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Abstract

The prediction of peptide secondary structures is fundamentally important to reveal the functional mechanisms of peptides
with potential applications as therapeutic molecules. In this study, we propose a multi-view deep learning method named
Peptide Secondary Structure Prediction based on Multi-View Information, Restriction and Transfer learning (PSSP-MVIRT)
for peptide secondary structure prediction. To sufficiently exploit discriminative information, we introduce a multi-view
fusion strategy to integrate different information from multiple perspectives, including sequential information, evolutionary
information and hidden state information, respectively, and generate a unified feature space. Moreover, we construct a
hybrid network architecture of Convolutional Neural Network and Bi-directional Gated Recurrent Unit to extract global and
local features of peptides. Furthermore, we utilize transfer learning to effectively alleviate the lack of training samples
(peptides with experimentally validated structures). Comparative results on independent tests demonstrate that our
proposed method significantly outperforms state-of-the-art methods. In particular, our method exhibits better performance
at the segment level, suggesting the strong ability of our model in capturing local discriminative information. The case study
also shows that our PSSP-MVIRT achieves promising and robust performance in the prediction of new peptide secondary
structures. Importantly, we establish a webserver to implement the proposed method, which is currently accessible via
http://server.malab.cn/PSSP-MVIRT. We expect it can be a useful tool for the researchers of interest, facilitating the wide use
of our method.
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Introduction
Peptides have recently emerged as potential therapeutic
molecules against various diseases for their high specificity,
high tolerance, high penetration, few side effects, low production
cost and ease in manufacturing and modifications [1]. The
biological functions of peptides are closely related to their
structures. Therefore, understanding the structures of bioactive
peptides is not only helpful in further understanding of peptide
functions but also guides the designing of peptides with desired
functions [2]. Secondary structure refers to the 3D local segments
of the protein macromolecule that forms after the amino
acid residues join in a sequence and before the protein folds
into its tertiary structure. The secondary structure involves
hydrogen bonds along the backbone that cause the long chain
to fold into local shapes, mainly helices (H), strands (E) and
coils (C) [3]. Subsequently, before predicting peptide tertiary
structures, an important step is to determine the secondary
structures of peptides, which can provide information regarding
binding characteristics and backbone that are useful for tertiary
structure prediction.

In the past few years, several computational methods have
been proposed for predicting protein secondary structures
based on machine learning. For instance, Jones [4] designed a
two-stage neural network trained with evolutionary features
derived from position-specific scoring matrices (PSSM), which
is a kind of profile containing sufficient evolutionary con-
servation information. Zhou and Troyanskaya [5] proposed a
new supervised generative stochastic network-based method
that learns a Markov chain from a conditional distribution
and applied it to protein structure prediction. Later on,
Wang et al. [6] proposed Deep Convolutional Neural Fields, a
deep learning model that can explore not only the complex
sequence–structure relationship but also interdependency
between adjacent property. Particularly, unlike other previous
methods, it can provide more accurate secondary structure
prediction for proteins without close homolog or with little
evolutionary information. Similarly, Li and Yu [7] presented
Diffusion Convolutional Recurrent Neural Network (DCRNN),
an end-to-end deep neural network that focuses on using
both global features and local features and utilizes multi-
task learning to predict the secondary structure and amino
acid solvent accessibility simultaneously. To capture the long-
distance dependency along with proteins, Heffernan et al. [8]
designed Spider3, a bidirectional recurrent neural network with
a long short-term memory mechanism, aiming to extract the
global features. They demonstrated that Spider3 outperforms
other previous methods. Busia and Jaitly [9] proposed the next-
step conditioned deep Convolutional Neural Network (CNN),
which improved upon state-of-art by using a novel chained
prediction approach. The neural network frames the sec-
ondary structure prediction as a next-step prediction problem.
More recently, Fang et al. [10] developed a deep inception-
inside-inception network (namely Deep3I) that integrates
various information like physiochemical properties of amino
acids, and evolutionary information derived from the PSI-BLAST
profile (PSSM) to train the predictive model. Deep3I enables
effective processing of local and global interactions between
each residue in making accurate predictions. Besides the

methods introduced above, there are other outstanding protein
secondary structure prediction methods, such as PSIPRED [11],
Jpred [12], RaptorX [13], PHD [14], PROTEUS2∗ [15], etc.

