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Abstract

The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs.
In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are
insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive,
costly and time consuming. A computational field known as ‘virtual screening’ (VS) has emerged in the past decades to aid
experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and bio-
logical targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins
along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated ma-
chine learning techniques are applied in VS to elevate the predictive performance.
The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, includ-
ing deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision
and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies consider-
ing the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe
the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), fre-
quently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and bench-
marking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we dis-
cuss the present state of the field, including the current challenges and suggest future directions. We believe that this
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survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehend-
ing and developing novel bio-prediction methods.

Key words: virtual screening; drug-target interactions; ligand-based VS and proteochemometric modelling; machine learning;
deep learning; compound and bioactivity databases; gold-standard data sets

Introduction

The development of new drugs remains the key problem and
challenge to improve the current field of biomedicine.
Computational methods have been used in bioinformatics and
cheminformatics studies for nearly three decades, to aid under-
standing the molecular mechanisms and propose novel treat-
ment options for several diseases. Recent advances in
computational power (e.g. massively parallel and computing on
graphical processing units (GPU)) and in data analysis and infer-
ence techniques (e.g. artificial intelligence, machine learning
and deep learning) provide opportunities for various fields of
data science, including biomedicine.

In this study, our objective is to provide an overview of re-
cent applications of computational drug discovery methods,
called virtual screening (VS), where the aim is to predict the bio-
interactions between drug-like small molecules (i.e. com-
pounds) and potential target proteins for the identification of
novel drugs, using structural and physico-chemical properties
of compounds and targets along with the experimentally
known (i.e. validated) bioactivities. In this review, we explored
various data resources that provide vast amount of information,
which is essential for conducting VS studies. We also investi-
gated novel machine learning approaches with recent applica-
tions to drug-target interaction (DTI) prediction. In this
framework, we discussed in detail the recent applications of
deep learning techniques, which outperformed state-of-the-art
VS methods. Finally, we stated our observations and comments
about the current status of the field of VS.

We divided the text in six main chapters. The first chapter,
introduction, defines the basic terminology, provide statistics
regarding the relevant information stored in source biological
databases, summarizes the experimental procedures along with
computational approaches in drug discovery. The second chap-
ter, descriptors and features for VS, lists and explains in detail
molecular representations and descriptors for both compounds
and targets. The third chapter, libraries and toolkits for VS,
expresses the available computational tools and libraries to
generate these descriptors/representations. The fourth chapter,
compound and bioactivity databases and gold-standard data
sets, explains the available repositories for bioactivity data. The
fifth chapter, machine learning approaches in VS, provides an
overview of the recent machine learning and data mining appli-
cations, including the deep learning for drug discovery, together
with the explanations of performance evaluation metrics and a
predictive performance comparison between the machine
learning-based VS methods. The sixth and the last chapter, dis-
cussion and conclusion, summarizes the field and briefly dis-
cusses the future directions together with challenges.

The terminology used in this survey is given below:

• A ligand is a molecular structure that physically binds another

molecular structure and modulates its function.
• A compound is a chemical structure that is formed by the com-

bination of two or more atoms that are connected by chemical

bonds.

• Some of the compounds, bioactive compounds, modulate the

functions of bio-molecules such as proteins.
• A drug is an approved [by Food and Drug Administration (FDA),

for example] bioactive compound that acts on protein targets to

cure/decelerate a specific disease or to promote the health of a

living being.
• A target protein (or just a target) is a naturally occurring bio-

molecule of an organism that is bound by a ligand and has its

function modulated, which results in a physiological change in

the body of the organism.
• The Anatomical Therapeutic Chemical (ATC) Classification

System is a controlled vocabulary to classify drugs hierarchically

based on their therapeutic, pharmacological and chemical prop-

erties. There are five levels in each ATC code and each level of an

ATC code represents a different property of drugs. The first level

represents anatomical groups; the second level shows a thera-

peutic main group; the third level represents a therapeutic and

pharmacological subgroup; the fourth level represents a chem-

ical, therapeutic and pharmacological subgroup; and the fifth

level shows the indicated chemical substance.
• Cheminformatics is the application of computational techniques

to the field of chemistry. Most of the VS methods are considered

to be cheminformatics based.

It is important to note that, in this article, the terms: ‘small
molecule’ and ‘compound’ are used synonymously to refer to
the ‘chemical substances’. The term ‘bioactive compound’ cor-
responds to chemical substances with biological activities. The
term ‘ligand’ represents a chemical substance that interacts
with a target biomolecule to accomplish a biological purpose.
The term ‘drug’ is used to represent approved bioactive com-
pounds, which are currently being used in the clinics. ‘Active
pharmaceutical ingredients’ (APIs) refers to the biologically ac-
tive ingredient in a drug and is responsible for the interactions
with cellular polymeric macromolecules as well as small sec-
ondary messenger molecules. The terms ‘biomolecule’, ‘recep-
tor’, ‘target’ and ‘protein’ refer to the cellular biological
molecules targeted by APIs and/or bioactive compounds.

In terms of the statistics, there are tens of millions of com-
pounds available in compound and bioactivity databases [1–4].
There are about 9000 FDA-approved small molecule drugs
(approved þ experimental) [5], roughly 550 000 reviewed protein
records available (20 244 of which are human proteins) in protein
sequence and annotations resources (e.g. UniProtKB/Swiss-Prot)
and nearly 2700 of human proteins are known to be targeted by
either approved or experimental drugs [1, 6]. The 3D structure in-
formation of proteins and compounds provide important qual-
ities of these molecules to determine their functions and
bioactivities. However, 3D structures of a relatively small subset
of compounds (i.e. around 24 000) and human proteins (i.e. about
6200) are experimentally known (partly or completely) and cur-
rently available in Protein Data Bank–PDB (Figure 1) [5].

The main role of drugs, which are bioactive compounds, is
the alteration of cellular events involved in disease conditions
for treatment purposes. The following two problems are of
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importance for the hit discovery, one of the initial steps in the
development of new drugs:

• Identification of novel bioactive compounds for a target protein;

and
• identification of new targets for known bioactive compounds.

Drug discovery is defined as the process of identifying the
roles of bioactive compounds to develop new drugs, and it is
usually one of the initial steps in a drug development pipeline.
Traditionally, drug research and development starts with the
identification of the biomolecular targets for an intended treat-
ment and proceeds with the high-throughput screening experi-
ments to identify bioactive compounds for the defined targets,
together with the corresponding bioactivity levels. The aim of
high-throughput screening is to find suitable drug candidates.
With the advancement of high-throughput screening technol-
ogy, it is now possible to conduct experiments to scan thou-
sands of different compounds and detect their bioactivity levels
on selected target proteins [7]. However, designing high-
throughput screening experiments is expensive, it is a time-
consuming process, and it requires advanced laboratories
having chemical and biological libraries. Furthermore, it is not
feasible to conduct high-throughput screening experiments for
all expressed proteins in the human genome and for all known
compounds [8]. Another problem with high-throughput screen-
ing is its high failure rates, which limits the identification of
novel drugs [9]. The problem escalates when we consider the
process of drug development. The term drug development
refers to the whole process to bring a drug to the market, start-
ing with the drug discovery and ending with clinical trial
phases. In Figure 2, main phases of the drug development pro-
cedure are shown. Most of the drug candidates fail to become
an approved drug in the late phases of clinical trials because of
the unexpected side effects and toxicity problems. In 2010, the
cost of developing a single drug was estimated about 1.8
billion US dollars, and the process requires about 13 years the
on average [8].

To address the abovementioned challenges and problems,
computational methods have been developed and used in the
past decades. The field of in silico estimation of unknown drug-
target pairs using statistical models is called ‘virtual screen-
ing’–VS–(i.e. DTI prediction). In drug development pipelines,
VS methods are mostly placed just before the high-throughput
screening, so that the unlikely drug-target pairs are elimi-
nated; as a result, only potentially active combinations are run

through the experimental screening procedure (Figure 2). In
this sense, VS has the potential to greatly reduce the cost and
time required for high-throughput screening [10]. Although the
main purpose of VS is to identify new drug candidates for
specified targets, it also has other applications such as finding
beneficial drug pairs [11] and the prediction of ATC codes for
known drugs [12, 13]. In addition, the computational
approaches mainly employed in VS can also be used for drug
repurposing and off target effect identification, where the aim
is to find new uses for the already approved drugs [14]. Drug
repurposing is an important research area since the approved
drugs are already tested for safety issues; therefore, the cost
and the required time for marketing repurposed drugs is much
less than discovering and marketing novel drugs [15]. There
are various examples of repurposed drugs in the market, most
of which are being used for treatments of multiple
diseases [16].

