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Abstract

The advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in
large-scale patient cohort studies. The resulting high-dimensional data can be summarized and incorporated into patient outcome
prediction models in several ways; however, there is a pressing need to understand the impact of analytical decisions on such model
quality. In this study, we evaluate the impact of analytical choices on model choices, ensemble learning strategies and integrate
approaches on patient outcome prediction using five scRNA-seq COVID-19 datasets. First, we examine the difference in performance
between using single-view feature space versus multi-view feature space. Next, we survey multiple learning platforms from classical
machine learning to modern deep learning methods. Lastly, we compare different integration approaches when combining datasets
is necessary. Through benchmarking such analytical combinations, our study highlights the power of ensemble learning, consistency
among different learning methods and robustness to dataset normalization when using multiple datasets as the model input.
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INTRODUCTION
Single-cell RNA-sequencing (scRNA-seq) is a powerful tool that
measures the transcriptomes of individual cells. As the tech-
nology advances, a typical dataset size has grown from a few
thousand of cells in 2014 to hundreds of thousands of cells in
2022 [1]. We are now in the era where the technology enables us to
collect large pools of cells from multiple patients across multiple
conditions. The current single-cell literature has mostly focused
on analyzing gene and cell level changes [2, 3], for example
dissecting the transcriptional heterogeneity in the population of
single cells and identifying genes that mark the cell types [4].
Recently, there is an increasing number of studies designed at
an individual level, such as between normal and patients (i.e.
case versus control). These studies create the opportunity to
examine disease mechanisms from multiple aspects, such as cell-
type-specific changes in gene expression, pathway regulation [5,
6] and cell–cell interaction [7] to gain a deeper understanding
of disease mechanism. The analysis of such data requires the
development of methods that can extract information from multi-
sample multi-condition disease study designed at an individual
level rather than at a cell level [8].

To date, the majority of the questions at individual level have
focused on the identification of differentially expressed genes

between cell types and states [9], and differential abundance
of cells between states [10, 11] of individuals. A natural next
question is to develop models that explore at a higher level how
the outcome associated with each individual can be predicted in
multi-sample multi-condition scRNA-seq dataset. As the number
of individuals increases, there will be a demand to develop models
that accurately predict the outcome of each patient in such
data. To meet this demand with an interpretable focus, it will
be necessary to first extract informative features from complex
single-cell data structures that represent each individual and then
understand which approaches are most effective for utilizing the
summary statistics for downstream analysis.

To date, a large repertoire of approaches has been developed to
model for the prediction task, which prompts the question: ‘What
are the optimal approaches?’. Since the past decade, modern deep
learning has gained tremendous success compared with classical
machine learning [12] in analyzing complex data. However, it is
worth noting that deep learning models often involve millions
of parameters [13] and require larger amounts of data and com-
putational resources to train compared with classical machine
learning. This raises the question of whether it is necessary to use
deep learning models. In parallel, when extracting information
from data, we may obtain multiple pieces of information, that is,
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Figure 1. Schematic of the benchmark workflow. (A) Five COVID-19 scRNA-seq datasets containing mild/moderate and severe/critical outcome patients
were used in this benchmark study. (B) We used scFeatures to generate 11 types of molecular representations of each individuals (i.e. the patients).
(C) We implemented six models containing both deep learning and machine learning, as well as three ensemble strategies. (D) The analytical strategies
resulted in a total of 84 combinations for evaluating patient outcome prediction in each individual dataset. (E) We also evaluated the performance of
analytical strategies on the combined dataset. To combine the dataset, we implemented three unique integration strategies with a total of five settings.
We used the same base learning models and ensemble strategies as shown in (C). This resulted in another 420 combinations.

multi-view feature space on the same data. The fusion of multiple
information, or ensemble learning [14], is a common technique to
improve the performance of prediction model. There are various
ways to fuse the information [15], including at the input feature
level, at the model level and at the predicted outcome level.
The question here is whether ensemble of features improves
performance and which ensemble strategy is the most optimal.
The increasing availability of single-cell datasets has led to the
availability of multiple datasets focusing on the same interest,
such as a particular disease. This strategy naturally lends itself
to combining multiple datasets and enabling investigation that
may not be possible with a single dataset. An important question
to address is how to optimally integrate these datasets to achieve
the best performance.

In this study, we examine the question of the optimal
approaches as mentioned above using uniquely collected COVID-
19 scRNA-seq datasets. To generate derived statistics for each
patient sample, we utilize the recently developed scFeatures
[8] method that constructs a multi-view representation across
various feature types. We implement and compare different
learning models from classical machine learning to modern deep
learning models. We compare the performance of individual
feature types as well as the ensemble of feature types by
implementing a number of common ensemble strategies [14,
16]. In addition, using multiple COVID-19 datasets, we investigate
the optimal data integration approach that maximizes prediction
outcomes. Overall, through a comparison framework, we assess
the combined impact of these key data analytical components
(i.e. model choices, ensemble learning strategies and integration
approaches) on COVID-19 outcome prediction.

