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Abstract

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and
causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in
the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell,
to identify the abnormal TME cells associated with the biological outcome of interest based on a cell–cell crosstalk network. In the
method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene
signatures. Then, a weighted cell–cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome
data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities
of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells.
Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated
that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was
further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient
prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells
based on a cell–cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is
developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
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Introduction
Tumor microenvironment (TME) cells contain many different
non-cancerous cell types in addition to cancer cells, such as
immune cells, stromal cells, epithelial cells, etc., which have been
widely implicated in tumorigenesis, prognosis and response to
immunotherapy [1, 2]. For instance, an increase of CD8+ T cells
and CD4+ T cells has been correlated with improved clinical
outcomes and response to immunotherapy in various cancers,
such as stomach cancer, melanoma, urothelial cancer, lung
cancer and breast cancer [3]. Tumor-associated macrophages and
regulatory T cells have both been linked to pro-tumor activities [4,
5]. B cells and natural killer (NK) cells have been demonstrated to
have a good or negative impact on cancer patients’ prognosis in

different cancers [6]. Furthermore, depending on tumor histology,
the significance of different TME cells in different tissues varies
widely. Certain cells are associated with improved survival in
some cancer types. While in other cancer types, they may act with
the opposite effects. For example, M1 macrophages are positively
associated with longer survival times and most positive clinical
outcomes in colorectal cancer, ovarian cancer and breast cancer;
however, in some cancers such as renal cell carcinoma and
melanoma, the presence of M1 macrophages is associated with a
poor prognosis due to the interaction between M1 macrophages
and M2 macrophages [7]. The biological mechanisms of the
TME driving these responses are not yet fully understood. Thus,
identifying abnormal cells associated with disease states (such as
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patient survival) is essential to understanding the effect of TME
on cancer progression and therapeutic responses.

Recently, using gene transcriptome data from bulk tumors,
numerous computational approaches have been developed to
determine the relative infiltration levels of different TME cells.
For example, CIBERSORT mainly applies the deconvolution algo-
rithm to estimate the TME cell fractions; single sample gene set
enrichment analysis (ssGSEA) calculates the enrichment scores
of cell-type-specific marker gene sets to infer the cell abun-
dance; xCell combines gene set enrichment and deconvolution
techniques to count the number of different cell types [8–10].
According to these methods, we could analyze the TME cells with
an abnormal infiltration level linked to malignancy and discover
novel immunotherapeutic biomarkers. Despite this, no system-
atic examination of cellular interactions in the identification of
cancer-related TME cells.

Some studies have revealed that the cell–cell interactions in
the TME may drive cancer progression and influences therapeutic
efficacy [11]. Recently, network modeling has been applied to cell–
cell interaction analysis, mainly by calculating the expression and
pairing of receptors and ligands in different cell types, or based
on the concept of gene co-expression to construct networks and
thus infer the interactions between different cells. For example,
CellPhoneDB mainly obtains information about the interaction
between different cell types through the expression of receptors
of one cell type and ligands of another cell type [12]. iTALK
takes cell populations as the object of interaction, calculates
the expression of receptor ligands in each cell subpopulation,
and uses this as an indicator of interaction to study the cell–
cell communication between subpopulations [13]. Although these
methods are useful for exploring cellular interactions in TME, they
were only applicable to single-cell ribonucleic acid sequencing
(scRNA-seq) and could not be applied to existing large-scale bulk
tumor datasets, which represent a vast and mostly unexplored
resource in cancer TME studies. Moreover, such methods often
ignore the biological functional similarities between cells. Some
studies confirmed that the interactions between different cells
in the TME were very similar to normal physiological processes
and aimed at providing essential materials for tumor growth [11].
Constructing cellular interaction networks based on the biological
functions involved in the cells to deeply investigate the role of
TME cells may provide new perspectives for the development of
new drug targets and cancer therapy. Thus, identifying abnormal
TME cells by considering cell–cell interactions in the context of
a specific cancer type may provide some new insight into the
mechanisms of TME cells.

Here, we proposed a novel computational approach, called iAT-
MEcell, to identify abnormal TME cells associated with the biolog-
ical outcome of interest (e.g. dead/alive) based on a weighted cell–
cell interaction (hereafter called cell–cell crosstalk) network. iAT-
MEcell mainly has two features: (i) a weighted cell–cell crosstalk
network was constructed based on the biological functions shared
by cells; (ii) abnormal TME cells was identified in the context
of a specific bulk tumor transcriptome data. In iATMEcell, we
first manually collected TME cell types from multiple published
studies and obtained their corresponding gene signatures. Then,
a weighted cell–cell crosstalk network was constructed based on
the gene transcriptome data for a pair of binary conditions (e.g.
dead/alive), where the weight between cells reflects both their
biological function similarity and the transcriptional dysregulated
activities of gene signatures shared by them. We then used a
network propagated algorithm to calculate the centrality scores of
cells to identify the abnormal cells linked to cancer. The statistical