There have been several successful applications of VS in
detecting compounds with high affinities against pre-specified
targets [17]. Some of these drug candidate compounds have also
passed the clinical trials and became marketed drugs [18–22].
Doman et al. showed that their VS approach substantially
improved the rate of identified drug candidates against protein
tyrosine phosphatase-1B enzyme. The authors experimentally
showed that the hit rate of their method was 34.8%, whereas
the hit rate of the high-throughput screening experiment was
only 0.021% [23]. Another successful application of VS was pro-
posed by Powers et al., which led to the discovery of a novel in-
hibitor of AmpC ß-lactamase [24].

Both in high-throughput screening experiments and in con-
ventional VS approaches, the aim is to identify whether a given
set of compounds is bound to a pre-specified target protein or
not. In these applications, off-target effects are generally over-
looked and other possible targets of the compounds cannot be
identified. However, it is known that most of the bioactive com-
pounds act on multiple targets (which causes these off target
effects); in fact, the cases where a compound interacts with only
a one-target protein are considered as exceptional [25, 26]. The
identification of the off-target effects is crucial to obtain potential
side effect and toxicity information of the test compounds. For
this purpose, another type of computational approach, target pre-
diction (also known as the reverse VS), was proposed [27, 28]. In
target prediction, a compound is screened against a large set of
proteins with the aim of identifying all possible targets of the cor-
responding compound (Figure 3). Generally speaking, the goal of

Figure 1. Statistics of current chemical and protein spaces in open access chemical and biological data repositories.

1880 | Rifaioglu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/5/1878/5062947 by guest on 23 April 2024



both approaches is the prediction of unknown interactions be-
tween various compound–protein pairs.

Most of the VS methods make use of biological, topological
and physico-chemical properties of compounds and/or targets
along with the experimentally validated bioactivity values
of compound-target pairs to predict the unknown activities
[29, 30]. For this, it is required to computationally record the
compounds and targets as quantitative vectors (i.e.

representations and descriptors) according to their molecular
features. VS methods use these feature vectors as input to
model the interactions between compounds and target mole-
cules. VS methods can be divided into three groups based on
the employed input features:

• Structure-based VS employs 3D structure of targets and com-

pounds to model the interactions [31, 32],

Figure 2. A broad overview of drug development and the place of virtual screening in this process.

Figure 3. (A) In conventional virtual screening, multiple compounds are screened against a pre-specified target, and candidate interacting compounds (i.e. ligands) are

identified, whereas (B) in target prediction (i.e. reverse virtual screening), a compound is searched against multiple proteins and candidate targets are identified.
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• Ligand-based VS uses the molecular properties of compounds

(mostly non-structural) to model the interactions with targets

[29, 33, 34],
• Proteochemometric modeling (PCM) approach models the inter-

actions by combining non-structural descriptors of both com-

pounds and targets at the input level [35–38].

Previously, VS was mainly divided in two groups (i.e.
structure-based and ligand-based methods) [39, 40]; however,
recent advances in PCM have put this field forward to be consid-
ered as a third group [37]. Both ligand-based and PCM methods
can be considered as non-structure-based VS methods. The
field of ligand-based VS has been extensively reviewed by
Geppert et al. and Lavecchia and Di Giovanni [33, 34]. In another
study, Glaab reviewed the recent developments in both ligand-
and structure-based VS approaches. The author defined a com-
prehensive pipeline for VS over a target protein of interest and
overviewed workflow management systems. The whole process
was divided into four main steps, namely, data collection, pre-
processing, screening, selectivity and ADMETox (i.e. absorption,
distribution, metabolism, excretion and toxicity) filtering, and
explained each step with a focus on relevant open-access soft-
ware and databases. The author also implemented a download-
able cross-platform software by integrating open-access
screening tools using the Docker platform [41]. Qiu et al. intro-
duced the emergence of PCM and mentioned its advantages by
referring to studies in which PCM models outperform conven-
tional quantitative structure-activity relationship (QSAR) mod-
els in DTI modelling. The authors focused on the recent
progress in PCM modelling in terms of target descriptors, cross-
term descriptors and application scope of PCM, including
protein-small molecule and protein-macro molecule interac-
tions. The authors reported that, with further advancements in
molecular representations, machine learning techniques and
the available bioactivity data, it may be possible to generate
PCM models for more complicated systems such as ligand-
catalyst-target reactions, which could provide help to identify
biochemical reactions more accurately [37]. The field of PCM
was also reviewed by van Westen et al. and Cortés-Ciriano et al.
[36, 38].

Structure-based VS methods can only be applied when the
3D structure of both targets and the candidate compounds are
available, which are either experimentally determined by X-ray
crystallography or Nuclear magnetic resonance (NMR), or pre-
dicted by computational approaches such as the homology
modelling. Once the 3D structural information is obtained,
docking can be applied to find interactions between a com-
pound and a target, which predicts compound conformations in
the binding site of the target using search algorithms and ranks
them via scoring functions representing estimated binding
affinities [23, 27]. Some of the most commonly used docking
tools are AutoDock [42], DOCK [43], Glide [44], GOLD [45], FlexX
[46] and Fred [47]. These methods rely on the conformations of
atoms in 3D space; as a result, they are computationally inten-
sive since the number of possible conformations of proteins
and compounds increase exponentially with the increasing
number of rotatable bonds. Moreover, the calculation of binding
energies is a problematic issue [17]. In addition to these trad-
itional methods, there are also similarity-based docking
approaches such as HomDock [48], eSimDock [49] and fkcombu
[50] that use structural similarities of compounds to predict
their protein-bound states by aligning them on the experimen-
tally determined 3D structure of a reference compound that is
in complex with a target protein or evolutionarily related

structures of that target protein [49]. Therefore, they do not re-
quire searching for low energy conformations of compounds
contrary to conventional methods, which reduces the computa-
tional cost and makes them faster than traditional docking
methods [48]. Both approaches can achieve high performance in
estimating the interactions; however, their applicability is lim-
ited since the structural information is not available for the ma-
jority of the proteins and compounds, and the experimental
identification of the 3D structures is challenging [8]. Although
homology models of proteins can be used as templates for dock-
ing, it is not possible to obtain a reliable model for all proteins
because of the lack of a reference protein structure that is evolu-
tionarily close to the target protein to be modelled. Even if
similarity-based docking approaches are less sensitive to weak-
ly homologous protein models [49], they are not feasible in the
absence of similar compounds to the reference compound.
Therefore, non-structure-based VS methods are more prefer-
able if a reliable target structure is not available [51]. It was
reported in the literature that the non-structure-based methods
have a similar potential to detect drug targets as the structure-
based methods [52]. In addition, several studies showed that
structure and non-structure-based methods often provide com-
plementary results [28, 53–55]. There are also hybrid-type meth-
ods that combine 3D structure information along with the
ligand-based information in the literature [51]. Structure-based
VS methods are out of the scope of this study, and information
about this field can be obtained from the literature [31, 32, 52,
56, 57].

Descriptors and features for VS

Compounds and biological target molecules are required to be
quantized to be used in VS models. Molecular representations
and descriptors are employed for this purpose. A descriptor
should reflect the intrinsic physical and chemical properties of
the corresponding molecule, so that the statistical model can
learn and generalize the shared properties among the mole-
cules that lead to the interaction between compounds and tar-
gets. After the models are constructed using the descriptors of
known ligand-receptor pairs, interaction predictions are pro-
duced for the unknown ligand-receptor couples, by providing
query descriptors as input to the model.

There are various types of descriptors both for small mol-
ecule compounds and target proteins, each have strengths and
weaknesses in terms of the power of representation of molecu-
lar properties. The descriptors, which are highly used in the lit-
erature, are explained in this chapter, which is further divided
into two subsections: compound and target descriptors. In the
first subsection, we first describe the line representations that
are used to store and search compounds in data repositories.
Subsequently, several types of numerical descriptors for
compounds are explained. Finally, target descriptors are
investigated.

