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Abstract

Protein lysine crotonylation (Kcr) is an important type of posttranslational modification that is associated with a wide range of
biological processes. The identification of Kcr sites is critical to better understanding their functional mechanisms. However, the
existing experimental techniques for detecting Kcr sites are cost-ineffective, to a great need for new computational methods to
address this problem. We here describe Adapt-Kcr, an advanced deep learning model that utilizes adaptive embedding and is based
on a convolutional neural network together with a bidirectional long short-term memory network and attention architecture. On
the independent testing set, Adapt-Kcr outperformed the current state-of-the-art Kcr prediction model, with an improvement of
3.2% in accuracy and 1.9% in the area under the receiver operating characteristic curve. Compared to other Kcr models, Adapt-Kcr
additionally had a more robust ability to distinguish between crotonylation and other lysine modifications. Another model (Adapt-
ST) was trained to predict phosphorylation sites in SARS-CoV-2, and outperformed the equivalent state-of-the-art phosphorylation
site prediction model. These results indicate that self-adaptive embedding features perform better than handcrafted features in
capturing discriminative information; when used in attention architecture, this could be an effective way of identifying protein Kcr
sites. Together, our Adapt framework (including learning embedding features and attention architecture) has a strong potential for
prediction of other protein posttranslational modification sites.

Keywords: protein lysine crotonylation, phosphorylation, learning embedding features, convolutional neural networks, bidirectional
LSTM, attention mechanism, PTMs prediction

Introduction
Posttranslational modifications (PTMs) are reversible or
irreversible covalent processing events in the later stages
of protein biosynthesis that change a protein’s prop-
erties through proteolytic cleavage and addition of a
modifying group [1, 2]. PTMs have important implica-
tions in many biological processes, including cell cycle
modulation, DNA repair, gene activation, gene regulation
and signaling processes [3–5]. With advances in mod-
ern proteomics technologies, over 400 different types of
PTMs have been identified. These include the addition of
small chemical or complex groups, e.g. phosphorylation,
ubiquitination, crotonylation, acetylation, benzoylation
or succinylation [6], which can occur on single or multiple
amino acid residues [7]. Based on statistics from a leading

PTM database, dbPTM, Ser (S), Lys (K) and Thr (T) are the
three most frequently modified amino acids, and Lys is
the most different amino acid based on the PTM pattern
[8]. Lysine crotonylation (Kcr) is a newly discovered PTM
found in several types of eukaryotes; it is a dynamic
process that is regulated by the co-regulation of crotonyl-
transferases and debatotylatase [9]. Currently, it is known
that Kcr is involved in the normal processes of DNA repli-
cation, cell cycle, spermatogenesis and embryonic stem
cell differentiation, among other biological mechanisms.
It is also known to be associated with disease states,
acute kidney injury, HIV latency and colon cancer [10–
14].

Due to recent advances in proteomics technologies,
various experimental techniques have been reported
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that could promote the study of Kcr distribution and
function. These techniques include stable isotope
labeling, high-performance liquid chromatography
fractionation, affinity enrichment, specific antibodies
and high-resolution liquid chromatography–tandem
mass spectrometry [15]. However, all of these methods
are time consuming and labor intensive, particularly for
large-scale datasets.

Computational tools have previously been developed
to predict Kcr modification sites. For instance, Qiu
et al. [16] used a new encoding scheme, position weight
amino acid composition (PWAA), to identify Kcr sites
using the support vector machine (SVM). Ju et al. [17]
introduced a model called CKSAAP CrotSite, which uses
the composition of k-spaced amino acid pairs (CKSAAP)
as the input coding and SVM as the algorithm for
classification. Liu et al. [18] incorporated five kinds of
amino encoding methods (binary encoding (Binary),
PWAA, encoding based on grouped weight, k-nearest
neighbors and pseudo-position-specific scoring matrix)
into their model, LightGBM-CroSite, to characterize
protein sequence feature information and predict Kcr
sites with the LightGBM algorithm. Lv et al. [19] built
a convolutional neural network (CNN)-based predictor
called Deep-Kcr that integrates sequence-based features,
physicochemical property-based features and numerical
space-derived information with information gain feature
selection. The Kcr site predictors described above are
highly dependent on handcrafted features (HF), which
require engineering by researchers, as input to train
predictive models. This can easily lead to dimensional
disasters and can affect high-dive information capture.
More recently, Qiao et al. established a Kcr site predictor
[20] using the BERT model to extract high-dimensional
features of protein sequences for input into a bidirec-
tional long short-term memory network (BLSTM)-based
classifier. The resulting model, BERT-Kcr, shows good
classification performance on Kcr data.