MATERIALS AND METHODS
Design of a benchmarking study
Any benchmarking or comparison study typically involves three
key elements. First, a collection of datasets is needed to evaluate
the performance of methods without bias. Second, well-designed
evaluation strategies are needed to compare methods or work-
flows. Third, evaluation metrics from multiple aspects are needed
to quantify the performance. These elements are described in
more detail in the following sections.

Evaluation datasets collection
As the world has been heavily impacted by COVID-19 for over 3
years, the global effort in understanding this pandemic has made
COVID-19 patient data perhaps one of the largest collections of
multi-sample multi-condition single-cell datasets to date. There-
fore, to examine the data analytics strategy for cohort analysis, we
selected five large publicly available COVID-19 datasets contain-
ing individuals with mild, moderate, severe and critical disease
progression (Figure 1A). This collection includes a total of 2 215
517 cells from 223 mild and moderate patients and 245 severe and
critical patients. All datasets are composed of peripheral blood
mononuclear cells (PBMCs) or whole blood samples. Additional
details are provided in Table 1.

Evaluation strategies for analytical combinations
The comparison study aims to examine the impact of various
analytical strategies on individual level outcome prediction.
To accomplish this, we utilized our recently developed feature
engineering tool, scFeatures, to generate multi-view molecular

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/3/bbad159/7140296 by guest on 23 April 2024



COVID-19 outcome prediction by RNA sequencing data | 3

Table 1. Collection of COVID-19 PBMC datasets sequenced using scRNA-seq providing a total number of 2 million cells and 471
individuals

Dataset name Reference Accession ID Number of
mild/moderate
individuals

Number of
severe/critical
individuals

Number of
mild/moderate
and
severe/critical
individuals

Number of cells
in mild/moderate
and
severe/critical
individuals

Combat [23] EGAS00001005493 30 61 91 524 557
Ren [24] GSE158055 68 85 153 872 663
Schulte-Schrepping [25] EGAS00001004571 44 51 95 212 023
Stephenson [26] E-MTAB-10026 58 32 90 493 685
Wilk [27] GSE174072 23 19 42 112 589
Total 223 245 471 2 215 517

Table 2. Summary of the analytical choices implemented in this
comparison study

Analytical component Analytical choice

Base learning model (1) KNN
(2) Lasso
(3) Random forest
(4) SVM
(5) XGBoost
(6) Neural network

Ensemble strategy (1) Concatenation
(2) Majority voting
(3) Stacking

Level of integration (A) Cell level integration
(B) Individual level integration with no
adjustment
(C1) Individual level integration with RUVg
normalization (using k = 5), (C2) Individual
level integration with RUVg normalization
(using k = 10)
(D) Individual level integration with limma
batch correction

representation of each individual that served as input for
downstream analytical models (Figure 1B).

The evaluation is composed of three key components (Table 2):
(1) comparing the performance of multiple learning models using
the generated features as input, (2) comparing single-view (i.e.
using each of the feature types individually) and multi-view fea-
tures (i.e. integrating multiple feature types) through ensemble
strategies and (3) comparing integration strategies when using
multiple datasets as the input. In Component 1, we surveyed and
implemented multiple learning models from classical machine
learning to modern deep learning methods (Figure 1C). In Compo-
nent 2, we examined the difference in performance between using
single-view feature space versus multi-view feature space via
implementing multiple ensemble strategies (Figure 1D). In Com-
ponent 3, given that we collected multiple COVID-19 datasets, we
compared the performance of analytical choices on the combined
dataset.

On each of the individual datasets, we examined a total of
84 analytical combinations from 11 feature representations, 6
base models and 3 ensemble strategies (as detailed in Table 2).
On the combined dataset, we applied the same 84 combinations
to each of the 5 integration settings, resulting in a further 420

combinations. Further details on each of the three components
are given in the following subsections.

Feature generation
We used scFeatures to generate the molecular representation for
each individual (referred to as the patient representation here-
after) in each of the COVID-19 datasets. A total of 11 feature types
from five feature categories were generated to reflect different
views of the molecular property and were used for downstream
analysis. In detail, the following feature representations were
generated for each patient: (1) proportion ratio, (2) proportion raw,
(3) proportion logit, (4) gene mean celltype, (5) gene proportion
celltype, (6) pathway gsva, (7) pathway mean, (8) pathway propor-
tion, (9) CCI, (10) gene mean aggregate and (11) gene proportion
aggregated. Information regarding each of the feature types can
be found in Table 3.