Compound descriptors

Line notations have been proposed to express the 2D structures
of compounds as a string of characters [58–60], to be able to
computationally store and search them in chemical databases.
Line notations are also used by cheminformatics libraries and
toolkits to generate molecular descriptors. Each line notation
uses a distinct algorithm to represent structures and chemical
properties (i.e. atoms, bonds and aromaticity) of compounds.
The most popular line notations are SMILES [58] and InChI [59]
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notations (for detailed information, please refer to the supple-
mentary material). Graphical representations are drawings of
compounds to display the positions of its atoms and bonds in
2D- or 3D. Most chemical databases (e.g. PubChem and ChEMBL)
provide both line and graphical representations for the recorded
compounds. Table 1 includes example graph and line notation
representations for a sample compound.

Molecular descriptors are representative numerical vectors
(i.e. feature vectors) for compounds that are generated by algo-
rithms based on the geometrical, structural and physiochemical
properties. There are more than a thousand different types of
molecular descriptors in the literature [61]. Molecular descrip-
tors are categorized based on the dimensionality of the included
information. A popular sub-group of molecular descriptors are
fingerprints (i.e. binary vectors), where each dimension of the
vector represents presence (1) or absence (0) of a particular
property. Fingerprints are used to represent compounds by their
chemical bonds, structural fragments, functional groups and
connectivity pathways. Several studies have been performed to
investigate the effects of choice of fingerprints on prediction
performance in VS [62–66]. These studies showed that each fin-
gerprint type represents different aspects of compounds; there-
fore, selection of fingerprints is crucial for VS [62]. Sawada et al.
trained several models using 18 different compound descriptors
to compare prediction performance of these descriptors [67].
They showed that KEGG chemical function and substructures
(KCF-S) fingerprints performed best among 18 different individ-
ual fingerprints based on multiple criteria. However, the dimen-
sionality of the KCF-S vector is considerably higher compared
with the conventional compound fingerprints [i.e. 63 891 as
opposed to 1024 for extended connectivity fingerprints (ECFP4)],
which significantly increases the computational complexity,
and it is debatable if the obtained performance increase worth
the significant increase in computational requirements. The
authors also showed that integrating multiple descriptors usu-
ally improve the predictive performance; nevertheless, the per-
formance gain was not significant in most cases. In another
study, Cano et al. used several compound descriptors with ran-
dom forest algorithm for automatic selection and ranking of
molecular descriptors based on relevancy [68]. Their report indi-
cated that automatically selected and combined features sig-
nificantly enhanced the prediction accuracy. Duan et al.
reported that no fingerprint method could outperform the
others considering all targets and that different types of finger-
prints are effective on different targets [65]. Bender et al. com-
pared 37 different fingerprints that belong to four classes of

molecular descriptors (i.e. circular fingerprints, circular finger-
prints considering counts, path-based and keyed fingerprints
and pharmacophoric descriptors) [69]. They reported that differ-
ent fingerprints retrieved different active compounds, and com-
bination of multiple fingerprints provided the best
performance. Their evaluation results showed that ECFP4 per-
formed best, when the fingerprints were evaluated individually.
Soufan et al. created several types of compound features and
used a wrapper method (please see supplementary material for
details regarding feature selection methods) to create the most
representative features for training [70, 71]. The authors showed
that combining several features with a classifier performance
aware system enhanced the prediction results.

To sum up, it can be said that each conventional molecular
descriptor is capable of representing different properties of
compounds. For example, substructure keys-based fingerprints
are created based on the presence or absence of predefined sub-
structures in compounds (e.g. MACCs [72]); circular fingerprints
can be used to represent structural properties of compounds, in-
dependent of a pre-defined key set (e.g. ECFPs [73]). On the other
hand, pharmacophore descriptors can represent complex phys-
ico-chemical properties of compounds. Therefore, combining
different molecular descriptors is frequently preferred in the lit-
erature. Compound descriptors and their properties are listed in
Table 2. Citations column in this table references the studies
from the literature that used the corresponding descriptors in
their methods.

Calculation of pairwise similarities of compounds based on
fingerprints is another important issue in VS. Various types of
measures have been proposed for this purpose such as the Dice
coefficient [74] or the Tanimoto coefficient, which currently is
the most popular similarity measure for compounds [62, 75].
Bajusz et al. performed statistical analysis and ranking of eight
different similarity metrics using the sum of ranking differences
and the analysis of variance methods [62]. They used ECFP4 and
Chemaxon Chemical Fingerprints to represent compounds. The
authors first showed that all the similarity metrics had signifi-
cantly better performance compared with the random selection.
They reported that Cosine, Dice, Tanimoto and Soergel metrics
performed better than the others. For more details about finger-
prints and similarity measures, please refer to the first section
in the supplementary material.

Target protein descriptors

In proteochemometrics, both ligand and target spaces are mod-
elled to accurately predict DTIs in a large scale. Hence, target
protein descriptors are employed along with compound mo-
lecular descriptors in PCM [35, 38]. Considering the type of pro-
tein properties used for the feature generation, target
descriptors are mainly categorized as sequence- and structure-
based descriptors. While sequence-based target descriptors use
the amino acid sequence of proteins, which can be retrieved
from UniProt Knowledgebase (http://www.uniprot.org) [80],
structure-based descriptors use 3D atomic coordinates of pro-
teins retrieved from Protein Databank–PDB– (http://www.rcsb.
org) [81]. In terms of the properties they describe, target descrip-
tors can roughly be divided into six groups, as briefly explained
below and shown in Table 3. Citations column in this table
references the studies from the literature, which employed the
corresponding descriptors in their methods.

Descriptors based on sequence composition reflect the occur-
rence frequencies of different amino acid combinations on a pro-
tein sequence [96]. Descriptors based on physico-chemical

Table 1. Chemical formula, 2D/3D graphical representation, SMILES
and InChI notations of aspirin

Category Representation

Compound name Aspirin
Chemical formula C9H8O4

3D/2D structure

SMILES CC(¼O)OC1¼CC¼CC¼C1C(¼O)O
InChI InChI¼ 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7

(8)9(11)12/h2-5H, 1H3, (H, 11, 12)
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properties describe protein sequences in terms of a combination
of physical and chemical properties of amino acids such as
hydrophobicity, van der Waals volume, polarity, polarizability,
charge, secondary structure and solvent accessibility [36, 82, 96–
109]. Descriptors based on similarity measures use similarities
between proteins via sequence or structural alignments, based
on the idea that similar targets may interact with similar com-
pounds [110–118]. Descriptors based on topological properties
characterize amino acids according to atom-connectivity indices
generated from molecular graphs [119, 120]. Descriptors based on
geometrical characteristics reflect structural characteristics of
proteins related to shape, size, atomic positions in space, etc.,
mainly including residue–residue contacts, bond lengths, bond
angles and torsion angles between atoms of residues, secondary
structures, flexibility and solvent accessibility of proteins [92,
121–124]. Descriptors based on functional sites describe certain
functional characteristics of proteins that can be responsible for
the interactions with other molecules such as proteins, small
molecules and nucleic acids [38, 94, 95, 125, 126]. For detailed in-
formation about different types of target descriptors, please refer
to the supplementary material.