significance of the cell centrality score was evaluated with a
bootstrap-based randomization method. We applied iATMEcell
to the TCGA-Bladder Urothelial Carcinoma (BLCA) dataset and
identified NK cells to be significantly abnormal in BLCA. Based
on the signature genes of NK cells, a risk score model was con-
structed, which could efficiently classify patients into high-risk
and low-risk groups. Moreover, we applied the method to multiple
cancer datasets, respectively, using the abnormal cells to create
biomarkers and uncovering unanticipated pan-cancer similari-
ties. Overall, identification of abnormal TME cells based on the cell
crosstalk network is of great importance for understanding the
mechanism of TME, which may provide a new research direction
for the TME research. iATMEcell has been developed as an R
package, which is freely available on GitHub (https://github.com/
hanjunwei-lab/iATMEcell).

Materials and methods
Data acquisition and preprocessing
We constructed a cell–cell crosstalk network in the context of
cancer bulk tissue transcriptome data. To construct the network,
we need three data types: (i) TME cell type-specific gene signature
sets retrieved from the published studies and existing TME cell
estimation methods; (ii) biological function data from the Gene
Ontology (GO) database; (iii) gene transcriptional data with two
different conditions (e.g. alive/dead or normal/diseased).

Cell type-specific signature gene sets
The composition of the TME varies between tumor types, but
hallmark features include immune cells, stromal cells, blood
vessels and extracellular matrix. In this study, TME cells mainly
include both stromal cells (endothelial cells, fibroblasts cells, etc.)
and immune cells, which include adaptive response cells (B cells,
T cells, etc.) and innate response cells [NK cells, macrophages,
Dendritic cells (DCs), etc.] (Figure 1A). In the clinical practice,
TME cells work together to protect us from infection and cancer
[3]. To obtain cell type-specific gene signatures, we collected the
gene signature sets from 12 sources, including the published cell
signature sets (Bindea et al. [14], Charoentong et al. [15], Danaher
et al. [16], Davoli et al. [17], He et al. [18], Rooney et al. [19], Tirosh et
al. [20]) and the TME cell estimation methods (MCP-counter [21],
EPIC [22], ImmuCellAI [9], TIDE [23] and xCell [10]). To make the
cell type-specific gene sets as complete as possible, we integrated
the above data sources, and if a cell had a corresponding gene set
in more than one source, their union set was used. A total of 86
cell type-specific gene signature sets were obtained, including 60
immune cells and 26 stromal cells (Supplementary Table S1).

Biological function data
Biological function data was derived from GO biological processes.
In the ‘gene ontology’ term, a biological process represents a
specific objective that the organism is genetically programmed to
achieve [24]. The biological process gene sets were downloaded
from C5 GO gene sets in the Molecular Signatures Database
database [25]. We then manually curated the GO gene sets associ-
ated with human immune function, which were deposited in our
‘iATMEcell’ package.

Gene expression profiles
The cell crosstalk network was constructed in the context of
cancer bulk tissue transcriptome data. We collected 10 cancer
types that have been proposed to be suitable for immunotherapy
from TCGA, including BLCA, skin cutaneous melanoma (SKCM),
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Figure 1. (A) TME cell type classification. (B) Schematic diagram of the iATMEcell method.

lung adenocarcinoma (LUAD), stomach adenocarcinoma (STAD),
colon adenocarcinoma (COAD), liver hepatocellular carcinoma
(LIHC), breast invasive carcinoma (BRCA), esophageal carcinoma
(ESCA), cervical squamous cell carcinoma, endocervical adeno-
carcinoma (CESC) and kidney renal clear cell carcinoma (KIRC).

The normalized RNA-seq (Fragments per Kilobase per Million,
FPKM) data and clinical information for these cancers were
downloaded from the GDC TCGA data portal (https://portal.gdc.
cancer.gov/). For the gene expression data, the FPKM profiles of
each gene were transformed by log2(FPKM+1), which were then
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normalized by z-score. Thus, the normalized gene expression
values approximately obey normal distribution. Moreover, to
validate our results, we collected two other independent bladder
cancer cohorts receiving immunotherapy, the IMvigor210 [26] and
GSE176307 [27] cohorts. The gene expression data and detailed
clinical information were downloaded from http://research-
pub.gene.com/IMvigor210CoreBiologies/ and the GEO database
(access no. GSE176307).

Calculating the gene differential expression level
We conducted a statistical comparison of gene expression values
between case and control groups (e.g. dead and alive) (step1 in
Figure 1B). In this case, we use Student’s t-test method to calculate
the differential expression level for each gene. Next, we convert
the t-test P-value of each gene into a z-score using z = ϕ−1

(
1 − p

)
,

where ϕ−1 is the inverse normal cumulative density function. The
z-score of each gene was defined as a differential expression score
(DEscore), and a larger DEscore indicates a greater difference in
gene expression between the two groups of samples.