As detailed in Table 3, scFeatures extracts features from a
given dataset independently for each patient. It does not rely on
information from the entire dataset during the feature extraction
step, thereby avoiding any potential issues of seeing the whole
dataset (i.e. both the training and testing data) and data leakage
in model training.

Base model selection
To examine the effect of different learning models on individual
level outcome prediction, we examined a selection of approaches
from classical machine learning methods to the more recent
deep learning approach. In the rest of the paper, we used the
word ‘machine learning’ in its broadest definition to refer to both
classical machine learning and deep learning methods.

For classical machine learning approach, we included a range
of models including k-nearest neighbours (KNN), Lasso, Random
Forest, support vector machine (SVM) with linear kernel and
XGBoost with a linear booster using the implementation in the
R package Caret [17]. Each feature type was used individually as
the input to compare the performance of each feature type. The
severity (mild/moderate and severe/critical) of the individuals’
conditions was used as the outcome variable. For Lasso, which
outputs the prediction in terms of probability instead of discrete
outcome, we used 0.5 as the threshold.

For the representative deep learning approach, we imple-
mented a neural network structure containing four fully
connected layers. For each feature type, we used the same
network structure but varied the number of nodes in the layers,
depending on the number of features in the feature type. In detail,
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Table 3. Implementation details on the 11 feature types utilized in this study

Feature types Implementation details

Proportion raw Calculates the proportion of each cell type in each COVID-19 patient sample.
Proportion logit Performs logit transformation of the cell type proportion as it is one of the most common transformations for

proportional data.
Proportion ratio Computes the pairwise ratio of two cell types’ proportions, i.e. cell type 1 divided by cell type 2. This was

calculated for each paired cell type combination. To avoid dividing by zero when a cell type is not present in a
COVID-19 patient, we added 1 to both the numerator and denominator. The range of values was then scaled using
log2 transformation.

Cell type specific gene
expressions

Calculates the mean expression of genes within each cell type. We restricted to the top variable genes to reduce
the dimensions of the feature. We calculate two sets of highly variable genes, (1) across all cells within each cell
type and (2) across all cells.
First, for each cell type, the genes of interest were obtained by selecting the top 50 variable genes per sample,
followed by taking the union of the genes across all samples.
Then, the top variable 50 genes across all cells were calculated per sample, followed by taking the union of the
genes across all samples.
The final output is a vector of mean expression for the variable genes.

Gene proportion cell type For each gene, we calculated the proportion that this gene is expressed across all cells. This was performed
separately for each cell type of each patient. We then restricted to the top 50 variable genes using the same
procedure defined in ‘gene mean celltype’. The final output is a vector of proportion expressed for the subset of
cell type specific genes.

Pathway gsva We used 50 hallmark pathways from MSigDB [28] and the implementation provided by AUCell [29] to obtain the
gene set enrichment score for every single cell of a patient. The enrichment score was then summarized for each
cell type by averaging the scores from all the single cells within a cell type. As a result, this approach converts the
matrix of gene expression by single cells into pathways by cell types for each patient. The matrix of pathways by
cell types was further converted into a single vector by concatenating the scores from each cell type.

Pathway mean For each of the 50 hallmark pathways, we averaged the gene expression values for all the genes in the pathway
across all cells. This was done separately for each cell type of each patient.

Pathway proportion For each of the 50 hallmark pathways, we averaged the gene expression values for all the genes in the pathway for
each cell and used the third quantile of this value as a threshold. We then calculated the proportion of cells that
have a higher average expression greater than the threshold. This is done separately for each cell type so that the
final output for a patient is a cell-type-specific vector.

CCI We implemented methods from the CellChat [30] package to calculate the cell–cell interaction probability
between ligand and receptor pairs in every patient. This feature type is cell-type-specific, as the interaction
between ligand and receptor is quantified separately for each cell type. The final output is a vector of interaction
probabilities for each patient.

Gene mean aggregated First, the mean expression of genes across all cells was computed for each sample. We then restricted to the top
1000 variable genes using the same procedure defined in ‘gene mean celltype’.

Gene proportion aggregated For each gene, we calculate the proportion that this gene is expressed across all cells for each patient. We then
restricted to the top 1000 variable genes using the same procedure defined in ‘gene mean celltype’.

the input layer had a number of nodes equal to the number of
features in the respective feature type. The second layer and third
contained different numbers of nodes depending on the feature
types. We describe the detailed implementation below:

(i) All feature types in the category ‘cell type proportions’ con-
tained <100 features. For these feature types, we set both the
first layer and second layer to 20 nodes.