The selection of descriptor sets is important to be able to gen-
erate high-performance predictive models using PCM. There are
a few studies on benchmarking of target descriptors. In 2007, Ong
et al. evaluated the effectiveness of 10 commonly used descriptor
sets (i.e. amino acid composition (AAC); dipeptide composition
(DC); three types of autocorrelation; Composition, transition and
distribution (CTD); Quasi-sequence-order descriptors (QSO); Pse-
AAC; combination of AAC and DC; and combination of the first
eight descriptors) for the prediction of protein functional families
using support vector machines. The authors reported that the
selected descriptors were effective in general, and their perform-
ance did not significantly differ from each other although com-
bined sets of descriptors provided better results [82]. In another

study, van Westen and colleagues [36] compared the performan-
ces of 13 different types of amino acid descriptors (i.e. three var-
iants of z-scales, BLOSUM, FASGAI, MSWHIM, T-scales, ST-scales,
VHSE and four variants of ProtFP as a novel descriptor set) and
their combined versions, for bioactivity modelling using random
forest classifiers. According to their findings, z-scale descriptors
and combined sets were consistently better than the others
while ProtFP and ST-scales descriptors consistently performed
worse. Furthermore, they showed that the generated PCM mod-
els outperformed QSAR model that uses only compound descrip-
tors. Shaikh et al. also developed PCM models for the prediction
of DTIs using sequence- and structure-based descriptors,
employing different machine learning techniques. The authors
reported that, while models generated using random forests and
support vector machines outperformed the others, there was no
significant difference between the two types of descriptor sets in
terms of the model performance. As a result, the authors stated
that using sequence-based descriptors was more advantageous
as it comprised a larger set of proteins [83]. Apart from these
studies, Sun et al. performed an analysis for the prediction of
RNA-binding protein residues using the random forest algorithm.
They developed different predictive models based on five types
of protein features, including similarity measures, geometrical
characteristics and physico-chemical properties of amino acids
as well as two newly developed structural features. Among all
models generated using these features separately, and in differ-
ent combinations, they found that the model with the highest
performance was the one combining all these five features [86].
Based on these studies, it can be inferred that there is no out-
standing descriptor type that represents the proteins to achieve a
significantly higher predictive performance. Therefore, we sug-
gest researchers to select protein descriptors specific to the prob-
lem at hand by carrying out performance comparison tests. Also,
combinations of different protein features should be considered

Table 2. Compound descriptors: categories, properties and fingerprints

Descriptor category Properties Fingerprints Citations

0D descriptors Molecular weight
Atom number
Atom-type count
Other basic descriptors such as
number of heavy atoms

[76]

1D descriptors Functional groups
List of structural fragments
Substituent atoms

[61]

2D descriptors Topological descriptors
Graph invariants
Graph-based substructures
Connectivity bonds

1. Substructure keys based (e.g. MACCS)
2. Path based (e.g. DayLight and FP2)
3. Circular (e.g. ECFPs)

[65, 67, 73]

3D descriptors Steric properties
Geometrical molecular descriptors
Surface area
Volume
Binding site properties
3D-based graph invariants

1. Geometrical (e.g. triangular descriptors)
2. Pharmacophore (e.g. hydrogen bond,

hydrophobicity, charge and aromacity)

[61, 77]

Non-structure-based
molecular descriptors

Substring occurrence in SMILES
Text-based molecular fingerprints
ATC code annotations

1. LINGO descriptors [78, 79]
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in these tests to be able to capture distinct aspects of proteins in
one model.

Libraries and toolkits for VS

One issue in VS field is finding a convenient resource (i.e. a com-
putational tool or a programming library) to accomplish specific
tasks such as the construction of molecular descriptors, inter-
conversion between two different representations, calculation
of pairwise molecular similarities or the applications of various
statistical and machine learning algorithms for DTI prediction.

Several libraries and toolkits have been developed for these pur-
poses, each supported by different operating system(s) and pro-
gramming language(s). In this chapter, we describe these
libraries and toolkits.

Table 4 provides information on tools, their features and
computational dependencies for compounds. Further informa-
tion about compound-specific toolkits and libraries can be
found in the supplementary material. Target descriptors are
valuable sources to be used in predictive models not only for
DTI prediction but also for protein structure and function

Table 3. Categories of target descriptors based on the properties they describe

Descriptor category Descriptor type Citations

Sequence composition Amino acid composition (AAC)
Dipeptide composition (DC)
Tripeptide composition (TC)

[82–85]

Physico-chemical properties Autocorrelation (normalized Moreau-Broto, Moran and Geary)
Composition, transition and distribution (CTD)
Conjoint triad (CTriad)
Sequence-order-coupling number (SOCN)
Quasi-sequence-order descriptors (QSO)
Pseudo amino acid composition (Pse-AAC)
Amphiphilic pseudo amino acid composition (Am-Pse-AAC)
Z-scales
MSWHIM
Vectors of hydrophobic, steric and electronic properties (VHSE)
FASGAI
ProtFP

[36, 82–84, 86]

Similarity measures Sequence based:
• BLOSUM/PAM substitution matrix
• Needleman–Wunsch Score
• Normalized Smith–Waterman Score
• Position-specific scoring matrix (PSSM)
• Substitution matrix representation (SMR)

Structure based: Global alignment scores
• RMSD score
• GDT score
• MaxSub score
• TM ccore

Local alignment scores
• GA score
• Match score
• eMatchSite score
• PS score

Ontological annotation semantic similarity

[36, 86–91]

Topological properties T-scales
ST-scales

[36, 84]

Geometrical characteristics Residue–residue contacts
Local descriptors of protein structure (LDPS)
Bond lengths, bond angles and dihedral angles
Secondary structure prediction
B-factor and disordered residues
Solvent accessible surface area

[86, 88, 92, 93]

Functional sites Protein domain profiles
Binding pockets and cavities

• FuzCav
• FLAP

[83, 84, 94, 95]
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Table 4. Libraries and toolkits for cheminformatics

Tools and libraries Basic properties and included descriptors Operating
systems

Programming
languages

RDKit [127] Descriptor and fingerprint generation for machine learning; mo-
lecular database cartridge for PostgreSQL; supporting substruc-
ture and similarity searches as well as various descriptor
calculators; automatic feature perception (i.e. rings, bonds, hy-
bridization and aromaticity)

Supported file formats: SMILES, SMARTS and InChI

Microsoft
Windows,
Linux, Mac
OSX

Python; wrappers
are available for
Java and C#

OpenBabel [128] Filtering and searching molecular files; converting files, molecular
searching, chirality detection and superimposing molecules;
Gasteiger–Marsili partial charge calculation; support for molecu-
lar mechanics; hydrogen addition and deletion; isotope support,
calculation of average and exact masses; automatic feature per-
ception (rings, bonds, hybridization and aromaticity)

Supported file formats: mol2, PDB and SMILES

Microsoft
Windows,
Linux, Mac
OSX

Cþþ, Perl, Python
interfaces

Dragon [129] Calculation of molecular descriptors; graphical interface for selec-
tion of structures; providing graphics and statistics tools; prelim-
inary descriptor analysis such as the analysis of molecule
distribution in the descriptor space, as well as a preliminary cor-
relation analysis; a molecule viewer to display the molecular
structures; principal component analysis implementation for the
selected sets of descriptors

Supported file formats: SMILES, MDL, Sybyl

Microsoft
Windows,
Linux

Stand-alone
application

DayLight Tookit [130] Subgraph pattern matching; analyzing and manipulate 2D and 3D
data; creating new fingerprints; specifying size and folding
parameters for a fingerprint; manipulating fingerprints in a bit-
wise fashion; creating new similarity metrics with mathematical
expressions

Supported file formats: SMILES and SMARTS

Microsoft
Windows,
Linux, Solaris

C, Fortran; Wrappers
are available for
Java and Cþþ

Chemistry
Development
Tookit [131]

Interconversion between different types of representations; simi-
larity calculation between two compounds; searching substruc-
tures using SMARTS; rendering chemical structures; algorithms
for chemical graph theory; 3D conformer generation; various
types of fingerprint calculation; generation of QSAR descriptors

Supported file formats: SMILES, SMARTS, InChI, etc.

Microsoft
Windows,
Linux, MacOSX

Java

Open Eye Toolkit [132] Real-time shape similarity for VS, lead hopping and shape cluster-
ing; molecule rendering and depiction; 2D molecular similarity
calculation based on fingerprints; molecular property calculation
and filtering; molecular docking and scoring; 3D conformer gen-
eration and superimposition.

Supported file formats: SMILES, InChI, RDF, etc.

Microsoft
Windows,
Linux, MacOSX

Cþþ; Wrappers are
available for
Python, Java,
and.NET

ChemmineR [133] Format Interconversions; similarity searching using various crite-
ria such as atom pairs, PubChem fingerprints etc.; rendering
chemical structure images; providing various types of clustering
algorithms; searching PubChem database using various criteria
such as Id, SMILES, etc.; and visualization functions for com-
pound clustering

Supported file formats: InChI, SMILES, SDF

Microsoft
Windows,
Linux, MacOSX

R

Indigo [134] Exact matching, substructure matching, SMARTS matching; mol-
ecule fingerprinting, molecule similarity computation; molecular
weight and molecular formula computation; combinatorial
chemistry scripts; renderer plugin distributed together with the
Indigo API

Supported file formats: SMILES, SMARTS, RDF, etc.