Constructing a cell-GO bipartite network
To construct a cell–cell crosstalk network, we first constructed a
cell-GO network (step 2 in Figure 1B), which is a bipartite network
and the two sets of nodes are cells and GO terms. We think that
two cells are functionally similar if they participate in at least a
common GO term. To do this, we defined a weighted edge between
each pair of cells (C) and GO term (G), if the intersection of genes
between C and G is nonempty. In parallel, we assigned the edge
weight based on two indicators: (i) the degree of overlap between
C and G; (ii) the degree of transcriptional dysregulation of the
intersection genes between C and G. The formula of the weight
is as follows:

EC·G = JC·G × med {DEscorex|x ∈ C ∩ G} (1)

where JC·G is the Jaccard index between C and G, and
med {DEscorex|x ∈ C ∩ G} is the median DEscore of the intersection
genes between C and G.

The Jaccard coefficient is a standard measure of similarity
between sets, in this case, the value of JC·G indicates the extent to
which cell C is involved in the biological function G. Thus, in our
approach, the edge weight between C and G is jointly determined
by the participation degree of cell C in the biological function G
and differentially expressed levels of genes that common to C
and G. In the context of a specific disease gene expression data, a
higher weight suggests a cell that is more involved in a GO term
in the disease.

Converting the bipartite network to cell–cell
crosstalk network
We then constructed the cell–cell crosstalk network through the
cell-GO network (step 3 in Figure 1B). The cell-GO network is a
bipartite network, that can be represented algebraically in the
form of an incidence matrix E = [

Ei,j
]
, where the rows of the

matrix represent cells and the columns represent GO terms, and
its elements reflect the weights between each pair of cells and
GO terms. Two cells share more neighbor GO nodes in the bipar-
tite network; they tend to perform comparable biological func-
tions and communicate with one another. We thus constructed
the cell–cell crosstalk network by defining a weighted adjacency
matrix:

W = E × ET (2)

The value of Wii′ denoted weight of each edge in the cell
crosstalk network:

Wii′ =
NG∑
j=1

ECiGj × ECi′ Gj (3)

where the NG is the total number of GO terms; the edge weight
(Wii’) between cell i (Ci) and cell i’ (Ci′ ) is the sum of the weight
of the two cells with common GO terms, which means the edge
weight between two cells is equal to the sum of their contributions
to the transcriptional differences of all biological functions (GO
terms) they share. Based on this principle, when and only when
two cells share at least one GO term, they are linked in this net-
work. As a result, a weighted cell crosstalk network is constructed,
with self-interactions deleted. This process was previously used
to construct a pathway crosstalk network [28], we used it to
construct a cell crosstalk network.

Identifying the significant abnormal cells by
using a network propagation algorithm
From steps 1 to 3, we construct a weighted cell crosstalk network
based on the cellular functional similarity. The weighted edges
reflect the evidence that a cell may be potentially altered, which
can be expected to be reinforced by the evidence of its neighbors.
To determine the significant abnormal cells that are influenced in
the TME, we used a network propagation algorithm to calculate
the eigenvector centrality score, which is a measure to evaluate
the influence extent of nodes in a network. The random walk
with restart (RWR) algorithm specifically embodies this notion of
importance and is used to calculate the centrality scores of cells
in the crosstalk network. In this algorithm, we define a probability
transition matrix for a random walker, P, by row-normalizing the
adjacency matrix W:

Pii′ = Wii′∑NC
i′=1 Wii′

(4)

where NC is the number of cells in the cell crosstalk network; Pii′

is the probability that, starting at cell Ci, the next step will be to
cell Ci′ .Thus, the edge weight will bias the random walker in such
a way that the walker proceeds along bigger weighted edges with
greater probability than smaller ones. The formula for the RWR
algorithm is:

et+1 = (1 − α) Pet + αPe0 (5)

where P is the row-normalized adjacency matrix of W, et is the
vector of nodes at time step t. In the study, the RWR algorithm
was applied to the weighted cell network to identify the important
nodes that are more likely to be influenced if it is connected to a
lot of other neighbors and the edges have great weight. Thus, e0,
an initial probability vector, is created by assigning to each node
the same value and making the sum equal to 1. The parameter
α is the restart probability, and the default value is set at 0.9. It
has been demonstrated to have only a slight effect on the results
when it was set from 0.1 to 0.9 [29]. After an infinite number of
walks, the probability et will converge to a stable state e, whose
ith element ei is defined as the eigenvector centrality scores of
the cell Ci. The eigenvector centrality score of cell is influenced
not only by the number of neighbors but also by the weights on
the edges linked to it. However, for some cells with a larger degree,
it is possible to have their significance exaggerated by the original
eigenvector centrality scores.
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To rectify this, we use a bootstrap-based randomization pro-
cedure to estimate the statistical significance of cell central-
ity scores. In detail, we use bootstrap resampling of our initial
DEscore at the gene level to become a set of transcriptional
hypothetical data. We generate a set of hypothetical DEscore data,
DEscore∗

x, for all genes x and apply the above algorithm (step 1
through 4) to obtain the hypothetical eigenvector centrality scores
of all cells, e∗. This process was repeated 1000 times to produce
a set of centrality score vectors