The models discussed above show that CNNs, recur-
rent neural networks (RNNs), and BERT can be used
to accurately identify protein modification sites. How-
ever, the current methods still have two main disadvan-
tages: (1) BERT involves tens of millions of parameters
that need to be trained, which requires too much time
and computational resources for feasibly extracting the
characteristics of protein sequences, especially for large-
scale input, and (2) not all features along a contex-
tual (protein) sequence contribute to the final prediction
in classification tasks. Thus, to solve these two issues,
we developed a novel deep learning framework named
Adapt-Kcr to identify Kcr sites. We used an adaptive
embedding algorithm, which adapts to the character-
istics of protein modification by adjusting to specific
tasks through reverse propagation during model training.
We also used a CNN module, a BLSTM module, and an
attention mechanism to better capture the latent infor-
mation of adaptive embedding. Compared to the meth-
ods discussed above, our deep learning model performed

significantly better in predicting Kcr sites. Adapt-Kcr
additionally has more robust performance in distinguish-
ing between different types of lysine modifications. Using
the same framework, we also trained a new model called
Adapt-ST on a serine/threonine (S/T) phosphorylation
dataset of SARS-CoV-2, which also outperformed state-
of-the-art models on S/T datasets. Our method therefore
shows strong generalization potential for prediction of
other protein modifications.

Materials and methods
Benchmark dataset
Three benchmark datasets were used in this study. The
first, denoted as the Kcr dataset, was the same dataset
used by Lv et al. [19] and Qiao et al. [20]; this allowed us
to fairly compare the models. Lv et al. downloaded above
protein sequences from the UniProt database, then used
the CD-HIT program [21] to remove redundant sequences
by setting the threshold of sequence identity to 30%. The
final Kcr dataset included 9964 Kcr sites and 9964 non-
Kcr sites. Each sample contained 31 amino acids with
the lysine in the middle. To compare the state-of-the-
art model on the Kcr dataset, we used the same data
segmentation method as Bert-Kcr and Deep-Kcr. The
non-redundant dataset was randomly divided into the
training and independent testing sets at a ratio of 7:3.
The second dataset comprised the Kgly and Kace sites
recorded in PLMD and was used to test the performance
of multiple models in discriminating between Kcr and
other lysine modification sites. Redundant negative
samples were removed using CD-HIT with a threshold of
40%. The final dataset included 2989 Kcr sites and 4041
non-Kcr sites (2556 Kgly sites and 1485 Kace sites, which
are available at http://zhulab.org.cn/BERT-Kcr_models/
data). The third dataset comprised the experimentally
verified phosphorylation sites of human A549 cells
infected with SARS-CoV-2, which were collected from
the literature [22]. CD-HIT was used with a sequence
identity threshold of 30% to reduce redundancy. The
phosphorylation sequences were truncated into 33-
residue-long sequence segments with S/T located at
the center. To balance the positive and negative data,
the negative samples were selected randomly to match
the number of positive samples. A total of 5387 positive
samples and 5387 negative samples of S/T sites were
obtained. Similarly, in order to compare the best models
on the phosphorylation dataset, we used the same data
segmentation method as Deep-Ips, which were randomly
separated into training and independent testing sets at a
ratio of 8:2.

Adaptive embedding module
In the adaptive embedding module, we focused on the
token vector information and position information of
20 amino acid types in each protein sequence. First, we
mapped each of 20 amino acids to a vector by summing
up a specific random initialized vector using a lookup
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table and the position of the letter in the whole sequence.
When the model was being trained, each fusion vec-
tor could adjust adaptively according to the task with
backpropagation. The description of the embedding is as
follows:

Embedding = embedtoken + embedposition (1)