However, the methods mentioned above are designed specif-
ically for protein secondary structure prediction, there are many
differences in secondary structure between protein and peptide.
On the one hand, previous studies have demonstrated that by
comparing secondary structure composition of peptides and
proteins, their secondary structures are different [2] for some
identical segments of residues in proteins and peptides. On the
other hand, lacking accurate peptide secondary structures also
limits the prediction of peptide functions, like anti-cancer activ-
ity [16], which heavily relies on sequential information. Thus,
it is reasonable to expect an improvement by integrating extra
secondary structure information. To deal with this problem,
Singh et al. [2] first proposed a Random Forest-based method
namely PEP2D, which predicts the peptide secondary structures
with sequential and evolutionary information and gained a lot of
improvement by exploiting secondary structure information. In
summary, secondary structure prediction of peptides is of great
significance for downstream structural or functional prediction.

In this study, we proposed a novel deep learning neural
network called Peptide Secondary Structure Prediction based
on Multi-View Information, Restriction and Transfer Learning
(PSSP-MVIRT), which is designed specifically for peptide
secondary structure prediction. The novelty of the proposed
PSSP-MVIRT can be concluded as the following three aspects.
First, to sufficiently exploit discriminative information, we used
a multi-view fusion strategy to integrate the information from
multiple perspectives, including sequential information, evolu-
tionary information and hidden state information, respectively.
Second, to extract global and local features of peptides, we used
a hybrid network architecture of CNN [28] and Bi-directional
Gated Recurrent Unit (BGRU). Particularly, we introduce an
additional restriction mechanism that can capture high-latent
feature representations and improve the representation ability.
Third, due to the lack of training samples with experimentally
validated structures, we here utilized transfer learning to
train our model on a large-scale protein dataset first and
then fine-tuned the model for peptide secondary structure
prediction. Extensive comparative experiments on benchmark
datasets demonstrate that our proposed method significantly
outperforms state-of-the-art methods on the independent test.
More importantly, via comparative analysis, we show that our
method can capture more local informative characteristics of
peptides, which can effectively help to improve the predictive
performance.

Methods and materials
Datasets

Initial dataset collection

In this study, we used the same benchmark dataset, namely
SCRATCH-1D, which is commonly used for performance eval-
uation in several studies [17]. This dataset consists of 5772
primary and corresponding secondary structures of protein data
with three structural states (H, E and C). In SCRATCH-1D, the
protein structures are derived with X-ray crystallography with
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Table 1. Summary of the datasets used in this work

Datasets Structural states Sequence number

H E C

Segmented protein training set 321,476 206,758 340,032 9262
Peptide training set 38,749 18,020 32,910 1285
Peptide testing set 5294 1119 3733 257

a resolution of at least 2.5 angstroms, with no chain breaks, with
less than five unknown amino acids and of length at least 30
residues. Notably, the sequence identity in the dataset is reduced
to 25% to avoid the bias of performance evaluation. However,
we found that there are some proteins with unnatural residues
represented by the symbol X. After removing these peptides,
4542 protein and peptide sequences are retained in our dataset.

Training and testing dataset

Since our task is to predict the secondary structures of peptides,
whose samples are normally <100 residues long, the protein
sequences with the length >100 residues long in the dataset are
segmented to 100 residues long, rather than using full-length
protein sequences. By doing so, we yielded 9262 segmented
protein subsequences in total. The reason for doing so is to better
capture the characteristics of short peptide-like sequences so
as to achieve better performance. All the segmented protein
subsequences are used for pretraining an initial deep learning-
based predictive model, whereas the peptide sequences are used
for model fine-tuning to generate a task-specific model. For
peptide model training phase, we randomly selected 1028 out
of 1285 peptide sequences as training dataset, of which the
number of the three structural states H, E and C are 38 749,
18 020 and 32 910, respectively (Table 1). The remaining 257 pep-
tide sequences (with H of 7450, E of 4199 and C of 6957) are
chosen as our test set used for model performance evaluation.
The sequence length of each peptide is between 30 and 100
residues that are labeled with three-state secondary structure.
The statistics of the three-state secondary structure and peptide
sequence are shown in Figure 1A and C, in which the length
of each color in each FASTA file, respectively, represents the
amount of helix (H), strand (E) or coil (C). Figure 1B shows the
number of corresponding peptide sequences in response to the
specified amount of each state in the dataset. The detailed
information of the datasets used in this work can be seen in
Table 1. Figure 1 also illustrates the statistics of the datasets.