{
e∗1, e∗2, . . . , e∗1000

}
. According to

the law of large numbers, all centrality scores for each cell in this
collection can be considered to follow a normal distribution. We
calculated a P-value for cell i by:

p − value = 1 − 1

σ
√

2π

∫ Ci

−∞
exp

(
− (Ci − μ)

2

2σ 2

)
dCi (6)

where μ and σ are the average value and standard deviation
of the random centrality scores and Ci is the origin eigenvector
centrality score of cell i. The resulting ranking of cells follows
the ranking of P-value, with the lower P-value indicating the
greater statistically significant difference of cells. The P-value was
adjusted by the false discovery rate (FDR) method proposed by
Benjamin and Hochberg [30]. At present, the iATMEcell method
has been developed as a freely available R package on the GitHub
repository (https://github.com/hanjunwei-lab/iATMEcell).

Constructing the prognostic model based on the
signature genes of abnormal cells
In order to test the impact of the significant abnormal TME cells
on cancer prognosis, we conducted a survival analysis on the
signature genes of abnormal cells. For each abnormal cell, we
assessed the prognostic role of the cell signature genes based on
univariate Cox regression analysis, and prognostic related genes
were selected at a threshold of P < 0.05. Subsequently, due
to the presence of multicollinearity among the gene variables,
the prognosis-related genes were further downscaled using the
least absolute shrinkage and selection operator (LASSO) regres-
sion analysis [31]. The LASSO regression algorithm uses the L1
parametric shrinkage penalty to penalize some variables that do
not contribute much to the dependent variable, thus retaining the
significant variables. This analysis was performed with R software
based on the R package ‘Glmnet’. The identified genes by the
LASSO regression were used to construct a cell-specific risk score
model based on their corresponding coefficients, and the risk
score for each sample was calculated as follows:

Risk score =
n∑

k=1

βk × GEk (7)

where n is the number of selected prognosis-related cell signature
genes in the LASSO regression, GEkis the gene expression value
of gene k, and βk is the coefficient of gene k generated from
the LASSO regression analysis. All patients were divided into
high- and low-risk groups by the median risk score. The log-rank
test and Kaplan–Meier survival analysis were used to test if the
high-risk group and low-risk group show significant difference.
Moreover, the ‘survival’ and ‘survival ROC’ R packages were used
to generate the receiver operating characteristic curve (ROC) to
evaluate the performance of prognostic classification of the risk
score model.

Results
Identification of the abnormal TME cells in BLCA
TME contains multiple complex cell populations, each of which
may be involved in tumor progression. Identifying abnormal TME
cells can promote further understanding of the mechanisms of
TME on tumor development. In this paper, the key purpose of
iATMEcell is to identify abnormal TME cells by constructing a
weighted cell–cell crosstalk network under bulk transcriptome
data. In iATMEcell, TME cells will be ranked by their FDRs of eigen-
vector centrality scores calculated from bulk tissue transcriptome
data under two different conditions (e.g. alive/dead).

To illustrate the effect of iATMEcell, we applied it to the BLCA
dataset from the GDC TCGA database, which includes 406 sam-
ples (Nlive = 227, Ndead = 179). With FDR≤0.25, iATMEcell identified
five statistically significant abnormal TME cells (Table 1), which
include NK cells, CD8+ Effector memory T Cell (CD8 + Tem),
gamma delta (γ δ) T cells, Monocytes, M1 Macrophages. Some evi-
dence for the biological significance of these potentially abnormal
cells has been found in several literatures. For example, NK cell
was identified to be the most statistically significant by iATMEcell,
and which was a type of cytotoxic lymphocyte critical to the
innate immune system [32]. The relationship between NK cells
activity and inhibition of tumorigenesis has been demonstrated
in mouse models [33]. Meanwhile, Sun et al. found that tumor
expression of activated NK cell receptors was more favorable for
BLCA prognosis [34]. Hartana et al. demonstrated tumor immune
escape mechanisms that suppress CD8+ T cells cytotoxicity in
urothelial bladder cancer [35]. Pan et al. found that T cell receptor-
positive γ δ T cells exhibited NK cell-like phenotypic characteristic
and showed that γ δ T cells has a powerful benefit in BLCA
treatment [36], and which indicates the relationship between γ δ

T cells and NK cells.