(ii) All feature types in the category ‘cell type specific pathway
expressions’, ‘overall aggregated gene expressions’ and ‘cell–
cell communications’ contained <1000 features. For these
feature types, we set the first layer to 500 nodes and the
second layer to 100 nodes to reduce the dimension.

(iii) All feature types in ‘cell type specific gene expression’ con-
tained <10 000 features. To reduce the dimensions for these
feature types, we set the first layer to 1000 nodes and the
second layer to 100 nodes.

The number of nodes in the output layer was the same for
all feature types, with two nodes that output the probability of
mild/moderate and severe/critical conditions, respectively. The
condition with higher probability was considered the predicted
condition.

Ensemble strategies for multi-view features
We considered three types of ensemble strategies. scFeatures
generates multiple feature types for a given patient, represent-
ing different and possibly complementary biological information
(views). It is therefore of interest to examine the performance of
multi-view versus single-view through ensemble learning. Here,
we employed three types of ensemble strategies to obtain a ‘multi-
view’ prediction. We used the term ‘ensemble’ in its broadest
definition to refer to integrated learning at either feature or
model level. Specifically, the implementation of these ensemble
strategies is as follows:

(i) Early fusion using concatenation, which involved concate-
nating features across all feature types as the input. The
implementation was the same for both machine learning
and deep learning models as this strategy operates on the
feature level.

(ii) Late fusion using stacked ensemble. This involved training
each base learner on a single-view of the feature space
followed by training a meta-learner to best combine the
individual base learners. The implementation was different
for machine learning and deep learning models. For machine
learning models, base learners were trained and evaluated
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on each of the individual feature types, resulting in 11 pre-
dictions for each patient. The predictions were then used as
the input to build a logistic regression model, which serves as
the meta-learner that combines the base learners to produce
the final predicted outcome. For deep learning models, we
implemented a network (Supplementary Figure 1) contain-
ing 11 subnetworks that took each of the 11 feature types as
input. The subnetwork performed feature extraction for each
of the feature types individually. We used the same network
structure as the network described in the previous section
that was used for extracting features from each feature
type individually. The extracted features from each feature
type were then concatenated, resulting in a vector of 860
features for each individual. This feature vector was then
passed through a fully connected layer containing 50 nodes,
followed by the output layer containing two nodes to produce
the final prediction.

(iii) Score fusion using majority voting. We first obtained the pre-
dicted outcome from each of the 11 feature types, resulting
in 11 predictions of either mild/moderate or severe/critical
for each patient. Then the outcome with the most votes
was considered to be the final predicted outcome for the
patient. The implementation was the same for both machine
learning and deep learning models.

Levels of integration strategy
We examined different levels of integration to explore the optimal
choice for predicting patient states when multiple datasets need
to be combined and used as a whole in building a prediction
model. The approaches are described in the following:

(i) Cell level integration—this approach refers to integration on
count matrix: we used scMerge2 (personal communication)
to perform data integration on the scRNA-seq count matrix.
We then generated the patient representation using scFea-
tures on the integrated count matrix and used this as input
for learning model.

(ii) Individual level integration with no adjustment: we simply
concatenated the patient representation without any adjust-
ment or normalization, and used this as input for learning
model.

(iii) Integration level integration with normalization: we used
a well-known batch correction method RUVg [18] as well
as the removeBatchEffect function implemented in the
limma package [19] to correct for the batch effect in the
patient representation. In RUVg, k, the number of unwanted
variations is a tunable parameter. We explored two settings
of k = 5 (i.e. where the number of batches is equal to
the number of datasets) and k = 10 (i.e. to introduce a
stronger batch correction). For limma’s removeBatchEffect
function, we used the default setting. The batch-corrected
patient representation was used as input for learning
models.

Altogether, the three distinct integration strategies comprise a
total of five settings.

Evaluation metric
Accuracy metric
To quantify the performance of the methods, we recorded the pre-
diction accuracy of the severity outcome (Figure 1E). For the pur-
pose of this comparison study, we combined the mild and moder-
ate patients and referred to them as ‘mild/moderate’ throughout

this study, as well as grouping the severe and critical patients
and referring to them as ‘severe/critical’. We then considered the
classifiability between the ‘mild/moderate’ and ‘severe/critical’
patients.

To capture the variability in model performance, all classical
machine learning and deep learning models were trained and
tested with repeated 3-fold cross-validation using 20 repeats. The
datasets were split into training and testing by completely random
sampling. Therefore, to control for the potential impact of ‘good’
or ‘bad’ training/testing set splits, where a ‘bad’ split can result in
extreme class imbalance in the modelling phase and affect model
performance, we used the same training and testing splitting
index across all machine learning and deep learning model to
ensure a fair comparison. F1 score was used as the evaluation
metric, as not all datasets are balanced.