The architecture of the proposed PSSP-MVIRT

Figure 2 illustrates the architecture of the proposed neural
network, namely, PSSP-MVIRT. The method contains four major
modules: (1) multi-view feature embedding, (2) feature extrac-
tion, (3) feature representation ability enhancement and (4)
prediction module. The prediction procedure is described
as follows. In Module (1), given a peptide sequence, it is
first encoded into three feature metrics, which represent
sequential information, evolutionary information and hidden
state information, respectively. Afterward, to learn a unified
feature embedding, we use Cosine Similarity based on a multi-
view fusion strategy to measure how similar two embedded
features are. In Module (2), to further exploit more discriminative
information, we utilized a hybrid neural network of CNN and
BGRU, capturing the local features and global features. In Module

(3), we employed the Transformer Encoder [18], a widely used
Natural Language Processing technique, to enhance the feature
representation derived from the last step. Finally, in Module (4),
resulting features are fed into our model to predict each position
of the peptide belonging to which structural state: C, H or E. The
four modules are introduced in detail below.

Multi-view feature fusion module

In this section, we introduce how to preprocess our raw peptide
sequences into numeric feature representations, which can be
trained with a machine learning algorithm. Below, we first intro-
duce the embedding approaches from the following four feature
views: evolutionary information, sequential information, hidden
state information and similarity information. Next, to generate a
unified feature space, we adopt a multi-view feature fusion and
learning strategy.

Feature View 1—sequential information embedding

The sequential information here is generated by word2vec [19]
from a list of indices. Comparing with one-hot coded sequen-
tial information, it can be used to learn high-quality residue
vectors with latent semantic and prevent the zero-redundant
expression.

Feature View 2—evolutionary information embedding

PSSM is an m∗n matrix, where m is the length of each protein
sequence and n is the number of standard residues. PSSM scores
are usually shown as positive or negative integers. In this way,
we can compute the position-specific scores of the 20 amino
acids in a specific position of the sequence. The lower-scored
amino acids have a great tendency to evolve into the higher-
scored amino acids, which maintain a stable state. In this study,
the PSSM of each peptide sequence was generated by three
iterations of Position-Specific Iterated-Basic Local Alignment
Search Tool (PSI-BLAST)+ [20] against the SwissProt database [21]
(version updated on 5 September 2020) with default parameters.

Feature View 3—hidden state information embedding

The Hidden Markov Model (HMM) serves as a type of stochastic
model. And it is widely used for predicting protein secondary
structure. In peptide secondary structure prediction, structures
such as H (helices), E (strands) and C (coils) are learned by HMMs,
and these HMMs are applied to new peptide sequences whose
secondary structures remain unknown. The output of probabili-
ties from the HMMs is used to predict the secondary structures of
sequences [22]. In this study, the explicit sequences are peptide
sequences and the hidden states are their secondary structures.
The HMM profiles we used in the study were generated from
HMMER3.0 [23].
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Figure 1. Statistics of peptide dataset. (A) The number of each secondary structure in each peptide sequences with residues X; (B) the number of corresponding peptide

sequences with residues X in response to the specified amount of HEC; (C) the number of each secondary structure in each peptide sequences without residues X; (D)

the number of corresponding peptide sequences without residues X in response to the specified amount of HEC.

Multi-view feature fusion strategy

We here used the cosine similarity to generate a unified fea-
ture representation space by fusing the information from the
above three feature views. Given a benchmark dataset with n
sequences {P, E}, where P represents PSSM and E represents
embedded sequential information. For each given peptide, its
feature can be denoted as a matrix X as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = cosine (P, E) (1)

cosine (P, H) = P·E
‖P‖‖E‖ (2)

‖P‖2 = Tr
(
PTP

)

PTP =
⎛
⎜⎝

pT
11p11 K pT

1np11

M O M
pT

m1p11 L pT
mnp11

⎞
⎟⎠ (3)

Tr
(
PTP

) = pT
11p11 + K + pT

nnpnn (4)

To simplify the integration process, the matrix 1-norm is
replaced by infinite-norm, as shown below. Moreover, we also
integrate some supplementary information, which consists
of two parts: (1) similarity information generated by PSSM
information and embedded sequential information; and (2)
similarity information generated by HMM information and
embedded sequential information. The process of generating
unified feature representation space of Hidden Markov Model
(HMM) and embedded sequential information is the same as
above.