CNNs, long short-term memory networks and
attention mechanism
Due their high learning efficiency, CNNs are widely
used in image processing, speech recognition, and
image semantic segmentation. CNNs contain a set of
learnable filters, each of which is convolved with the
input of the layer to encode the local knowledge of
a small receptive field. To successfully capture the
spatial and temporal dependence in an image, a CNN
block generally consists of three parts: convolution
layers, pooling layers, and fully connected (FC) layers.
In the picture field, the convolution layer can extract
high-level features such as edges, color, and gradient
orientation through multiple feature mapping. A pooling
layer is often used to compress the resolution of feature
mapping, extracting dominant features of rotational
and positional invariant and decreasing the computa-
tional cost. CNN has low power in sequence analyses,
such as natural language processing, because it does
not consider dependence between inputs. RNNs can
overcome this shortcoming, but due to the problems
of gradient vanishing and gradient exploding, RNN
training is very difficult and its application is limited.
LSTMs, a special type of RNN, are designed to solve
gradient explosion and disappearance [23]. LSTMs have
greatly improved the early RNN structure, broadened
the application range of RNN and laid the foundation
for the development of subsequent sequence modeling.
An LSTM layer consists of a set of recurrently connected
blocks, which contain one or more recurrently connected
memory cells and multiplicative units. In LSTM, a storage
mechanism is used to replace the hidden function used
in traditional RNN, which consists of a set of recurrently
connected blocks. The recurrently connected memory
cells and multiplicative units enhance the learning
ability of LSTM for long-distance dependency. Compared
with unidirectional LSTM, BLSTM better captures the
information of sequence context. In addition to the
BLSTM architecture, the attention mechanism can also
be employed to capture positional information. It was
originally proposed to solve machine translation tasks
[24] and has proven to be capable of distinguishing
between more and less important information [25]. In
the field of natural language processing and image
identification, an increasing number of studies have
recently been conducted to explore the application of
advanced deep learning techniques such as the attention
mechanism in an effort to improve model interpretability

[26–29]. The attention mechanism is often used in
bioinformatics in conjunction with RNN [30] and has
been shown to achieve a competitive performance in a
wide range of biological sequence analysis problems [31–
33]. It was therefore used in this study to identify the key
information that affects Kcr site sites prediction.

The Adapt-Kcr model
To fully capture the information in protein sequences, we
used a deep learning network, Adapt-Kcr. This network
has an adaptive embedding module to embed protein
sequence data based on amino acid token and position
information, then continuously update the embedding
value using the gradient. Adapt-Kcr also includes one
CNN layer to extract high-level features in the sequence,
one BLSTM layer to learn dependence structure along
the sequence, one attention mechanism layer to identify
key information within input data and one FC layer. The
convolution layer in the CNN collocated 256 filters, with
each filter size set to 10. Rectified linear activation unit
(ReLU) was used as the activation function in the CNN
layer as follows:

ReLU (χ) =
{

0, if x < 0
x, else

(2)

where x is the feature map from the convolution
operation.

The convolution layer was used to capture higher level
features underlying each sequence. To minimize feature
redundancy and prevent overfitting, a pooling layer with
Max Pooling was added after the convolution layer. One
BLSTM layer with a hidden unit size of 32 was added
after the CNN to learn the dependence structure in the
sequence. Next, one attention layer with hidden size 10
was added after BLSTM to identify the key information
in the feature matrix. The attention layer computed the
weight coefficient matrix using the following formula:

T = softmax (s (M, Q)) (3)

where M is the input matrix, Q represents the weight
matrix of attention and s

(
M, Q

)
is the attention scoring

function represented as s
(
M, Q

) = MT × Q.
In addition, a FC layer with 32 hidden units was used

in this model, with the size of output equal to 2. Final
classifications were made using a sigmoid activation
function to combine the outputs from the FC layer. The
framework of Adapt-Kcr is shown in Figure 1.

Adapt-Kcr uses binary cross-entropy as the loss func-
tion, which measures the difference between the target
and the predicted output as follows:

L (w) = −
N∑

i=1

yi log
(
y′

i

) + (
1 − yi

)
log

(
1 − y′

i

) + α‖w‖2 (4)

where yi is the true label, y′
i is the corresponding

predicted value from Adapt-Kcr and α
∥∥w

∥∥
2 is a regu-

larization term to avoid overfitting.
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Figure 1. The flowchart of Adapt-Kcr. Adapt-Kcr consists of two main modules: (A) an adaptive embedding module that focuses on both token embedding
and position embedding and adjusts with backpropagation, and (B) a task-specific layer consisting of CNN, BLSTM, attention and full connection layers
to the responding probability distribution of a specific class.