Microsoft
Windows,
Linux, MacOSX

Cþþ; Java, Python,
Wrapper is avail-
able for .NET
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prediction and estimation of protein-protein interactions. To fa-
cilitate the retrieval of protein data and calculation of protein
features, a vast number tools and data services have been con-
structed. Some of currently available tools and libraries are
shown in Table 5 and explained in detail in the supplementary
material.

Open access web applications, online tools, data sets and
source codes for VS, provided in the websites or in the supple-
mentary material of the reviewed studies, are given in Table 6.
Most of the VS studies in the literature describe methodologies
and test them on various data sets, without providing open ac-
cess web-services or tools that researchers can use to carry out

Table 5. Libraries and toolkits for protein analysis (including VS)

Tools and libraries Basic properties and included descriptorsa Operating systems Programming languages

PROFEAT [95], ProPy
[135], PyDPI [136]

AAC, DC, TC (ProPy and PyDPI), autocorrelation, CTD, CTriad
(only PyDPI), SOCN, QSO, Pse-AAC, Am-Pse-AAC, topological
descriptors (only PROFEAT), total amino acid properties (only
PROFEAT)

Microsoft Windows,
Linux

PROFEAT:
Web server
ProPy: Python
PyDPI: Python

protr/ProtrWebb [137],
Rcpi [138]

AAC, DC, TC, autocorrelation, CTD, CTriad, SOCN, QSO, Pse-
AAC, Am-Pse-AAC, scales-based descriptors derived by PCA,
factor analysis, and multidimensional scaling, BLOSUM/PAM
matrix derived descriptors, PSSM profiles, similarity meas-
ures based on sequence alignment and GO annotation se-
mantic similarity

Microsoft Windows,
Linux, MacOSX

protr/ProtrWeb:
Web server, R

camb [139] AAC, DC, TC, autocorrelation, CTD, CTriad, SOCN, QSO, Pse-
AAC, Am-Pse-AAC, Z-scales, T-scales, ST-scales, VHSE,
MSWHIM, FASGAI, ProtFP8, BLOSUM62

Linux, Mac OS Cþþ, Java, Python, R

ProFET [140] Various features based on biophysical quantitative properties,
letter-based features, local potential features, information-
based statistics, AA scale-based features, and transformed
CTD features

Linux Python

BLAST [141], ClustalWc

[142]
Heuristic pairwise sequence alignments/database search

(BLAST), multiple sequence alignments (ClustalW)
Microsoft Windows,

Linux, MacOSX
Web server, C, Cþþ

DALI [143], MultiProt
[144], TM-align [145],
RCSB PDB
Comparison Tool
[146]

Protein global structure alignments MultiProt:Linux,
TM-align: Linux

All: Web server,TM-
align:Fortran, Cþþ

SiteEngine [147], APoc
[148], eMatchSite
[149], G-LosA [150]

Protein local structure alignmentsd Linux SiteEngine/eMatchSite:
Web server

G-LosA/eMatchSite:
Cþþ

POSSUM [151] PSSM profile-based feature descriptors Microsoft Windows,
Linux, MacOSX

Web server, Perl, Python

GOSemSim [152] Gene Ontology annotation semantic similarity Microsoft Windows,
Linux, MacOSX

R

FragHMMent [153] Prediction of residue-residue contacts Linux Java

PSIPRED [154] Secondary structure prediction Linux Web server, C

Naccess [155], POPS
[156]

Solvent accessible surface area Naccess: Linux, POPS:
Microsoft Windows,
Linux, MacOSX

Naccess: Fortran, POPS:
Java

PocketPicker [157] Prediction of protein binding pockets Linux PyMol plugin

SCREENc [158], trj_cavity
[159]

Identification of protein cavities trj_cavity: Linux SCREEN: Web server,
trj_cavity: Cþþ

aDescriptor names are abbreviated according to information in Section 2.B Target Protein Descriptors.
bProtrWeb only provides AAC, DC, TC, Autocorrelation, CTD, CTriad, SOCN, QSO, Pse-AAC and Am-Pse-AAC descriptors.
cClustalW has been retired and replaced with Clustal Omega. The original SCREEN tool is also replaced with SCREEN2.
dThese tools can also be included in ‘prediction of protein binding pockets’ part, which are mainly used for this purpose.
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Table 7. Databases of chemicals/compounds, bioactivities and target proteins, statistics and links

Compound and
bioactivity databases

Statisticsa Website Version

Compounds Targets Interactions

PubChem [1] 93 977 773 (C) 235 653
627 (S)

10 341 (P) 233 799 255 (I) 1 252 820 (E) https://pubchem.ncbi.nlm.nih.gov 03.12.2017

ChEMBL [2] 1 735 442 (C) 11 538 (P) 14 675 320 (I) 1 302 147 (E) https://www.ebi.ac.uk/chembl v23
DrugBank [5] 9591 (D) 4270 (P) 16 748 (I) http://www.drugbank.ca v5.0
STITCH [167] �500 000 (C) 9 643 763 (P) �1.6 billion (I) http://stitch-beta.embl.de v5.0
BindingDB [168] 635 301 (C) 7000 (P) 1 419 347 (I) http://www.bindingdb.org 03.12.2017
BindingMoad [169] 12 440 (C) 7599 (F) 25769 (I) http://bindingmoad.org Rel. 2014
KEGG [170] 18 211 (C) 10 484 (D) 976 (P) 6502 (I) http://www.kegg.jp Rel. 84.1
DCDB [171] 904 (D) 1363 (DC) 805 (P) – http://www.cls.zju.edu.cn/dcdb/index.jsf v2.0
T3DB [172] 3673 (T) 2087 (P) 42471 (I) http://www.t3db.ca/ v2.0

Side effect databases Statisticsa Website Version

SIDER [173] 1430 (D), 5868 (SE), 139 756 (A) http://sideeffects.embl.de v4.1

Metabolome databases Statisticsa Website Version

HMDB [174] 114 089 (M) http://www.hmdb.ca/ v4.0

Chemical databases Compounds Website Version

ChemSpider [3] �62 000 000 (C) http://www.chemspider.com 03.12.2017
ChEBI [4] 53 495 (C) https://www.ebi.ac.uk/chebi Rel. 158
ZINC [175] �100 000 000 (C) http://zinc15.docking.org/ ZINC 15

Target databases Statisticsa Website Version

AAindex [176] AAindex1:566 indices, AAindex2:94 matrices, AAindex3:47
contact potential matrices

http://www.genome.jp/aaindex Rel. 9.2

UniProtKB [80] Swiss-Prot: 556 196 (P), TrEMBL: 98 705 220 (P) http://www.uniprot.org v2017_11
InterPro [177] 2128 (SF), 20 410 (F), 8840 (DM) https://www.ebi.ac.uk/interpro/ v66
Pfam [178] 16 712 (F) http://pfam.xfam.org/ v31.0
RCSB PDB [81] 125 799 (P) https://www.rcsb.org/ 28.11.2017
sc-PDB [179] 6326 (C), 4782 (P), 16 034 (I) http://bioinfo-pharma.u-strasbg.fr/scPDB/ Rel. 2017
CATH [180] 6119 (SF), 434 857 (DM) http://www.cathdb.info v4.2
SCOPe [181] 2008 (SF), 4851 (F), 244 326 (DM) https://scop.berkeley.edu v2.06

aAbbreviations in the statistic column: compound (C), substance (S), drug (D) protein (P), protein family (F), interaction (I), experiments (E), associations (A), toxin (T),

side effects (SE), drug combination (DC), metabolite (M), domain (DM), superfamily (SF).