⎧⎪⎨
⎪⎩

cosine (P, E) = P·E
‖P‖∞‖E‖∞

(5)

‖P‖∞ = max
(∑n

i=1

∣∣p1j

∣∣ ,
∑n

i=1

∣∣p2j

∣∣ , · · · · · · ,
∑n

i=1

∣∣p1nj

∣∣) (6)

where ‖P‖∞ is the infinite-norm of matrix P, and ‖H‖∞ is the
infinite-norm of matrix H.

Finally, HMM, PSSM and the two unified feature representa-
tion spaces are concatenated to an m × w matrix as the high-
latent input feature, where m is the length of peptide length
and w is the sum of width of HMM, PSSM and the two supple-
mentary information.

The high-latent feature extraction module

For high-latent feature extraction, we utilized a hybrid neural
network of CNN and BGRU, in which the CNN is to extract local
features and the BGRU is to extract global features.

Local feature extraction using CNN with novel padding techniques

Here, we leverage CNN to learn and extract local features. Each
convolutional neuron processes data only for its receptive field.
Thus, CNN is employed here to extract local information in
peptide feature representations. Notably, padding techniques
(Cyclic padding and Reflection padding) that are discussed in
support information are used before each 2D-convolutional
layer, as shown in Figure 3. By using the padding techniques,
we can effectively solve the boundary information extraction
problem for peptide chains, improving the predictive perfor-
mance on the terminals of each peptide chain. More details
of the padding techniques are introduced in Supplementary
Material.

Global feature extraction using BGRU

The global feature extraction can be divided into two parts by
the additional restriction. In the first global feature extraction
part, the fully connected layers are used as the transition layers
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Figure 2. Architecture of PSSP-MVIRT. (A) Peptides are first encoded by four kinds of feature representation approaches to explore different sequential information,

which are then integrated into a feature matrix by concatenation (B) CNN with padding techniques to extract local features and Parallel BGRU to extract local–global

features at segmental level; (C) the resulting features are enhanced by multi-head attention mechanism; (D) the secondary structures of the peptides are predicted by

our well-trained model and visualized by PyMol, a tool specific for secondary structure visualization.

between the local feature extraction part and the global feature
extraction part. Then, the BGRU receives a more effective feature
matrix and extracts the long-distance dependency further. In the
second global feature extraction part, the fully connected layers
are inserted behind the BGRU layer, as shown in Figure 2. In
this paper, we also explored whether it performs better to

divided peptides into multi-subsequences as input of BGRUs,
which was named Parallel BGRU, whose architecture is shown
in Figure 4. The comparison experiment about different-
levels of Parallel BGRU architectures is discussed in Section
‘Determination of the optimal network architecture of our
model’.
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Figure 3. The local features extraction part in Feature Extraction Module.

Figure 4. The architecture of Parallel BGRU.

Gated recurrent unit (GRU)

GRU [24] performs well in solving the vanishing gradient problem
of standard Recurrent Neural Network (RNN). GRU allows each
recurrent unit to capture the dependency of different time scales
adaptively, as shown in Figure 5. It is easier for each unit to
remember the existence of a specific feature in the input stream
over a long series of time steps with GRUs.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zt = σ
(
Wz · [h (t − 1) , xt]

)
(7)

rt = σ
(
Wr · [h (t − 1) , xt]

)
(8)

∼
ht = (

W · [rt ∗ h (t − 1) , xt]
)

(9)

ht = (1 − zt) ∗ h (t − 1) + zt ∗
∼
ht (10)

σ (x) = 1
1+e−x (11)

where zt is defined as an update gate controlling the degree to
which the state information of the previous time is brought into
the current state; rt is defined as a reset gate, which controls how

Figure 5. The architecture of BGRU.

much information is written to the candidate activation
∼
ht from

the previous state.
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Figure 6. Example of the relationship between the feature representations in the middle of neural network and the prediction results.

Figure 7. Additional restriction mechanism in PSSP-MVIRT.

Additional restriction mechanism

Inspired by Wang et al. [25], the additional restriction mechanism
is employed in our model. As shown in Figure 6, when the
secondary structure of pepide sequences is the same, it should
have similar representations in the middle of the neural network
if it receives different peptide sequences. For that reason, an
additional restriction mechanism is inserted between the global
features extraction parts. The additional restriction consists of
fully connected layers that are used to reshape the transient
state. It receives the output of the first global features extraction
part as an input feature. After the fully connected layers, an
additional loss is calculated by the mean square error as the cost
function using the secondary structure labels and the outputs of
the fully connected layer, as shown in Figure 7.