Adam [34], Batch normalization and dropout [35] were
applied in the Adapt-Kcr training procedure to accelerate
training and avoid overfitting. When training the model,
the dropout rate, learning rate and reduced factor were
set to 0.5, 0.001 and 0.5, respectively. The maximum
training epoch was 50 and the batch size was set at
256. An early stopping strategy was used in the training
process, meaning training was stopped when prediction
performance did not improve on the validation set; the
patience was set to 20. The whole framework of this
model was implemented in Pytorch (https://pytorch.org).

Prediction accuracy assessment
Prediction accuracy (ACC), Matthews correlation coef-
ficient (MCC), sensitivity (SEN) and specificity (SPE),
defined below, were used to evaluate the performance
of different models:

SEN = TP

TP + FN
(5)

SPE = TN

TN + FP
(6)

Precision = TP

TP + FP
(7)

ACC = TP + TN

TP + TN + FP + FN
(8)

MCC = TP × TN − FP × FN√
(TP + FP )× (TN + FN) × (TP + FN) ×( TN + FP)

(9)

where the true positive (TP) is the number of correctly
predicted Kcr sequences, true negative (TN) is the number

of correctly predicted non-Kcr sequences, false negative
(FN) is the number of Kcr sequences incorrectly pre-
dicted as non-Kcr and false positive (FP) is the number
of non-Kcr sequences incorrectly predicted as Kcr. The
area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve
were used to comprehensively evaluate and compare the
performance of different models.

Results
Model performance comparison for adaptive
embedding versus handcrafted feature encodings
We evaluated and compared the prediction performance
of models trained on features generated with eight
different protein embedding methods or with adap-
tive embedding used by basic CNN architecture. The
convolution layer in the CNN collocated 256 filters,
with each filter size set to 10. ReLU was used as the
activation function in the CNN layer. Finally, a FC layer
with 32 hidden units was used, with the size of output
equal to 2. The eight common HF encodings tested
were amino acid composition (AAC), Binary, CKSAAP,
Kmer dipeptides composition (DPC), composition (CTDC),
normalized moreau-broto (NMBroto), quasi-sequence-
order descriptors (QSOrder) and pseudo-amino acid
composition (PAAC) according to iLearnPlus [36]. Binary
performed better in eight HF embedding methods
(Figure 2). However, adaptive embedding ranked first in
terms of all evaluation metrics; the model built with
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Figure 2. Performance comparison between adaptive embedding and
eight HF encodings.

these features had values that were higher than the
binary model by 3.84%, 7.6%, 4.3%, 4.4%, 2.1% and 5.6%
in ACC, MCC, AUROC, F1, SPE and SEN, respectively.

In addition, we plotted the two-dimensional output
feature vectors in the plane (Figure 3) by setting the out-
put dimension of the penultimate neural network to 2 in
the classification module. The positive and negative sam-
ples of the adaptive embedding model are clearly sepa-
rated, the performance of the binary model is second-
best, and the others are intermixed. This may be because
adaptive embedding methods have the ability to cap-
ture information hidden in protein sequences by map-
ping truncated proteins from high-dimensional to low-
dimensional spaces. Thus, we found that adaptive learn-
ing features were more effective than HF these hand-
crafted features in the prediction of lysine crotonylation.

Selecting model architecture of Adapt-Kcr
We compared multiple model architectures by analyzing
the training data (described in the ‘Benchmark dataset’
section of the Materials and methods) using adaptive
embedding with different deep learning feature extrac-
tors, namely, CNN, long short-term memory network
(LSTM), CNN–LSTM, LSTM–attention and CNN–LSTM–
attention. All detailed evaluation indicators for the
resulting models are shown in Table 1. In general, the
overall performance of each deep learning model was
good using adaptive embedding; in particular, CNN–
LSTM–attention achieved higher performance than the
other deep-learning architectures. Compared to the CNN
model, the ACC, MCC and AUROC values of the CNN–
LSTM model were higher by 1.0%, 1.7% and 0.5%, respec-
tively. This is because LSTM can consider the information
of the sequence context, thereby slightly enhancing the
performance of the constructed model. In addition, CNN–
LSTM–attention achieved higher performance in terms
of SEN, Pre, ACC, MCC and AUROC than CNN–LSTM. This
demonstrates the capacity of the attention mechanism
to identify key information and thus improve model
performance. Furthermore, we found that the LSTM and
LSTM–attention models did not perform as well as the
other deep-learning approaches in predicting Kcr sites,
indicating that LSTM may not be an ideal architecture for

Kcr site prediction. Based on these results, CNN–LSTM–
attention was chosen to build the final Adapt-Kcr model.