Construction of the prognostic model based on
the abnormal cells
To investigate the prognostic effect of NK cells in BLCA, we
performed the survival analysis based on the signature genes
of NK cells. The signature genes of NK cells were obtained from
10 sources (Supplementary Table S1), including 195 genes in
total. For identifying prognosis-related genes, univariate Cox
regression analysis and the LASSO regression analysis along with
10-fold cross validation was performed on the gene expression
and overall survival (OS) data. Thus, 23 significant genes were
obtained (Figure 2A and Supplementary Figure S1A), of which
14 were prognostic protective factors (Hazard ratio (HR) < 1) and
nine were risk factors (HR >1) (Figure 2B). With these genes, the
NK cells-based gene risk score model was constructed using
a formula derived from the expression of the genes weighted
by their LASSO regression coefficients (Supplementary Figure
S1B): risk score = ∑23

k=1βk × expression value of gene k.
According to the median values of risk scores, the BLCA patients
were categorized into the high-risk and low-risk groups. The
Kaplan–Meier survival curves showed that patients in the low-
risk group had significantly longer OS than that in the high-
risk group (Figure 2C; log-rank P-value <0.0001). Moreover, the
expression values of these genes show significant differences
between high-risk and low-risk groups (Figure 2D). Furthermore,
time-dependent ROC curve analyses were used to evaluate the
prognostic power of the risk score model. The area under the ROC
curve (AUC) for 1-, 3-, and 5-years OS were 0.75, 0.77 and 0.79,
respectively (Figure 2E). Finally, we compared the abundance of
NK cells infiltration using the xCell method [10], and interestingly,
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Table 1. Significant abnormal TME cells identified by iATMEcell (FDR≤0.25)

Rank Cell Cell full name Sizea P-value FDR

1 NK cells Natural Killer Cells 195 0.001 0.09
2 CD8+ Tem Effector memory CD8+ T cell 329 0.003 0.12
3 γ δ T cells Gamma Delta T cells 254 0.01 0.25
4 Melanocytes Melanocytes 241 0.01 0.25
5 Monocytes Monocytes 353 0.01 0.25

aThe number of signature genes for a cell.

Table 2. Univariable and multivariable Cox analysis of the risk score and clinicopathological factors (Age, Sex, TMB and Stage) for OS
in BLCA

Univariable analysis Multivariable analysis

HR 95% CI P-value HR 95% CI P-value

TCGA BLCA dataset
Risk score (high versus low) 3.3 2.6–4.2 <0.01 2.8 2.2–3.7 <0.01
Age (≥65 versus <65) 1.8 1.3–2.4 <0.01 1.6 1.1–2.2 <0.01
Sex (male versus female) 0.88 0.64–1.2 0.44 1 0.7–1.4 0.99
TMB 0.92 0.88–0.96 <0.01 0.94 0.9–0.98 <0.01
T stage (T0–T4) 1.7 1.4–2.1 <0.01 1.3 1.1–1.6 0.012

we found that the NK cell infiltration abundance was significantly
lower in the high-risk group samples than that of the low-risk
group (Figure 2F). These results demonstrated that the iATMEcell
method could identify significant abnormal TME cells associated
with patients’ survival states (dead and alive) and the risk score
model constructed with the cell signature genes may serve as a
potential prognostic biomarker. In addition, we found that the risk
score is an independent prognostic factor after adjusting for age,
sex, TMB and T stage by the multivariable Cox regression analysis
[HR = 2.8, 95% confidence interval (CI), 2.2–3.7, P < 0.01, Table 2].

To explore the biological functions that may be potentially
induced by the NK cells, we performed the GSEA analysis to iden-
tify differentially activated pathways between high-risk and low-
risk groups. The ridgeline plot shows the expression distribution
of the core enriched genes for the top 30 significantly differen-
tial signaling pathways (Figure 3A). Interestingly, we found that
the phosphatidylinositol 3′-kinase (PI3K)-Akt signaling pathway,
mitogen-activated protein kinase (MAPK) signaling pathway and
extracellular matrix (ECM)-receptor interaction, etc. were mainly
enriched in the high-risk group, and antigen processing and pre-
sentation, RIG-I-like receptor signaling pathway, etc. were mainly
enriched in the low-risk group (Figure 3B). These results are in line
with our expectations that most of these pathways have impor-
tant links to BLCA. For example, the PI3K-Akt signaling pathway
is an intracellular signal transduction pathway that promotes
metabolism, proliferation, cell survival, growth and angiogene-
sis in response to extracellular signals. Stefanos et al. showed
that PI3K-Akt pathway activation was crucial for bladder cancer
initiation and progression [37]. Liu et al. established the central
role of the MAPK pathway in bladder tumorigenesis [38]. More-
over, antigen processing and presentation are the cornerstones
of adaptive immunity, and enrichment of antigen processing and
presentation related genes may activate some adaptive immune
cells to regulate immune response [39]. This explains why the low-
risk group patients have a relatively better prognosis.