Feature representation ability enhancement module

This part mainly consists of the six-stacked eight-head Trans-
former Encoder [18]. The output of the feature extraction part is
received as the embedded input, which could be a more effective
representation way than the word embedding. It processes the
high-level feature by feeding these vectors into a self-attention

layer and then into a feed-forward neural network, and finally
sends out the output to the next Transformer Encoder block.
After the processing of the Transformer Encoder, it comes to two
fully connected layers, which receive the attention feature and
output the secondary structure labels.

Multi-head attention mechanism

The concept of ‘attention’ has gained popularity recently in
training neural networks, especially in translating and aligning
words, which is similar to peptide secondary structure pre-
diction, for it can flexibly catch global and local dependency.
In model design, we follow the original Transformer Encoder
part as closely as possible, which works as the main feature
enhancement part.

It is proved that linearly projecting of the queries, keys and
values h times with different, learned linear projections to dk,
dk and dv dimensions, respectively, outperform a single atten-
tion function with dmodel-dimensional keys, values and queries.
Each Transformer Encoder block includes a Scaled Dot-Product
Attention layer and full connection with residual connection
mechanism. The overall multi-head attention mechanism is
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shown as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

softmax(x) = exp(x)∑
t exp(x) (12)

Attention (Q, K, V) = softmax
(

QK√
dk

)
V (13)

headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
(14)

MultiHead = Concat
(
head1, . . . , headi

)
(15)

where Q denotes queries matrices; K denotes key matrices; V
denotes value matrices; and WQ , WK, WV denote the trained
weight matrices, respectively.

Prediction module

For training a robust predictive model, we here construct a
new loss function, which is composed of the following two cost
functions: (1) the mean square error middle restriction function
and (2) the weighted mean square error loss function, as shown
below. To balance the two cost functions, a balance coefficient γ

is used to calculate a final cost for the optimizer, as shown below:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Loss (MSE1) = 1
m

∑m
i=1

∑n
j=1

(
mj

i − lji
)

(16)

Loss (MSE2) = 1
m

∑m
i=1

∑n
j=1

(
yj

i − wj
i

)
(17)

Loss
(
Final

) = γ Loss (MSE1) + Loss (MSE2) (18)

where MSE is the acronym of mean square error, m is defined
as the output of the additional restriction part, l is defined as
the secondary structure label coded by the one-hot encoder, y
is defined as the output of the feature extraction module, w is
defined as the weighted coded label, which the weight of state
E is 1.25 and others are 1, m is the sample number and n is the
peptide sample length without zero paddings.

Performance metrics

In this study, the performance of the PSSP-MVIRT is measured
by the accuracy of prediction in each structural state Acci (AccH,
AccE, AccC), the accuracy of prediction in all states namely Acc,
precision in each structural state and segment overlap measure
[26] (Sov). The metrics are computed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Acci = Aii
Ai

(19)

Acc = ∑
αi

∑
i∈{H,E,C} Aii∑
i∈{H,E,C} Ai

(20)

Sov =
∑

i∈{H,E,C}
∑

si
min ov(s1,s2)+δ(s1,s2)

max ov(s1,s2)
×len(s1)

N (21)

where i is any secondary structure element (Helix, Sheet or Coil);
Ai is the total number of correctly predicted residues in each
state; Aii is the number of correctly predicted residues in the
state i; αi is the proportion of state i in the whole test set; s1 and s2
are segments corresponding to actual and predicted secondary
structure; len(s1) corresponds to the number of residues defining
the segment s1; min ov(s1, s2) corresponds to the length of
overlapping s1 and s2 segments; max ov(s1, s2) is the maximum
overlap of s1 and s2 segments for which either of the segments

has a residue in state i; δ(s1, s2) is computed below:

δ (s1, s2) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
max ov (s1, s2) − min ov (s1, s2)

)
(22)

(
min ov (s1, s2)

)
(23)

(
int(len(s1))

2

)
(24)

(
int(len(s2))

2

)
(25)

Experimental settings

To get better performance and accelerate the training of the
network, the batch normalization and dropout techniques are
employed in PSSP-MVIRT. The dropout layers with ignoring rate
p of 0.25 are inserted between each layer, except for the addi-
tional restriction part. As for batch normalization, it is inserted
between (1) the input and features fusion part, (2) features
fusion part and local features extraction part, (3) local features
extraction part and the first global features extraction part, (4)
the first global features extraction part and the second global
features extraction part, and (5) the first global features extrac-
tion part and additional restriction part. It is thought to have
the ability to reduce the internal covariate shift by adding net-
work layers that control the means and variances of the layer
inputs [27].