Aggregation of accuracy metric
Given the number of results from all analytical combinations, we
aggregated the results to better quantify and interpret the results.
First, we took the median F1 score across the 20 repeated cross-
validation folds. This was then followed by different aggregation
strategies depending on whether the input used individual or
combined datasets.

For the result section where we dealt with the five datasets
individually, we further aggregated the median F1 score across
datasets by taking the median. Then, we ranked the feature types
across each model choice as well as the model choice across each
feature type to derive the ranking of feature types and the ranking
of model choice.

Computational resource metric
Apart from assessing the performance in terms of accuracy,
we also assess the performance in terms of the computational
resources. This was measured through running time and memory
usage averaged over three repeats. All processes were executed
using a research server with dual Intel(R) Xeon(R) Gold 6148
Processor with 40 cores, 768 GB of memory and two NVIDIA
GeForce RTX 2080 Ti graphics cards.

The running time of each combination was measured using
the Sys.time function built in R and the time.time function built
in Python. For combinations involving machine learning models,
the memory usage was quantified in terms of CPU memory. For
combinations involving deep learning models, the memory usage
was quantified as the sum of CPU and GPU memory, as the deep
learning models were executed on GPU.

RESULTS
Certain ensemble strategies improve model
performance
In this study, we examined the impact of using an ensemble
of feature sets for predictive modelling in large cohort single-
cell data by using scFeatures to extract 11 feature types for
each individual. We compared the performance using prediction
accuracy on patient outcomes across five COVID-19 patient
datasets (Table 1, Supplementary Figure 2). Across the six learn-
ing approaches, we observed that certain ensemble strategies
performed better than models based on individual features.
In particular, majority voting consistently achieved the best
performance, outperforming the other two ensemble strategies,
as well as all individual features (Figure 2). This was followed by
concatenation, which also performed better than using any of
the individual features. These results highlight the effectiveness
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Figure 2. Performance of feature types for each model summarized across all datasets. (A) The dotplot shows the relative rank of each feature type to
each other for each model, with 1 being the best and 14 being the worst. Ranks are summarized across the five datasets using the median and therefore
do not necessarily range from 1 to 14 within each model. (B) Further summarizes the ranks of each feature type across all models using the median.

of ensemble learning and also suggest that the feature types
are diverse, such that different feature types make different
errors, combining them leads to improved model performance.
Further examination of the top combinations of model and
feature type (Figure 3) revealed that the top eight combinations all
involves ensemble learning. Interestingly, the more complicated
implementation of ensemble learning called stacked ensemble,
in which a meta-learner is trained on the base learners trained
from individual feature types, performed worse than using any of
the individual feature types except for when deep learning was
used.

We then took a closer examination at whether this observation
is consistent irrespective of the learning model choice or dataset.
We ranked the feature types on each of the six types of models and
each of the five datasets. We observed that no individual feature
type consistently ranked better or worse than others across all
models and datasets (Figure 4). Almost all individual feature types
had ranks that varied from 1 (the best rank) to 14 (the worst rank).
This suggests that different feature types are useful for different
models and different datasets, despite them all being COVID-19
datasets with mild/moderate and severe/critical individuals. In
contrast, majority voting achieved a rank of 1 across multiple
models and multiple datasets, again illustrating the power of
ensemble strategy.

Deep learning performs similarly to classical
machine learning
Ranking the learning methods, we noted that there was no distinct
difference between deep learning and some of the machine
learning models (Figure 5A). In particular, both neural network
achieved a median rank of 2 out of the 6 learning methods across
the 14 feature types and 5 datasets, followed closely by random

forest and SVM both with a median rank of 2.5 (Figure 5B). Within
neural network, random forest and SVM, we then examined
the difference between the maximum and minimum F1 score
achieved by the three top-performing methods and observed
a small median difference of 0.02 (Supplementary Figure 3).
These result all suggest that deep learning do not signifi-
cantly outperform certain machine learning models in this
context.

We then compared the computational resource requirement to
see whether the difference in performance came at a cost. Focus-
ing on the feature type ‘majority voting’, we observed that both
neural network and random forest took around 4 h on the largest
Ren et al. dataset with 153 patients (Supplementary Figures 4 and
5). On the other hand, although SVM was ranked after neural net-
work and random forest, it was more computationally efficient,
taking <1 h on the Ren et al. dataset. Accounting for the significant
difference in computational efficiency and the relatively small
difference between model performance, one may consider SVM
to be the optimal choice.