Table 6. Open access web services, online tools and data sets provided in the reviewed VS studies

Article Method/tool name Website Resource type

Gfeller et al.[160] SwissTargetPrediction http://www.swisstargetprediction.ch Web service

Shi et al. [161] – http://www.bmlnwpu.org/us/tools/PredictingDTI_S2
/METHODS.html

Source Code/Data set

Yabuuchi et al. [162] – http://msb.embopress.org/content/7/1/472 Data set (Supplementary)

Iwata et al. [11] – https://pubs.acs.org/doi/abs/10.1021/acs.jcim.5b00444 Data set (Supplementary)

Liu et al. [12] SPACE http://www.bprc.ac.cn/space Web tool

Ma et al. [163] – https://pubs.acs.org/doi/abs/10.1021/ci500747n Data set (Supplementary)

Koutsoukas et al. [164] – https://jcheminf.springeropen.com/articles/10.1186/s13321
-017-0226-y

Source Code/Data set
(Supplementary)

Wen et al. [85] DeepDTIs https://github.com/Bjoux2/DeepDTIs_DBN Source Code/Data set

Wallach et al. [165] AtomNet – Commercial

Altae-Tran et al. [166] DeepChem https://github.com/deepchem/deepchem Source Code/Data set

Soufan et al. [70] DRABAL https://figshare.com/articles/ DRABAL/3309562 Source Code/Data set

1888 | Rifaioglu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/5/1878/5062947 by guest on 23 April 2024

https://pubchem.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/chembl
http://www.drugbank.ca
http://stitch-beta.embl.de
http://www.bindingdb.org
http://bindingmoad.org
http://www.kegg.jp
http://www.cls.zju.edu.cn/dcdb/index.jsf
http://www.t3db.ca/
http://sideeffects.embl.de
http://www.hmdb.ca/
http://www.chemspider.com
https://www.ebi.ac.uk/chebi
http://zinc15.docking.org/
http://www.genome.jp/aaindex
http://www.uniprot.org
https://www.ebi.ac.uk/interpro/
http://pfam.xfam.org/
https://www.rcsb.org/
http://bioinfo-pharma.u-strasbg.fr/scPDB/
http://www.cathdb.info
https://scop.berkeley.edu
http://www.swisstargetprediction.ch
http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html
http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html
http://msb.embopress.org/content/7/1/472
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.5b00444
http://www.bprc.ac.cn/space
https://pubs.acs.org/doi/abs/10.1021/ci500747n
https://jcheminf.springeropen.com/articles/10.1186/s13321-017-0226-y
https://jcheminf.springeropen.com/articles/10.1186/s13321-017-0226-y
https://github.com/Bjoux2/DeepDTIs_DBN
https://github.com/deepchem/deepchem
https://figshare.com/articles/


their own analysis. The underlying reason is that, successful VS
tools have potential to be employed in the pharmaceutical in-
dustry; as a result, the researchers often choose to develop com-
mercial products with their methods. There are several
commercial VS services and tools on the market. We did not
provide any information regarding these commercial products,
as they are out of scope of this study.

Databases and gold-standard data sets

The aim of this chapter is to provide a brief overview of the
open access chemical and biological data repositories and the
available gold-standard data sets that are widely used in VS.
Compound and target databases, together with the tools that
they provide, are crucial for the development of novel VS meth-
ods. The databases for compounds, bioactivities and proteins
and their statistics are given in Table 7.

Compound, bioactivity and target protein databases

With the improvements in the drug screening technologies and
VS methods, the amount of both the experimental bioassay
data and computationally produced DTI data are increasing.
Therefore, researchers require structured chemical and bio-
logical databases to store and publish this vast amount of data
in a well-organized way. A chemical database of bioactive mole-
cules (i.e. a compound database) is a resource that contains sev-
eral properties of chemical substances such as 2D and 3D
structures, physical and chemical attributes, molecular descrip-
tors, side effects and clinical information, as well as targets and
activity measurements. The public release of large-scale experi-
mental bioactivity data, mostly from high throughput screening
(HTS) assays, has started a new era in computational biomed-
ical research. Research groups from all around the world have
started to access and analyse the data, which boost the field of
computational drug discovery (specifically VS) in the past dec-
ade. In this sense, the prominent bioactivity and compound
data resources can be listed as PubChem [1], ChEMBL [2],
DrugBank [5], STITCH [167], BindingDB [168], BindingMoad [169],
KEGG [170], SIDER [173], DCDB [171], HMDB [174] and T3DB [172].
Although the discussed databases have common properties,
they also complement each other by providing different fea-
tures. For example, PubChem contains the largest bioactivity
data for compounds—mainly retrieved from HTS experiments—
and the other databases generally import data from PubChem.
ChEMBL is also a large-scale compound and bioactivity data-
base. However, one of the most significant differences of
ChEMBL from the other large-scale sources is that the provided
data are manually curated by experts from the literature in a
comprehensive manner, making ChEMBL a more reliable re-
source, whereas the PubChem data are non-curated. ChEMBL
also categorizes targets as ‘Single Protein’, ‘Protein Family’ and
‘Protein Complex’ and assigns a confidence score to state the
specificity of compound activity. The main advantage of using
PubChem over the other resources is its unmatched high vol-
ume (i.e. in terms of the number of bioassays, bioactivities,
compounds and targets). Another bioactivity database
BindingDB contains only experimentally validated bioactivity
values of compound-target complexes without considering
other functional assay results. BindingDB directly provides val-
idation data sets for computational drug design studies. In con-
trary to PubChem, ChEMBL and BindingDB, BindingMoad is a
small-scale bioactivity database, which includes high-
resolution 3D structures of proteins and their ligand

annotations for related protein-ligand interactions. In this
sense, BindingMoad is especially convenient to be employed for
the structure-based VS approaches. As an extensive network of
biological systems, KEGG is a valuable resource for understand-
ing functional hierarchies of biological events involving molecu-
lar interactions, pathways and disease mechanisms from
molecular-level information of genes and genomes extracted
from large-scale data sets of genome sequencing or other high-
throughput experimental techniques. DrugBank database
includes information regarding the approved and experimental
drugs along with their target associations; hence, it is a small-
scale database. However, DrugBank covers almost all aspects of
drugs as a manually curated biomedical resource with high-
quality standards. The data obtained from DrugBank is often
used in test sets for novel large-scale VS methods. SIDER and
STITCH are sister projects, where the former focuses on side ef-
fect information, and the latter focuses on the compound-target
interactions under biological networks point of view. Therefore,
it is quite common to combine complementary features from
these databases, when applicable. In addition to the abovemen-
tioned resources, there are also useful databases such as DCDB,
HMDB and T3DB, which focus on drug combinations, human
metabolites and toxic substances, respectively. Considering
these bioactivity databases, PubChem, ChEMBL, Binding MOAD
and BindingDB represent activity data with quantitative meas-
urements such as the IC50, EC50, Ki and potency, while
DrugBank, STITCH, KEGG, DCDB, HMDB and T3DB only provide
the information regarding presence of an activity/interaction
between the corresponding drug-target pairs.

A protein information database includes protein sequences
as well as their physico-chemical and biochemical properties,
together with detailed functional annotation and structural in-
formation to provide data that can be used for various purposes,
including function prediction and drug discovery. Many com-
pound and target databases were constructed with the manual
curation of the literature by expert scientists. Most of the data-
bases also incorporate data from third-party resources and pro-
vide cross-references. UniProt is the main resource of protein
sequence and annotation [80]. It presents a comprehensive pro-
tein repository, a central hub, importing and organizing vast
amount of information from third-party protein resources as
well. The PDB includes experimental protein structure informa-
tion [81], which is crucial for structure-based VS studies, as well
as for PCM. AAindex is a database of physico-chemical and bio-
chemical properties of amino acids and a highly used resource
for VS [176]. InterPro, Pfam, CATH and SCOP resources classify
proteins in structural and functional groups/families, using pre-
defined curated sequence motifs and structural domains [177,
178, 180, 181]. Further information about these data resources
can be obtained from the supplementary material.

Gold-standard data sets for VS

In machine learning, the term ‘gold-standard data sets’ refers to
reliable sets of information created to address a particular prob-
lem, which can be used for the following purposes:

• development (i.e. training and testing) of computational

methods;
• adjustment of the parameters of computational methods;
• evaluation of the performance of trained models; and
• benchmarking to compare the performances of various predic-

tion models.
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In VS, gold-standard data sets generally comprise manually
curated compound-target pairs and their bioactivity values. The
abovementioned data repositories provide data that can be
used for model training and benchmarking; however, it is not
easy to understand which database to employ at which step, to
obtain the required data. Therefore, data set construction is one
of the critical steps in VS studies. Although these databases pro-
vide cross-references to each other to some extent, the data are
mostly disconnected, and it is often non-trivial to carry out data
integration operations on different resources, which requires
expert-level knowledge. As a result, expert curated gold-
standard data sets are extremely valuable for the community.