Moreover, cancer immunotherapy by immune checkpoint
blockade has emerged as an important therapeutic approach
to treat BLCA. We thus compared the expression distribution
of immune checkpoint genes (ICGs) between high-risk and

low-risk groups. We found that four ICGs: CD96, PDCD1, CTLA4
and PDCD1LG2 presented significant differentially expressed.
Specifically, CD96, PDCD1 and CTLA4 expression values showed
higher in the low-risk group than that in the high-risk group, while
the expression of PDCD1LG2 was the opposite (t-test, P-value
<0.05, Figure 3C), which is consistent with previous reports that
PDCD1LG2 (known as PD-L2) plays an important role in negative
regulation of the adaptive immune response [40]. These results
indicate that the low-risk group of patients may be more suitable
for immunotherapy.

Validation of the prognostic model of abnormal
cells in the IMvigor210 cohort
To validate the prognosis effect of the NK cell-based risk score
model constructed based on TCGA–BLCA, we used the IMvigor210
cohort as a validation set [26]. The IMvigor210 cohort includes a
total of 298 BLCA patients treated with anti-PD-L1, which provides
expression data, OS data and immunotherapy response data. We
applied the risk score model to the IMvigor210 cohort, and 15
genes were retained in the dataset as the expression values of
some genes are missing. According to the median risk score, the
patients were divided into high-risk and low-risk groups. The
Kaplan–Meier survival curve analysis demonstrates significantly
better OS in the low-risk group compared to the high-risk group
(Figure 4A; log-rank P-value = 0.0031). The heatmap of these gene
expressions showed a significant difference between high-risk
and low-risk groups (Figure 4B), which was consistent with the
results in the TCGA–BLCA dataset. Moreover, a scatter plot based
on the risk score of the IMvigor210 cohort indicated that patients
in the high-risk group had a higher risk score than those in the
low-risk group (Figure 4C). With the same trend as the training set,
the NK cell infiltration abundance was significantly lower in the
high-risk group samples than in the low-risk group (Figure 4D).
Furthermore, we analyzed the prognostic efficiency of the risk
model by operating a ROC curve analysis, and the AUCs for 1-
and 2-years OS were 0.6 and 0.78, respectively (Supplementary
Figure S2).

Then, we applied the risk score model to test if it could pre-
dict the immunotherapy response. According to the Response
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Figure 2. NK cells-based gene risk score model. (A) LASSO regression analysis of NK cells signature genes. (B) Forest plot shows HR, the 95% CI and
P-values of the 23 genes selected by the LASSO regression analysis. (C) Kaplan–Meier survival curves of patients classified into high-risk and low-
risk groups using the risk score model constructed based on NK cells. P-value was estimated using the log-rank test. (D) Heatmap of the normalized
expression values of the 23 genes. (E) Time-dependent ROC curves for prognosis of the NK cells-based risk score model for 1-, 3- and 5- years OS in the
TCGA BLCA dataset. (F) Box plots of NK cells infiltration abundance distributions for the high-risk and low-risk groups. The P-values were calculated
with the Wilcoxon rank sum test.
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Figure 3. Biological pathways and genes analyses between high-risk and low-risk groups. (A) Ridgeline plot for the expression distribution of core genes
for the top 30 significant pathways between high-risk and low-risk groups. The yellow area pathway is mainly enriched in the high-risk group and the
blue area pathway is mainly enriched in the low-risk group. (B) GSEA plot of differentially activated pathways between high-risk and low-risk groups.
(C) Split violin plots of four immune checkpoint gene expression distributions for the high-risk and low-risk groups. The P-values were calculated with
the t-test.

Evaluation Criteria in Solid Tumors v1.1, the patients were char-
acterized as response [complete response (CR)/partial response
(PR)] or nonresponse [stable disease (SD)/progressive disease (PD)].
Interestingly, a significantly higher response rate was displayed in
the low-risk group compared with the high-risk group (Figure 4E,
Fisher’s exact test, P-value = 0.036), and the survival time of the

patients who responded well to the immunotherapy had a longer
survival time (Figure 4F). Furthermore, the risk score was an
independent prognostic factor after adjusting for sex, TMB and
T staging (the data did not include age information) by multi-
variate Cox regression analysis (HR = 1.27, 95% CI: 1.03–1.56, P-
value = 0.02, Table 3).
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Figure 4. Validation of the risk score model in the IMvigor210 cohort. (A) Kaplan–Meier survival curves of patients classified into high-risk and low-risk
groups using the NK cells-based gene risk score model. (B) Heat map of the normalized expression values of the 15 genes in the IMvigor210 cohort. (C)
Risk score distribution in the high-risk and low-risk groups. (D) Box plots of NK cells infiltration abundance distributions for the high-risk and low-risk
groups in the IMvigor210 cohort. The P-values were calculated with the Wilcoxon rank sum test. (E) The stacked bar chart shows the sample number of
drug responses in the high-risk and low-risk groups. (F) Scatter plots show the distribution of survival times for the responders (including CR and PR)
and non-responders (including SD and PD) in the high-risk and low-risk groups.
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Table 3. Univariable and multssivariable Cox analysis of the risk score and clinicopathological factors for OS in the IMvigor210 cohort