Normalization is not necessary when combining
multiple datasets as the input
Using multiple datasets as input data raises a number of ques-
tions, such as whether to integrate the raw data or the derived
features. Here, we explored three categories of analytical com-
binations comprising of five settings. More specifically, different
approaches to data integration, including individual level inte-
gration with no adjustment, cell level integration and individual
level integration with normalization were explored. Our results
are based on the examination of a total of 420 analytical combi-
nations [5 integration settings × 14 feature types (11 individual
feature types with 3 ensemble feature types) × 6 model choices].
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Figure 3. Top 16 combinations of model and feature type. Barplot shows the ranks of model and feature type. Given that the ranks are summarized
across all five datasets using the median, the values do not necessarily range from 1 to 16.

Figure 4. Performance of feature types for each model and each dataset. Violin plot shows the distribution of rank of each feature type for each model
choice and each dataset choice. A total of 30 points are shown for each violin plot, as each feature type was evaluated on six models and five datasets.

Interestingly, there was only a slight difference between integra-
tion on the count matrix and individual level integration with no
adjustment (Figure 6), which both achieved high F1 scores. On
the other hand, individual level integration with normalization
achieved lower F1 scores with both RUVg and limma’s batch cor-
rection function. When utilizing RUVg, we further found that with
the stronger the batch removal parameter setting, the worse the
F1 score. Moreover, this observation is consistent across the choice
of method and the type of feature used (Supplementary Figures 6
and 7). Using the data matrix from individual-level integration

with no adjustment, we further selected any four of the datasets
as the training datasets and tested the generalizability of the
model performance on the remaining dataset. We showed that
this external cross-validation resulted in similar performance
(Supplementary Figure 8) as the internal cross-validation, thereby
demonstrating not only the robustness of the features to dataset
batch effect, but also the generalizability of the features.

One of the key strengths of data integration is the ability to
examine condition-associated features for a subgroup of individ-
uals. Due to the small number of individuals that typically fall
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Figure 5. Performance of models. (A) Shows the relative rank of each model to each other for each feature type with 1 being the best and 6 being the
worst. Ranks are summarized across the five datasets using the median and therefore do not necessarily range from 1 to 6 within each feature type.
(B) Further summarizes the ranks of each model across all feature types using the median.

Figure 6. Performance of various approaches on combining multiple datasets for building prediction model. (A) Shows the F1 of these 420 analytical
combinations, with the x-axis indicating the type of integration choice used in the combinations. (B) Further stratifies the F1 score based on high F1
(defined to be F1 ≥ 0.75), medium F1 score (defined to be 0.65 < F1 < 0.75) and low F1 score (defined to be F1 ≤ 0.65) and examines the proportion of
each integration choice in the set of combinations that fall in the stratification.

into the subgroup of interest, this type of research is difficult to
conduct using a single dataset. Here, we focused on a subgroup
of patients in the 41–50 age group and investigated whether the
identification of features is affected by different data integra-
tion strategies. First, we compared the rankings of the features
obtained according to the feature importance score from the
prediction model and found high consistency of the rankings
between cell level integration and individual level integration
with no adjustment (Supplementary Figure 9a). In comparison,
the consistency was much lower between cell level integration
and individual level integration with normalization. Clustering
and dimension reduction on the features revealed that in both
cases the clustering patterns and sources of variation of the

patients were not driven by the dataset source (Supplementary
Figure 9b and c). The lack of batch effect in the generated features
suggests that the generated features may have self-adjusted in
the feature extraction procedure, therefore explaining the mini-
mal difference observed between the feature rankings and sug-
gesting that there is no need for normalization on cell level or on
individual level.

DISCUSSION
In this comparison study, we explored different analytical
approaches for predicting the severity of COVID-19 using multi-
sample multi-condition scRNA-seq data. We used scFeatures to
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generate various feature representations for COVID-19 patients
and examined the performance of individual feature types
and ensemble feature types in classifying COVID-19 severity.
By evaluating, using multiple datasets and multiple learning
methods, from classical machine learning to modern deep
learning methods, this study demonstrated that all machine
learning methods perform similarly, with SVM being a slightly
better method when accounting for the computational efficiency.
Through implementing different ensemble strategies to incorpo-
rate multiple feature types as input into machine learning models,
we revealed certain ensemble strategies, in particular majority
voting, consistently led to increased performance compared with
the non-ensemble strategy of using individual feature types
alone. Stacked ensemble for example, often did not achieve
better performance compared with using individual feature types.
Finally, we suggest that when combining datasets is required for
a prediction model, prior data integration is not necessary and
does not necessarily improve prediction performance.