Comparison with other leading methods on the
independent testing dataset
To further assess the performance of Adapt-Kcr, we com-
pared our model with two other existing Kcr site predic-
tion tools, Deep-Kcr and BERT-Kcr, using an independent
testing set (Table 2). Adapt-Kcr showed better predictive
performance than BERT-Kcr and Deep-Kcr. More specifi-
cally, the SEN, Pre, ACC, MCC and AUROC for the Adapt-
Kcr model outperformed BERT-Kcr, the state-of-the-art
model, by 5.3%, 2.2%, 3.2%, 6.6% and 1.9%, respectively.

In addition, using the receiver operating characteristic
and precision-recall curves as metrics, our model per-
formed better in predicting Kcr sites than the other meth-
ods did on the independent test set (Figure 4A and B). The
attention vectors of Adapt-Kcr show that the weights of
the central regions are larger than those of the marginal
regions (Figure 4C), i.e. the positions near the modifi-
cation site have made more contributions to the final
prediction. In total, these results indicated that Adapt-
Kcr has excellent predictive ability for Kcr sites compared
with other existing tools.

Validation on other lysine modifications from Kcr
We additionally tested whether Adapt-Kcr could dis-
criminate between Kcr sites and other types of lysine
modifications, namely, glycation (Kgly) and acetylation
(Kace) sites. Using Kgly and Kace sites as the negative
samples and Kcr sites from the independent testing data
as positive samples, we tested the performance of several
models in discriminating between lysine modifications
(Table 3). None of the candidate models performed well.
This is likely because of the large differences between the
negative samples in the benchmark datasets compared
to the negative samples from other proteins, meaning
that the effective features of other proteins had not been
seen during model training. Nevertheless, our approach
performed better than the other five methods, demon-
strating its superior robustness and effectiveness com-
pared to the other methods.

To facilitate understanding, the highest value in each
column is shown in bold.

S/T phosphorylation site prediction
with the adaptive method
To further verify the scalability of the adaptive method,
we tested the performance of the model on other PTM
data. We used serine and threonine (S/T) phosphoryla-
tion sites for this purpose, because lysine, serine and
threonine are the three most frequently modified amino
acid residues. We used experimentally verified phospho-
rylation sites of human A549 cells infected with SARS-
CoV-2 collected from literature [22] as the positive sam-
ples. We used the same architecture and parameters as
those used for Adapt-Kcr to train a new model, Adapt-
ST, on S/T data. To fairly compare methods, we rebuilt
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Figure 3. Visualization of learned features between adaptive embedding and eight handcrafted feature encodings in the Kcr dataset. 0 and 1 represent
non-crotonylation and crotonylation, respectively, in a training set. A-I show visualizations for Kcr at epoch 30 with AAC, CKSAAP, CTDC, DPC, NMBroto,
PAAC, QSOrder, Binary and Adapt, respectively.

Table 1. Comparison of performance between different deep learning network architectures using 10-fold cross-validation

Model SPE(%) SEN(%) PRE(%) ACC(%) MCC AUROC

CNN 88.02 88.38 88.13 88.20 0.7645 0.9552
CNN–LSTM 87.37 91.00 87.85 89.18 0.7813 0.9600
CNN–LSTM–Att 88.87 90.76 89.09 89.82 0.7966 0.9636
LSTM 85.83 89.26 86.30 87.54 0.7526 0.9474
LSTM–Att 85.51 90.36 86.22 87.94 0.7601 0.9449

the BERT-Kcr model on the S/T phosphorylation data
(BERT-ST), and compared several models recently pub-
lished using this dataset (Table 4). The BERT-ST model
performance was very close to that of the state-of-the-
art model, DeepIPS. However, Adapt-ST surpassed even
DeepIPS on the S/T data set; the ACC, MCC, SPE, SEN

and AUROC values of Adapt-ST were 2.7%, 3.5%, 2.2%,
1.3% and 1.8% higher, respectively, compared to DeepIPS.
This result suggests that learning embedding features
and attention architecture (i.e. our Adapt framework) has
a strong potential for application in other PTM prediction
tasks.
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Table 2. Performance evaluation of the Kcr site prediction tools using an independent testing set. To facilitate understanding, the
highest value in each column is shown in bold

Model SPE SEN PRE ACC MCC AUROC

Adapt-Kcr 0.849 0.854 0.850 0.852 0.706 0.924
BERT-Kcr 0.838 0.801 0.832 0.820 0.640 0.905
Deep-Kcr 0.871 0.630 0.830 0.751 0.516 0.859

Figure 4. Performance analysis of Kcr models. (A) receiver operating characteristic curves of Adapt-Kcr based on the Kcr dataset. (B) Precision-recall
curves of Adapt-Kcr based on the Kcr dataset. (C) Characterization of the attention vectors of Adapt-Kcr for predicting Kcr sites.

