr Insight, which uses correlations between various ‘omics’
and clinical data and drug responses to enrich for drug-disease
and drug-target connections without the need to extract or
limit feature sets, thus, outperforming other well established
drug repurposing methods, such as CMap [41], sscMap [151]
and NFFinder [152, 153]. No experimental validations were
conducted in these studies, which limits the possibilities to
evaluate their translational potential, and while response
predictions for several compounds outside the training sets
matched published data, it is difficult to know how these new
algorithms would perform on previously unpublished, poorly
annotated molecules.

Machine learning can even be used for drug repositioning
by identifying the drug-disease links from word combinations
in published texts. In a recent example, drug candidates for
psoriasis and other inflammatory conditions were extracted
from Pubmed abstracts using several different machine learning
algorithms, of which partial least squares discriminant analysis
outperformed other well-known approaches, such as random
forest and LASSO regression [154]. The gene expression signa-
tures associated with cellular responses to the drug candidates
matched transcriptomic signatures associated with psoriasis,
and at least five of the 20 top candidate drugs proposed by the
machine learning approach already had been observed to have
ameliorating activity in psoriasis, as listed in CTD [155], Drug-
Bank [36] and Pharmacogenomics Knowledgebase. However, all
hits were relatively promiscuous immunomodulators and could
be expected to have at least some activity in psoriasis and in
other immune-mediated diseases. This implies that text mining
might work best to extend drug utility rather than offer entirely
new or unexpected uses for existing compounds.

Incorporating clinical databases for drug repurposing

An important consideration for any new repositioning study is
whether the repositioned drug(s) would display the expected
phenotypic effects both in preclinical models and in real
patients/subjects. In this regard, databases in which clinical drug
responses and side effects have been collected (Table 4) may be
particularly useful. Cheng et al. [156] provided an example of
pharmacoepidemiologic multi-database drug repurposing by
inferring to potential cardiovascular side effects for a set of
compounds based on the cardiovascular side effects of other
drugs annotated in the patient databases IBM Watson/Truven
Health Analytics MarketScan and Optum Clinformatics, and
sharing close protein-protein interaction networks with the
drugs of interest. By this approach, hydroxychloroquine was
observed to be associated with significantly reduced risk for
coronary arterial disease, and experimental testing corroborated
previously published data that the drug inhibited several
risk-associated cellular processes, notably TLR7/9- and TNF-
α signaling. As another example, terazosin, a drug approved
for the treatment of benign prostatic hyperplasia, and in rare
cases hypertension, was found to enhance the activity of
phosphoglycerate kinase 1 (PGK1), which promotes glycolysis

and cellular ATP production, which in turn was shown to
increase neuronal survival in animal models of Parkinson’s
disease [157]. This novel hypothetical use was validated by
association in two clinical databases, Parkinson’s Progression
Markers Initiative database and Truven Health Analytics
MarketScan, where terazosin was associated with reduced risk
to develop Parkinson’s disease, reduced disease progression
and amelioration of select clinical symptoms in the diagnosed
patients [157].

Drug repurposing workflow

The previous examples showcase how multidimensional data
stored in the databases can be mined for drug repositioning.
In this final section, in order to help readers further under-
stand how various databases could be combined to generate
drug repurposing hypotheses, we outline one possible integra-
tive workflow for drug repurposing. As an example, we have used
Acute Myeloid Leukaemia (AML) as the disease of interest, but
this can be applied to any disease.

We started by searching clinical databases for drugs approved
for AML. A list of appropriate databases is given in Figure 2;
however, we recommend ClinicialTrials.gov (shown in bold-face)
for this purpose as it is the most comprehensive and accessible
database for 0.3 million clinical studies. We name this list of
approved drugs for AML as Drug A. The next step could be to find
drugs that are significantly similar (e.g. Tanimoto similarity >0.3)
to Drug A in terms of 2D chemical structure. We recommend
PubChem [96] here because it not only contains ∼9 million
structures, but also provides computed fingerprints through API.
We name this list Drug B. The next step is to correlate bioactivity
data for Drug A with Drug B. A subset of Drug B that has signifi-
cant correlation with Drug A is proceeded to the next step where
we need to check side effects for ⊂Drug B using Sider database
[116]. The next step is to search for primary targets for ⊂Drug
B, which can be obtained from ChEMBL [95] or DTC [30]. After
that, we need to see whether these protein targets are highly
expressed in AML cell lines. This can be done by processing data
from CCLE [76], GDSC [44] or CellMinerCDB [83]. The subset of
Drug B, whose primary targets were highly expressed in AML cell
lines, can be the possible repurposing candidate for AML. The
subset of Drug B can be further validated by experimentation.

Conclusions
In this review, we analysed 102 databases, which can directly or
indirectly affect the designing of the computational pipelines for
drug repositioning. We have provided some characteristics and
statistics for the databases and assigned those into primarily 4
main and 17 subcategories based on the main strengths of the
databases. We have also provided information on how some
databases have integrated multiple datasets and suggested
preferable databases for each subcategory (or data type). We
have also highlighted some of the machine learning methods,
which are using databases to train models in order to find new
indications for approved drugs, and provided a computational
workflow using listed databases, which can help researchers to
setup novel drug repurposing pipelines.

In general, the main limitations of the machine learning-
based drug repositioning efforts stem from data heterogeneity
and overabundance of variables as compared to the number of
samples. Fortunately, both database hosts and the research com-
munity as a whole are aware of the main hurdles, and several
solutions are being developed to address these concerns [158].
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Taken together, the early examples of drug repositioning using
database-driven in silico exploration herald an expanding wave
of discoveries of increasing accuracy that can be matched by
experimental evidence. Combining several technical and model-
specific improvement scans facilitates the identification of new
uses for existing drugs, thus accelerating MoA establishment for
new chemicals.

Key Points
• This manuscript provides a survey on available

databases, which could directly or indirectly support
drug repurposing. For the ease of understanding, the
databases are divided into 4 main and 17 subcategories.

• In total, 102 databases are summarized, and the best
databases are recommended for each subcategory
based on data quality, comprehensiveness, data types
and usage.

• The manuscript also sheds light on how databases can
be used for drug repositioning and provides examples of
the methods for drug activity prediction by using data
from public databases.

• Finally, a systematic workflow for disease-based drug
repurposing is provided showing the usage of given
databases that can lead to assigning new applications
for drug repurposing.
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