We observed that with the sets of COVID-19 datasets con-
taining 42 to 153 patients, which is a realistic sample size in
the current literature, the more complex approaches do not nec-
essarily outperform simpler approaches. In particular, stacked
ensemble can be considered the most complex implementation
as it trains additional meta-learner on top of the base models. We
observed that although the other two implementations (majority
voting and concatenation) both performed better than individual
features, stacked ensembled had worse performance compared
with using the individual features. Furthermore, we observed
minimal improvement when loading all single-cell data, a total
of over 2 million cells for five datasets, as opposed to first gen-
erating patient-level features. With the extensive, and potentially
prohibitive, computational resources required for such cell-level
integration [20], such gain in model accuracy may not be worth
the trade-off in computational resources.

In this study, the patient representation, being the explanatory
variable, is derived from the scRNA-seq gene expression data.
Other variables such as the clinical variables can also be useful
in explaining the disease severity. In particular for COVID-19, age,
gender and comorbidity are some of the clinical variables shown
to be associated with severity outcomes [21]. These features can
be easily concatenated to the patient representation derived from
scFeatures given the availability of the data. Although this is
beyond the scope of this study, having a focus on the utility of
features extracted from the scRNA-seq data itself, future research
could explore the use of clinical variables to provide additional
insight into disease severity.

For clarity on the patient outcome classification, we focused on
the binary classification of mild/moderate and severe/critical. A
multi-class classification model would provide additional insights
into disease severity and outcome, especially for the finer level
of disease progression. We note that some of the benchmarked
methods such as deep learning can naturally handle multi-
class classification, and others such as SVM with linear kernel
can achieve multi-class classification through using one-versus-
all approach [22]. Thus, this benchmark framework can be
easily extended to examine multi-class classification. Another
area worth future investigation is the prediction of patients’
future developmental trends based on their current molecular
characteristics. This may enable early intervention and is highly
important in healthcare. Although such time-resolved patient
data is scarce, it nevertheless presents new opportunities.

Recently, there have been a growing number of multi-sample
multi-condition datasets. Although this opens opportunities for

patient level analysis such as case–control study, it also opens new
questions on what are the representative methods for each ques-
tion, what are the appropriate quantitative evaluation metrics to
assess each method, what are the recommended approaches for
answering a given question with data of certain characteristics
and what are the guidelines for future methods development. In
this study, we utilized five COVID-19 patient datasets to evaluate
the choices of the method, ensemble strategy and integration
strategy and obtained consistent trends. We envisage the cur-
rent comparison framework will point valuable direction into an
optimized analytical combination for outcome prediction using
single-cell data in future where cohort study with more than a
few hundred or over a thousand patients are readily available.

Key Points

• This work assesses and compares the performance of
three categories of workflow consisting of 504 analyt-
ical combinations for outcome prediction using multi-
sample, multi-conditions single-cell studies.

• We observed that using ensemble of feature types per-
forms better than using individual feature types.

• We found that in the current data, all learning
approaches including deep learning exhibit similar pre-
dictive performance. When combining multiple datasets
as the input, our study found that integrating multiple
datasets at the cell level performs similarly to simply
concatenating the patient representation without mod-
ification.
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Supplementary data are available online at https://academic.oup.
com/bib.

ACKNOWLEDGEMENTS
The authors thank their colleagues at The University of Sydney,
Sydney Precision Data Science Centre, School of Mathematics and
Statistics, Charles Perkins Center for intellectual engagement. The
authors would like to recognize that some of the content in this
paper was developed and previously included in the first author’s
PhD thesis.

FUNDING
The following sources of funding for each author, and for the
manuscript preparation, are gratefully acknowledged: Y.C. is sup-
ported by Research Training Program Tuition Fee Offset and Uni-
versity of Sydney Postgraduate Award Stipend Scholarship; S.G.
is supported by an Australian Research Council Discovery Early
Career Researcher Awards (DE220100964) and Chan Zuckerberg
Initiative Single Cell Biology Data Insights (Grant DI-0000000027).
J.Y.H.Y. and P.Y. are supported by the AIR@innoHK programme of
the Innovation and Technology Commission of Hong Kong. P.Y.
is supported by a National Health and Medical Research Council
(NHMRC) Investigator Grant (1173469).

DATA AVAILABILITY
The data that support the findings of this study are publicly
available and the accession ID is reported in Table 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/3/bbad159/7140296 by guest on 23 April 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad159#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


10 | Cao et al.

CODE AVAILABILITY
The scFeatures package used for extracting patient representa-
tion is freely available at our Github page: https://github.com/
SydneyBioX/scFeatures.

REFERENCES
1. Svensson V, da Veiga BE, Pachter L. A curated database reveals

trends in single-cell transcriptomics. Database 2020;2020:
baaa073.

2. Zappia L, Theis FJ. Over 1000 tools reveal trends in the single-cell
RNA-seq analysis landscape. Genome Biol 2021;22:301.