Because of the lack of adequate experimental data and pub-
licly available data repositories, it was a significant problem to
define a suitable gold-standard data set for benchmark studies
until 10 years ago. The early data sets were either too small or
proprietary. For example, a data set generated in 1988 for com-
parative molecular field analysis included only 21 varied steroid
structures for the analysis of their binding affinities to human
corticosteroid- and testosterone-binding globulins [182]. In
2001, Hert et al. generated a data set for the comparison of dif-
ferent types of 2D fingerprints used in similarity-based VS with
a total of 11 activity class, each of which was involving active
compounds in a range of approximately 300–1200. However,
this data set was derived from MDL Drug Data Report database,
which is licensed and not publicly available [183].

As one of the first gold-standard data sets that is large enough
and freely accessible, Yamanishi et al. created a data set with four
classes (i.e. families) of targets that are enzymes, ion channels, G-
protein coupled receptors (GPCRs) and nuclear receptors [90].
These target families are explained in the supplementary material.
The data set by Yamanishi et al. involves only human proteins and
was constructed using KEGG BRITE, BRENDA, SuperTarget and
DrugBank databases and generated mainly for evaluating and
training of their own VS method. This data set can be reached via:
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. The numbers
of targets in these data sets are 664, 204, 95 and 26, whereas the
numbers of DTIs are 2926, 1476, 635 and 90, respectively, for each
class. An updated version of the data set was later created again by
Yamanishi et al., including the same target classes [184]; this time
using the JAPIC database (http://www.japic.or.jp/). The numbers of
the targets in the updated set are the same as previous data set,
and the numbers of the interactions are 1515, 776, 314 and 44, re-
spectively, for each class. Yamanishi’s sets were generated to train
and test the performances of network/graph-based DTI prediction
methods; thus, they are among the most used benchmarking data
sets for network/graph-based approaches. However, they usually
are not suitable for machine learning approaches, which require
large training data sets. Yamanishi’s gold-standard sets can be
downloaded from http://cbio.mines-paristech.fr/�yyamanishi/phar
maco/.

Huang, Irwin and Shoichet have generated a benchmarking
data set called directory of useful decoys (DUD) for testing VS
methods, by curating challenging decoys that have a low probabil-
ity of interacting with the selected targets. The DUD data set con-
tained active compounds for the selected targets together with 50
decoys for each active compound, which have similar physico-
chemical properties but different topology [185]. As an updated and
enhanced version of DUD (DUD-E) with more diverse target classes
such as GPCRs and ion channels (along with enzymes and nuclear
receptors), DUD-E contains 22 886 ligands and their affinities
against 102 targets retrieved from the ChEMBL database, together
with property-matched decoys obtained from the ZINC database.
The data set is freely available at http://dude.docking.org [186].

Another benchmark data set designed for VS is maximum
unbiased validation (MUV), which was generated from
PubChem bioactivity data by topological optimization based on
a refined nearest neighbour analysis. MUV provides randomly
distributed sets of active compounds—selected from potential
actives—and inactive compounds—selected from potential
decoys—that minimizes the influence of data set bias on valid-
ation results. The workflow used for the generation of opti-
mized MUV data set is also freely available as a software
package that can be applied on other activity data sets for opti-
mization. The data set and the software package can be
accessed via https://www.tu-braunschweig.de/pharmchem/for
schung/baumann/muv [187].

In 2012, Merck sponsored a drug target interaction challenge
over Kaggle data competition service (https://www.kaggle.com/
c/MerckActivity). They provided 164 024 compounds for 15 bio-
logically relevant targets. For each activity, they provided a list
of chemicals along with their molecular descriptors and bio-
activity measurement values. The participating teams tried to
predict the experimentally known held-out interactions among
the overall data set. The evaluation mechanism and the per-
formance results of the teams are available in the competition
page. Following the end of the competition, the held-out evalu-
ation sets were released, which can now be used as benchmark-
ing data sets for different VS approaches. The data sets are
explained in the publication by Ma et al. [163] and available at
https://www.kaggle.com/c/MerckActivity/data.

Another data set called Tox21 is also commonly used in ma-
chine learning-based computational drug discovery applications.
This data set has been generated by The Tox21 Data Challenge
community in 2014 to evaluate the performances of different com-
putational methods in terms of toxicity prediction. The data set
comprises approximately 12 000 environmental chemicals and
approved drugs screened in 12 different bioassays related to nu-
clear receptor signalling and stress response pathways to reveal
their toxic effects based on the disruption of these processes [188].

There are also novel approaches for generating gold-stand-
ard data sets, especially for deep learning applications in DTI
prediction. Wu et al. developed a platform, MoleculeNet, as a
benchmark collection for machine learning methods used in
molecular systems. The curated data set of MoleculeNet con-
tains nearly 700 000 compounds retrieved from publicly avail-
able databases such as QM7/QM7b, QM8, QM9, ESOL, FreeSolv,
Lipophilicity and PDBbind for regression data sets and PCBA,
MUV, HIV, BACE, BBBP, Tox21, ToxCast, ClinTox and SIDER for
classification data sets. The data were split into training/valid-
ation/test subsets and tested on a range of categories, such as
quantum mechanics, physical chemistry, biophysics and physi-
ology. Furthermore, MoleculeNet provided evaluation metrics
and open-source implementations of several well-known mo-
lecular featurization methods and machine learning algo-
rithms. All parts of MoleculeNet have also been integrated into
DeepChem open-source framework (https://github.com/deep
chem/deepchem) [189]. Apart from these gold-standard sets,
there has also been efforts to generate purpose specific data
sets [190], often using the ZINC database [175] as their resource.
With the increased volume of open access experimental data in
repositories such as PubChem, ChEMBL and ZINC the data
resources for VS studies has been significantly changed, com-
pared with 10 years ago. Novel data sets derived from these
resources such as the DUD and MUV, together with the new al-
gorithmic approaches, are highly promising in terms of devel-
oping the field of computational drug discovery. The field of
generating and utilizing gold-standard/benchmarking data sets
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for VS has been extensively discussed in the recent works by
Lagarde et al. and Xia et al. [190, 191].

Machine learning applications in VS

The field of machine learning has been extensively reviewed
and discussed in several books [192]. There are two main
approaches in machine learning literature in terms of how the
learning process is carried out, supervised learning and un-
supervised learning. In supervised learning, the objective is to
infer a function that maps the input data to the output class
labels [193], whereas the aim in unsupervised learning is to
learn the hidden structure of input data without having class
labels. Unsupervised learning algorithms employ techniques to
discover relationships among the non-labeled input samples.
The most popular applications of unsupervised learning are
clustering and dimensionality reduction. Once the groups and
clusters are obtained with the application of an unsupervised
learning method, each group can be inspected to assign seman-
tic meanings by experts [194]. Both supervised and unsuper-
vised machine learning techniques are used in
cheminformatics on a wide range of topics, including VS [195–
206], yet most of the methods so far assumed the supervised ap-
proach. The subject covered in this chapter is mostly the super-
vised learning applications in VS. A plethora of methods has
been proposed for VS purposes in the past decade. These VS
methods use experimentally validated compound-target pairs
and their features along with the bioactivity information to cre-
ate predictive models for future predictions of activities.

In terms of the methodological utilization of the input prop-
erties, VS methods can be divided into similarity-based and
feature-based methods, although there is no such technical
classification in the machine learning literature [192, 193, 201,
207]. In the following sections, similarity-based and feature-
based VS methods are investigated, which is followed by the re-
cently popularized deep learning-based applications in VS. For
this, we have mostly focused on the studies published in the
past 3 years, some of which have aims beyond DTI prediction
(e.g. estimation of beneficial drug-drug combinations or ATC
code prediction). There are numerous examples of especially
ligand-based DTI prediction methods that are highly cited in
the literature. We chose to leave these articles out of this review

because of they were published more than 5 years ago and were
the subject of previous VS field review papers.

Similarity-based approach

Similarity-based methods rely on the assumption that biologic-
ally, topologically and chemically similar compounds have
similar functions and bioactivities and, therefore, they have
similar targets [160, 161, 197, 208]. In the similarity-based ap-
proach, the target associations of similar compounds (or the
compound associations of similar target proteins) are trans-
ferred between each other. Therefore, transfer approach is a
term used interchangeably to define similarity-based methods.
In chemical space, similarities are calculated by searching mo-
lecular substructure and isomorphism based on the representa-
tions of molecules such as SMILES and InChI. In target space,
similarities are mainly calculated by sequence alignment meth-
ods. The methods under this approach construct similarity
matrices either for compounds or targets, or for both of them
[207]. Subsequently, constructed similarity matrices are used by
the machine learning models. Below, we provided reviews for
three similarity-based VS methods, which were published in
the past few years.