Univariable analysis Multivariable analysis

HR 95% CI P-value HR 95% CI P-value

IMvigor210 cohort
Risk score 1.4 1.1–1.7 <0.01 1.3 1.05–1.61 0.02
Sex (male versus female) 0.92 0.61–1.4 0.68 1.11 0.73–1.67 0.94
TMB 0.96 0.93–0.98 <0.01 0.96 0.93–0.98 <0.01
T stage (T1–T4) 1 0.87–1.2 0.94 0.97 0.84–1.13 0.72

Construction of an integrated risk score model
based on the significant abnormal cells
Generally, the TME cells are not isolated, but crosstalk with each
other to perform important biological processes. In iATMEcell, the
abnormal cells were identified based on the cell–cell crosstalk
network. To test the joint effect of abnormal cells, we thus
constructed an integrated risk score model based on five sig-
nificant abnormal cells identified in the TCGA–BLCA cohort (FDR
≤0.25, Table 1). We first constructed the risk score model for each
significant cell (see Materials and Methods) separately, and then
an integrated risk score model was constructed by combining the
risk scores of these cells with the LASSO regression. The forest plot
shows that the risk scores of these cells were all prognostic risk
factors (Supplementary Figure S3A, HR > 1). The Kaplan–Meier
survival curves and time-dependent ROC curve showed that the
integrated model had excellent prognostic efficacy (Supplemen-
tary Figure S3B; log-rank P-value <0.0001) and the 1-, 3- and
5-years OS were 0.81, 0.80 and 0.81, respectively (Supplementary
Figure S3C). We further validated the integrated model in two
independent cohorts of bladder cancer receiving immunotherapy.
In the IMvigor210 cohort, the overall survival was significantly
better in the low-risk group compared with the high-risk group
(Supplementary Figure S3D; log-rank P-value <0.0001), and the
AUCs for 1- and 2-years OS were 0.77, and 0.83 respectively
(Supplementary Figure S3E). For the prediction of immunotherapy
response, the response rate was significantly higher in the low-
risk group compared with the high-risk group (Supplementary
Figure S3F, Fisher’s exact test, P-value <0.001). Similarly, in the
GSE176307 cohort, the integrated model also obtained good
prognosis value (Supplementary Figure S3G, log-rank, P-value
<0.0001; Supplementary Figure S3H, the AUCs for 1- and 2-years
OS were 0.82 and 0.92) and immunotherapy prediction value (Sup-
plementary Figure S3I, Fisher’s exact test, P-value = 0.019). The
predicted efficacy of the integrated model indicates that the sig-
nificant abnormal cells may jointly influence the development of
cancer.

Identification of abnormal TME cells across
multi-cancer types
To further explore the effect of TME cells in different cancers, we
collected 10 cancer types that have been proposed to be suitable
for immunotherapy from TCGA, including BLCA, SKCM, LUAD,
STAD, COAD, LIHC, BRCA, ESCA, CESC and KIRC. The iATMEcell
method was applied to these cancer types respectively to quanti-
tatively determine the similarity of abnormal cells across differ-
ent cancer types. To provide a general comparison, the top 10 most
significant abnormal cells for each cancer were enrolled (Supple-
mentary Table S2). Through comparison, five TME cells, including
DCs, M1 Macrophages, NK cells, γ δ T cells and Monocytes, were
shared across at least nine cancer types (Figure 5A). Interestingly,

these cells belong to innate immune response cells, which have
been documented to play important roles in the induction of T-
cell immunity [41].

Moreover, in each cancer type, we constructed the risk score
models for the overlapped immune cells, respectively (see Mate-
rials and Methods). Through univariate Cox regression analysis,
the risk score models of the five cells were found to be associated
with patient survival in their corresponding cancer types (HR > 1,
P-value <0.01) (Figure 5B). The forest plot showed detailed HR
information of these cells across these cancers (Figure 5C and
Supplementary Figure S4). These overlapped abnormal immune
cells may provide a new research direction for learning the mech-
anism of TME and highlight the repurposing potential of anti-
cancer drugs targeting the cells.