When it comes to the additional cost function, the secondary
structure labels are encoded by the one-hot encoder and the
balance coefficient γ is set to 0.1. In PSSP-MVIRT neural network,
the Rectified Linear Unit (ReLU) activation function is used for
all the convolutional layers, BGRU layers and some of the fully
connected layers. The activation function sigmoid is used before
the final fully connected layer in the additional restriction part,
and the activation function softmax is used before the final fully
connected layer in the second global features extraction part.

Our deep learning models with 31 744 430 parameters overall
were trained globally by Adam algorithm with learning rate l =
1e − 4 to minimize the cost function Loss (Final). The training
epoch is set to 250 and it performs best in the 97 epoch (Sup-
plementary Figure S4). All the training and testing procedures
were performed based on Nvidia Titan RTX GPUs and were
implemented by python based on PyTorch.

Results and discussion
Comparison with existing secondary structure
prediction methods

To evaluate the effectiveness of our proposed PSSP-MIRVT,
we compared it with existing popular protein secondary
structure prediction methods like PHD [16] and Jpred [14]
on the same independent test set for fair. Notably, as for
our prediction method, we trained three different weighted
models with different structural state weights to avoid the
data imbalance problem. The evaluation results are listed in
Table 2. It shows that different weighted prediction models of
our PSSP-MIRVT perform well among the five models, and the
one whose E-state weight of 1.25 achieves the best performance
with Acc of 78.50%, AccH of 90.16%, AccE of 56.84%, AccC of
68.47% andSov of 75.81%, respectively. We observed that our
peptide-specific methods perform significantly better than
those protein designed methods, especially on the Sov in
peptide secondary prediction, which indicates that the methods
designed for protein secondary structure prediction cannot
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Table 2. Evaluation results of our proposed PSSP-MVIRT and existing methods on independent test set

Methods Observedj Predicted ACCj ACC SOV

H E C (%) (%) (%)

PHD H 4282 225 787 80.88 76.31 57.89
E 72 566 481 50.58
C 478 355 2900 77.68

JPRED H 4195 146 953 79.24 78.05 60.62
E 64 588 467 52.54
C 337 259 3136 84.03

Our(1.00) H 4760 62 472 89.91 77.64 75.06
E 174 489 456 43.70
C 847 256 2630 70.45

Our (1.25) H 4773 99 422 90.16 78.50 75.81
E 139 636 344 56.84
C 836 341 2556 68.47

Our(1.50) H 4608 167 519 87.04 77.40 84.01
E 89 670 360 59.87
C 755 402 2576 69.01

Figure 8. The performances of our method and existing methods on three test subsets with different length intervals: (A) performance of PHD; (B) performance of

Jpred; (C) performance of our model with E-state weight 1; (D) performance of our model with E-state weight 1.25; (E) performance of our model with E-state weight

1.5.

sufficiently capture the discriminative information of short
peptide sequences and proves the necessity of PSSP-MIRVT
designed specifically for peptides. As compared with the PHD,
our model is superior to PHD in almost all metrics, achieving
2.19, 9.28, 6.26 and 17.92% higher performance in terms of Acc,
AccH, AccE, Sov, respectively. As compared with Jpred, our model
outperforms Jpred in almost all metrics with 0.45, 10.92, 4.30 and
15.19% higher in terms of Acc, AccH, AccE and Sov, respectively.
As seen, unlike Jpred and PHD having good Acc but poor AccH

and AccE, our model not only achieves competitive Acc, AccE,
AccC, but also reaches a pretty good AccH with >10% higher than
existing methods, proving the advantage of PSSP-MIRVT to deal
with the label imbalanced difficulty. In addition, we used Sov,
another important metric to provide the measurement at the
segment level, to evaluate the overall performance of methods.
As seen in Table 2, our PSSP-MIRVT can achieve a greatly
outstanding performance on Sov with >15% surpassing previous
methods. We speculate that convolution layers after features

fusion enable our model to better capture the information at the
local regions of peptides. Thus, it exhibits better performance
than existing methods at the segment level of peptides. It is
noteworthy that, our method is an end-to-end deep learning
approach that can learn and extract features from sequence
only and make predictions, without any professional feature
engineering like traditional machine learning-based methods.
In conclusion, it can be concluded that our model (E-state
weighted 1.25) is more effective than Jpred and PHD in the
prediction of peptide secondary structure prediction, especially
for AccH and Sov.