Table 3. Performance evaluation of Kcr site prediction models in distinguishing between Kcr sites and other types of lysine
modification (glycation and acetylation) sites

Methods SPE SEN PRE ACC MCC AUROC

Adapt-Kcr 0.514 0.854 0.639 0.685 0.393 0.767
BERT-Kcr 0.567 0.801 0.578 0.667 0.370 0.758
Deep-Kcr 0.376 0.630 0.428 0.484 0.006 0.497
Position_weight 0.268 0.725 0.423 0.463 -0.007 0.493
CKSAPP_CrotSite 0.208 0.853 0.443 0.482 0.078 0.592
LightGBM-CrotSite 0.477 0.806 0.533 0.617 0.292 0.697

To facilitate understanding, the highest value in each
column is shown in bold.

In addition, ROC and PR curves were plotted to
demonstrate the performance of Adapt-ST, DeepIPS and

BERT-ST (Figure 5). The Adapt-ST model had much
higher performance than the other methods, further
demonstrating the stability and generalization ability
of the Adapt framework.
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Table 4. Performance evaluation of S/T site prediction tools using an independent testing set

Methods SPE(%) SEN(%) ACC(%) MCC AUROC

Adapt-ST 85.72 80.90 83.32 0.667 0.912
DeepIPs 83.50 79.61 80.63 0.632 0.894
Bert-ST 74.60 80.07 79.84 0.600 0.889
DeepPSP 83.78 76.65 80.21 0.606 0.876
MusiteDeep2020 78.96 82.95 80.95 0.620 0.887
MusiteDeep2017 81.46 78.87 80.17 0.604 0.880

Figure 5. ROC (A) and PR (B) curves for Adapt-ST on the S/T dataset.

Discussion and Conclusions
In this study, we constructed an end-to-end deep
learning-based model, Adapt-Kcr, that integrates several
deep learning methods to efficiently predict Kcr sites.
Adapt-Kcr uses an adaptive embedding layer to charac-
terize protein sequence information, followed by a CNN
layer to extract local protein sequence characterization,
then a BLSTM layer to capture context-dependency
information of Kcr sites. Adapt-Kcr also uses an attention
mechanism to select the information that is most critical
to predicting Kcr sites, followed by a FC layer to make the
final determination for each site. Experimental results
showed that this model outperformed existing models in
most metrics on the benchmark datasets, demonstrating
higher ACC and robustness. Importantly, we found that
this deep learning architecture with adaptive embedding
features can also be applied to better predict other PTM
data, such as serine and threonine phosphorylation
sites, compared to existing methods. This framework
thus shows good scalability and application potential for
PTM prediction tasks. There are some limitations of this
study that should be noted. The model performance on
unbalanced data is slightly inferior to that on balanced
data, which is a problem to be solved by bioinformatics
data engineering and model architecture design. Due
to the relative complexity of the calculation time, the
framework and parameter design of Adapt-Kcr may

only achieve a local optimum. In addition, the length
of the protein sequence may limit the performance of
the model; theoretically, a longer sequence provides
more information. However, all previous studies on
Kcr site recognition are based on sequences with a
length of 31 nt. Our future work will incorporate longer
sequence information and aim to build an effective
machine learning framework for more single class PTM
predictions or multi-label prediction tasks.

Key Points

• Adaptive learning features, which use position embed-
ding and token embedding, are more effective than HF
in the prediction of Kcr sites.

• We provide a new computing framework, termed Adapt-
Kcr, to automatically capture local and long-range infor-
mation from protein sequences using CNN and LSTM.
The attention mechanism is employed to effectively cap-
ture the position information from protein sequences.

• Attention vectors of the trained model show that the
region near modifications are weighted higher in the
final predictions.

• The learning embedding features and attention architec-
ture (the adaptive framework) has a strong potential for
application in other PTM prediction tasks.
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