3. Zhang M, Guo FR. BSDE: barycenter single-cell differential
expression for case–control studies. Bioinformatics 2022;38:
2765–72.

4. Yang P, Huang H, Liu C. Feature selection revisited in the single-
cell era. Genome Biol 2021;22:321.

5. Sun G, Li Z, Rong D, et al. Single-cell RNA sequencing in can-
cer: applications, advances, and emerging challenges. Mol Ther
Oncolytics 2021;21:183–206.

6. Zhu S, Qing T, Zheng Y, et al. Advances in single-cell RNA
sequencing and its applications in cancer research. Oncotarget
2017;8:53763–79.

7. Armingol E, Officer A, Harismendy O, et al. Deciphering cell–cell
interactions and communication from gene expression. Nat Rev
Genet 2020;22:71–88.

8. Cao Y, Lin Y, Patrick E, et al. scFeatures: multi-view repre-
sentations of single-cell and spatial data for disease outcome
prediction. Bioinformatics 2022;38:4745–53.

9. Thurman AL, Ratcliff JA, Chimenti MS, et al. Differential
gene expression analysis for multi-subject single-cell RNA-
sequencing studies with aggregateBioVar. Bioinformatics 2021;37:
3243–51.

10. Millard N, Korsunsky I, Weinand K, et al. Maximizing statistical
power to detect differentially abundant cell states with scPOST.
Cell Rep Methods 2021;1:100120.

11. Zhao J, Jaffe A, Li H, et al. Detection of differentially abundant
cell subpopulations in scRNA-seq data. Proc Natl Acad Sci U S A
2021;118:e2100293118.

12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:
436–44.

13. Sejnowski TJ. The unreasonable effectiveness of deep learning in
artificial intelligence. Proc Natl Acad Sci U S A 2020;117:30033–8.

14. Yang P, Hwa Yang Y, Zhou BB, et al. A review of ensemble
methods in bioinformatics. Curr Bioinform 2010;5:296–308.

15. Seeland M, Mäder P. Multi-view classification with convolu-
tional neural networks. PLoS One 2021;16:e0245230.

16. Cao Y, Geddes TA, Yang JYH, et al. Ensemble deep learning in
bioinformatics. Nat Mach Intell 2020;2:500–8.

17. Kuhn M. Building predictive models in R using the caret package.
J Stat Softw 2008;28:1–26.

18. Risso D, Ngai J, Speed TP, et al. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat Biotechnol
2014;32:896–902.

19. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential
expression analyses for RNA-sequencing and microarray stud-
ies. Nucleic Acids Res 2015;43:e47.

20. Luecken MD, Büttner M, Chaichoompu K, et al. Benchmarking
atlas-level data integration in single-cell genomics. Nat Methods
2021;19:41–50.

21. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associ-
ated with COVID-19-related death using OpenSAFELY. Nature
2020;584:430–6.

22. Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach
Learn Res 2004;5:101–41.

23. Covid-19 Multi-omics Blood ATlas (COMBAT) Consortium. A
blood atlas of COVID-19 defines hallmarks of disease severity
and specificity. Cell 2022;185:916–38.e58.

24. Ren X, Wen W, Fan X, et al. COVID-19 immune features
revealed by a large-scale single-cell transcriptome atlas. Cell
2021;184:5838.

25. Schulte-Schrepping J, Reusch N, Paclik D, et al. Severe COVID-
19 is marked by a dysregulated myeloid cell compartment. Cell
2020;182:1419–1440.e23.

26. Stephenson E, Reynolds G, Botting RA, et al. Single-cell multi-
omics analysis of the immune response in COVID-19. Nat Med
2021;27:904–16.

27. Wilk AJ, Lee MJ, Wei B, et al. Multi-omic profiling
reveals widespread dysregulation of innate immunity
and hematopoiesis in COVID-19. J Exp Med 2021;218:
e20210582.

28. Liberzon A, Birger C, Thorvaldsdóttir H, et al. The molecular
signatures database (MSigDB) hallmark gene set collection. Cell
Syst 2015;1:417–25.

29. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-
cell regulatory network inference and clustering. Nat Methods
2017;14:1083–6.

30. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and anal-
ysis of cell-cell communication using CellChat. Nat Commun
2021;12:1088.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/3/bbad159/7140296 by guest on 23 April 2024

https://github.com/SydneyBioX/scFeatures
https://github.com/SydneyBioX/scFeatures

	 Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data
	 INTRODUCTION
	 MATERIALS AND METHODS
	 RESULTS
	 DISCUSSION
	 Key Points
	 SUPPLEMENTARY DATA
	 ACKNOWLEDGEMENTS
	 FUNDING
	 DATA AVAILABILITY
	 CODE AVAILABILITY