Length preference investigation for peptide
secondary structure prediction

To further investigate if our model has the length preference
for peptide secondary structure prediction, we divided the test
set into four subsets with different length intervals: [30, 35), [35,
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Table 3. Results of the models with different input features

Methods Observedj Predicted ACCj ACC SOV

H E C (%) (%) (%)

Word2Vec H 4571 109 614 86.34 73.72 69.80
E 189 368 562 32.88
C 925 264 2544 68.15

PSSM H 4532 81 681 85.61 76.41 74.09
E 154 463 502 41.38
C 755 220 2758 73.88

HMM H 5280 1 13 99.73 53.44 26.25
E 1119 0 0 0
C 3591 0 142 3.80

Multi-view feature fusion H 4773 99 422 90.16 78.50 75.81
E 139 636 344 56.84
C 836 341 2556 68.47

Figure 9. Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of different input features: (A–D) represent

PCA visualization results of PSSM, HMM, Word2vec and the feature fusion, respectively; (E–H) represent t-SNE visualization results of PSSM, HMM, Word2vec and the

feature fusion, respectively.

40), [40, 45] and (45, 50] residues long, respectively. The details
of the four subsets can be found in Supplementary Table S2.
PSSP-MIRVT is evaluated on the four test subsets, and the results
are presented in Supplementary Table S1. Figure 8 describes that
our method better performs at the [30, 35), [35, 40), [40, 45]
than that the (45, 50] interval, giving the highest Acc of 75.10,
78.93 and 81.58%, Sov of 64.58, 78.30 and 77.53%, respectively.
By comparison, our performances lead by 1.41 and 8.31% in
terms of Acc and Sov at the [30, 35], lead by 3.3 and 22.52%
in terms of Acc and Sov at the (35, 40], and lead by 1.26 and
20.80% in terms of Acc and Sov at the (40, 45]. Interestingly, we
found that the performances show a clear downtrend as the
peptide length increases (Figure 8), which demonstrates that our
method can achieve the best performance to predict shorter
peptides. The observation implies that our model is superior in
the prediction of the peptides even shorter than 30 residues long,
while existing methods are not good at. Moreover, we also evalu-
ated other existing methods on the three subsets with different
length intervals, and the results are presented in Supplementary

Table S2. Unfortunately, there is no clear trend observed as did
in our model.

Determination of the optimal network
architecture of our model

To determine the optimal network architecture of our model
and achieve the best performance, we optimized the two
major hyperparameters of our model, one of which is the
number of convolutional layers, and the other is the segment
numbers of the proposed BGRU. For the determination of the
optimal convolutional layer number, we analyzed different layer
numbers from 1 to 4. The results are reported in Supplementary
Figure S5A, which shows that our model achieved the peak,
giving the highest performances with the Acc of 78.50%, AccH of
90.16%, AccE of 56.84% and AccC of 68.47%, respectively, when
the layer number reaches 3. Specifically, the model with the
three convolutional layers improves the Acc and Sov by 0.93
and 1.07% compared with one convolutional layer, indicating
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Figure 10. Visualization of secondary structures mapped into tertiary structures for our method and existing methods including PHD and Jpred.

that we can capture the most sufficient information with three
convolutional layers. The possible reason for lower performance
with one or two convolution layers is ought to be the lack
of local feature information extraction, whereas the reason
for four 2D-convolution layers might be too many training
parameters, resulting in overfitting.

Similarly, to optimize the proposed Parallel BGRU architec-
ture, we investigated different segment numbers with a range
from 1 to 4 and illustrated the results in Supplementary Fig-
ure S5B. It is worth noting that if the segment number is set
to 1, it is the original peptide without any segmentations. As
expected, we achieved the best performance when the segment
number is equal to 1 since segmentation results in loss of global
information. To be specific, the best Acc and Sov are 78.50
and 75.81%, respectively, which are 0.94 and 2.59% higher than
the models with second best architecture. Besides, our models
with 1, 2 and 3 segments perform well, which proves that the
features extracted at the peptide segment level might be a new
method to keep exploring. However, if the peptide is segmented
into too many subsequences, like four or more segments, as
shown in Supplementary Figure S5B, the performance decreased
significantly, whose potential reason might be that the local
structure pattern is broken. Moreover, we also investigated the
impact of the learning rate of our model. The detailed results
can be found in Supplementary Material.