Discussion
Infiltrated differences of TME cells (immune cells, stromal cells,
epithelial cells, etc.) are correlated with clinical outcomes in a
variety of malignancies, such as SKCM, LUAD, STAD and COAD [1,
2]. Thus, identification of abnormal TME cells may help to insight
into the crucial role of TME in cancer progression and therapeutic
responses. Some computational approaches, such as CIBERSORT,
ssGSEA and xCell, were developed to infer the relative infiltration
levels of TME cells. With these methods, many TME cells were
identified to be associated with the survival and immunothera-
peutic response of cancer patients. Nonetheless, no researchers
have reported a systematic analysis of cell–cell interactions in
the identification of TME cells associated with cancer. The cell–
cell interactions in the TME have been proposed to be related
to cancer progression and influence therapeutic efficacy [11].
Here, iATMEcell was developed to identify abnormal TME cells
associated with the cancer process by constructing a cell–cell
crosstalk network. In the method, the cell crosstalk network is
a weighted network, where the weight between cells reflects
both their biological function similarity and the transcriptional
dysregulated activities of gene signatures shared by them. The
RWR algorithm was used to identify the abnormal cells linked to
disease status (such as patient survival).

We applied iATMEcell to TCGA BLCA data to evaluate the
performance of the method. In BLCA, NK cells were identified as
the most significantly dysregulated TME cells. NK cells belong to
granulocytic lymphocytes, which are part of the human immune
system, and it can rapidly lyse certain tumor cells. Thus, develop-
ing its anti-cancer function has been the focus of cancer research
in recent years. We constructed a risk score model based on the
signature genes of NK cells by using LASSO regression. Accord-
ing to the risk score model, the BLCA patients were obviously
divided into high-risk and low-risk groups (Figure 2). The prog-
nostic effect of the risk score model was then validated in an
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Figure 5. Identification of abnormal TME cells across multi-cancers. (A) The radar plot shows the number of abnormal cells overlapping in 10 cancer
types. Red dots indicate the cells were overlapped in at least nine cancer types. (B) Dot plot of univariate HRs and P-values for the five highly overlapped
immune cells associated with patient outcomes in their respective cancers. (C) Forest plot showing HR and 95% CI for the risk score models of DCs and
M1 Macrophages across 10 cancers. MPP: Multipotent progenitor cell; MDSCs: Myeloid-derived suppressor cell.

independent IMvigor210 cohort, which includes 298 BLCA patients
treated with anti-PD-L1. More interestingly, we found that the
patients in the low-risk score group had a significantly higher
response rate to immunotherapy than that in the high-risk groups
(Figure 4E). These results indicate that the risk score model of NK
cells may be potentially used as not only a prognostic signature
but also a biomarker for immunotherapy response. Moreover, we
constructed an integrated risk model based on five significant
abnormal TME cells in the training set and validated it in two
independent cohorts. The results showed that the integrated
model improved predictive value of clinical outcomes in BLCA
(Supplementary Figure S3).

We further applied iATMEcell to 10 cancer types that have been
proposed to be suitable for immunotherapy. By comparing the
results of these cancers, we found that five types of cells were
identified in at least nine cancers, namely DCs, M1 Macrophages,
NK cells, γ δ T cells and Monocytes (Figure 5A). Current studies
confirmed that these immune cells were emerging as protagonists
of immunotherapy in the treatment of cancer [42]. For example, γ δ

T cells, which represent only 5% of all T cells in our body, but they
play an important role in the fight against cancer development.
Studies have shown that infiltration of γ δ T cells in tumors
is the best predictor of good patient prognosis and exploiting
the function of γ δ T cells to develop a new chimeric antigen
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receptor (CAR) T-cell therapy has the potential to create a super-
armed cell with significantly increased cytotoxicity against cancer
[43]. The identification of similar abnormal TME cells across
multiple cancers has important research implications for cancer
immunotherapy and provides new perspectives on potential anti-
cancer immunotherapies for drug repurposing.

The iATMEcell method has been developed to identify abnor-
mal cells in the TME based on the cell–cell crosstalk network.
The limitation of the method is that the TME cells and the cell-
specific signature genes may be incomplete. As cancer research
progresses, more cell information will be incorporated by our
method for further analysis. To provide users with easy access to
our method, iATMEcell has been implemented as a freely avail-
able R package on GitHub (https://github.com/hanjunwei-lab/
iATMEcell). Overall, the iATMEcell method provides new insight
into cancer research and it will become a new tool for identifying
potential therapeutic targets for cancer.

Key Points

• Tumor microenvironment (TME) is a dynamic system
containing many different non-cancerous cells in addi-
tion to cancer cells. Interactions between TME cells
shape the unique growth environment, sustaining tumor
growth and causing the immune escape of tumor cells.
In the study, we developed a novel iATMEcell method to
identify abnormal TME cells associated with the clinical
outcomes based on a cell–cell crosstalk network.

• In iATMEcell, we constructed a cell–cell crosstalk net-
work based on cell function similarities augmented with
measurements of transcriptional dysregulation in the
context of bulk tumor dataset, and then it used a net-
work propagation algorithm to identify significantly dys-
regulated TME cells.

• iATMEcell could effectively identify potentially abnor-
mal TME cells based on a cell–cell crosstalk network,
which provided a new insight into understanding the
effect of TME cells on prognosis and immunotherapy of
cancer patients.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.
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