Impact of our multi-view feature fusion strategy

To analyze the impact of our multi-view feature fusion strategy,
we compared our fused features with three individual features,
including the features extracted from PSSM profile, HMM profile
and Word2vec, respectively. To simplify the discussion, the three
features are denoted as PSSM, HMM and Word2vec, respectively.
The results of different features are presented in Table 3. Among

the three individual features, the PSSM outperforms the other
two, demonstrating that the evolutionary information is more
effective for the prediction of peptide secondary structures. After
fusing the features from PSSM profiles, HMM profiles and the
embedding of peptide sequences with our multi-view learning
strategy, the model performs best as compared with the individ-
ual features, which indicates the different information is com-
plementary to each other, effectively improving the predictive
performance. To understand the features intuitively, we also fur-
ther visualized the feature space distribution of different feature
representations, as shown in Figure 9. As seen, our proposed
multi-view feature fusion strategy can create a better feature
space, in which different structural states are more clearly sep-
arated, which further demonstrates that the multi-view feature
fusion strategy is effective to improve the feature representation
ability.

Case study

To intuitively compare the performance between our method
and existing methods, we randomly selected two peptide chains
with Protein Data Bank Identity (PDB ID)—4jtm and 1zt3, per-
forming different methods for the secondary structure predic-
tion on the two peptides. We illustrate the prediction results in
Figure 10, in which we present the known experimental struc-
tures and the predicted structures of our method, PHD and Jpred,
respectively. The secondary structures are mapped into the ter-
tiary structures in which the red area represents helix (H), the
yellow area represents strand (E) and the green area represents
coil (C). It depicts that the predicted structures by our method
are more similar to the experimental ones as compared with
other methods. In particular, our method performs better on the
local consecutive sequence regions than other methods, further
confirming that our model can capture more discriminative local
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Figure 11. PSSP-MVIRT server.

information. To be this end, we can conclude that our methods
are better than existing methods.

Webserver

A user-friendly web server has been developed for readers to
better predict peptide secondary structure using our best model
(E-state weighted 1.25). The server was developed using HTML,
JavaScript and Java as the front and installed on a Ubuntu
Enterprise Linux server environment. The server takes FASTA
sequences as input and presents secondary structure in text
format. In addition, our server can take multi-sequences once,
as shown in Figure 11. Also, our code and dataset can be down-
loaded at https://github.com/massyzs/PSSP-MVIRT for free. Up
to now, the PSSP-MVIRT server can be reached at http://server.
malab.cn/PSSP-MVIRT.

Conclusion
In this study, we have developed an end-to-end deep learning-
based method named PSSP-MVIRT for peptide secondary struc-
ture prediction. Benchmarking comparisons demonstrate that

our predictive model significantly outperforms existing methods
especially on AccH and Sov. Moreover, we have also investigated
the length preference of our model in the prediction of peptide
secondary structures and demonstrated that our model shows
better performance when predicting shorter peptides. Besides,
we found that our proposed multi-view feature fusion learning
strategy can enhance the feature representation ability, thus
improving the predictive performance. The PSSP-MVIRT server
can provide a potential way to improve the performance of the
method for the research community.

Key Points
• In this study, we propose a multi-view deep learning-

based method called PSSP-MVIRT for the prediction of
peptide secondary structure prediction.

• Unlike existing methods trained based on hand-
crafted features, we introduce a multi-view fusion
strategy to integrate different information from mul-
tiple perspectives and generate a unified feature
space that greatly improves the feature representation
ability.
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• Comparative studies show that the proposed PSSP-
MVIRT significantly outperforms existing predictors,
especially at the peptide segment level, which demon-
strates that our method has a strong capability to
capture the local discriminative information.

• To facilitate the use of our method, we establish a web
server for the implementation of the proposed PSSP-
MVIRT, which can provide a high-throughput predic-
tion of peptide secondary structures. It is publicly
accessible at http://server.malab.cn/PSSP-MVIRT.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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