With the aim of identifying biologically and structurally
similar clusters of compounds, weighted clustering was pro-
posed by integrating multiple similarity matrices [197]. Two
data sets were used: the epidermal growth factor receptor
(EGFR) and the fibroblast growth factor receptor (FGFR) data
sets. EGFR data set contained bioactivity assay readouts and
gene expression profiles for 35 compounds and 3595 genes. In
FGFR data set, the chemical structure information, gene expres-
sion data and bioactivity assay readouts were available for 94
compounds and 1056 genes. Two similarity matrices were gen-
erated based on the structural and the phenotypic properties.
Structural properties of compounds were represented by ECFP6
fingerprints, and similarities of compounds were calculated
using the Tanimoto coefficient. For the phenotypic similarity
matrix calculation, bioactivity readouts were used. The
Euclidean distance was employed to calculate the phenotypic
similarities between two compounds based on their bioactivity
results on the same assays. Subsequently, generated similarity
matrices were used to perform clustering using a weighted clus-
tering algorithm. The weighted clustering technique was shown

Figure 4. The steps of a typical feature-based virtual screening method for training a predictive model.
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to be more efficient in terms of identifying structurally and bio-
logically similar compounds compared with the individual clus-
tering methods.

A supervised similarity-based PCM method was described
for the detection of: (i) interactions between new drug candi-
dates and known targets and (ii) interactions between new drug
candidates and new targets [161]. The similarity between two
compounds was measured by a combination of non-structure-
based score (ATC-based semantic similarity score) and 2D graph
structure-based score. ATC-based semantic similarity score was
calculated by counting the common subgroups between ATC
code annotations of two compounds. 2D structure-based simi-
larity calculation was performed by aligning graph structures of
compounds. The similarity score for a pair of targets was com-
puted using a combination of a functional-similarity-based
(using Enzyme Commission -EC- numbers) score and a
sequence-based similarity score. Functional similarity-based
score was calculated by counting the number of common EC
number annotations. For sequence-based similarity score calcu-
lation, subsequences in the ligand-binding domains were
extracted, and they aligned the extracted subsequences to cal-
culate similarity scores between targets. The data sets con-
structed by Yamanishi et al. [90] for four classes of targets (i.e.
GPCRs, ion channels, enzymes and nuclear receptors) were
employed for the tests. A concept called ‘super-target’ was pro-
posed to overcome the problem of the scarcity of training
instances in terms of targets. Similar targets were clustered,
and it was assumed that if the drug interacted with a target, it
would also interact with the other targets in the same super-
target cluster. For the prediction of new drug candidates for a
known target, the following methodology was pursued: When a
new compound was given as input to the system, for each
known target tx, a confidence score was calculated between the
query compound and the super-target cluster that tx belonged
to, based on the drug associations of the targets in that super-
target cluster. Subsequently, another confidence score was cal-
culated between query compound and tx based only on the drug
associations of tx. Finally, these two scores were combined as a
single prediction score. For the prediction of new drug candi-
dates for a new target, a similar procedure was followed. In this
case, the new target was considered as a member of most simi-
lar super-target cluster based on its functional and sequence
similarities.

SwissTargetPrediction is a supervised similarity-based
method that combines 2D similarity and 3D similarity of com-
pounds with the aim of identifying new targets for query com-
pounds [160]. ChEMBL database was employed to obtain known
compound–target pairs. The training data set consisted of
280 381 small compounds for 2686 targets. When a compound
was given as input to the system, a combination of 2D and 3D
similarity scores were calculated between the query compound
and all compounds with known targets. To obtain 2D similarity
score, a compound was represented by FP2 fingerprints and the
2D similarity scores between the query compound and other
compounds were calculated by the Tanimoto coefficient. For
the 3D similarity score, 20 different conformations of com-
pounds were generated, and the Manhattan distance was used
to calculate distances among all conformations of two com-
pounds. The smallest distance was then chosen among the
20�20 distance scores, and it was converted into a 3D similarity
score. 2D and 3D similarity scores were combined as a single
prediction score for targets. Finally, the system outputs a
ranked list of targets based on the combined similarity scores.
Users can get predictions for a compound using SMILES string

of the query compound or by drawing 2D structure of com-
pounds using the web tool provided. SwissTargetPrediction is
available at http://www.swisstargetprediction.ch.

Feature-based approach

In Feature-based VS methods, each instance (i.e. compound
and/or target) is represented by a numerical feature vector,
which reflects various types of physico-chemical and molecular
properties of the corresponding molecules. Targets are usually
modelled using their physical and chemical properties and sub-
sequence distributions or functional attributes, whereas the
compounds are usually modelled using structural properties. In
a typical feature-based VS application, a set of compounds that
is known to interact with a specific target is extracted from
compound and bioactivity databases. Subsequently, feature
vectors are generated for each compound. Finally, the con-
structed feature vectors are fed to a machine learning algorithm
to create a predictive model for the interaction with the corre-
sponding target. When a new query compound’s feature vector
is given to the trained model as input, the output of the predict-
ive model is either active or inactive against the corresponding
target protein (Figure 4). This is the so-called ligand-based ap-
proach in terms of the incorporated input feature types (i.e.
compound features). PCM methods also assume a similar meth-
odology, but they jointly model the target properties at the in-
put level along with the compounds, so that the query can be a
compound–protein pair, and the model predicts the presence of
that specific interaction. Examples of feature-based VS methods
are given below.

A supervised machine learning methodology was proposed
by Liu et al. [12] using a combination of both similarity and
feature-based approaches to predict drug–ATC code associa-
tions. DrugBank database was employed to create their positive
and negative training data sets. The total set was composed of
1333 small molecule drugs and their ATC codes at various lev-
els. ATC code prediction problem was described as a binary clas-
sification problem. Therefore, for each ATC code, a positive
training data set and a negative training data set were con-
structed. Known drug-ATC code pairs were retrieved to con-
struct the positive training data sets. To construct a negative
training data set for each ATC code, they first removed the posi-
tive drug–ATC code pairs from all possible drug–ATC code pairs
and randomly selected samples from the remaining set. Then
six scores were defined to calculate drug–drug similarities,
which are based on chemical structures, functional groups, tar-
get proteins, drug-induced gene expression profiles, side-effects
and chemical–chemical associations. Each drug was repre-
sented as a six-dimensional feature vector. The value of a cer-
tain feature was determined by taking the largest similarity
score between the input drug and the drugs associated with the
corresponding ATC code. Once the drugs were converted into
feature vectors, the logistic regression method was used to train
predictive models for each ATC code. When a new query com-
pound is given to the system, first, it is converted to the feature
vector based on the similarity values; then, it is given to the pre-
dictive models as input to predict the candidate ATC codes. The
method, SPACE, is available at http://www.bprc.ac.cn/space.

In the work by Cano et al. [68], the main objective was the in-
herent selection/ranking of features (see wrappers in feature se-
lection section of supplementary material) and training a DTI
prediction classifier using random forest. Directory of Useful
Decoys (DUD) was used to create their training data set, which
was composed of kinases, nuclear hormone receptors and other
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proteins. The constitutional, charged partial surface area and
fingerprint-based descriptors were the input to the system. The
performance of the model was compared with support vector
machine (SVM) and neural network classifier-based models,
and the random forest classifier was successful to select and
rank most representative features, given a large set of input fea-
tures. In this setting, it was also observed that a reduced num-
ber of features drastically decreased the computational
complexity of DTI prediction models.

For drug repurposing, a combination of similarity and
feature-based supervised method was proposed by integrating
drug/compound, target protein, phenotypic effect and disease
association data from several sources [54]. The chemical struc-
tures of drugs and compounds were retrieved from the
ChEMBL database. Three different molecular descriptors were
used to represent compounds, which are ECFP4), Chemistry
Development Kit (CDK) Fingerprints, and KEGG Chemical
FunKCF-S. The compounds were, thus, represented by 1024,
1024 and 475 692 dimensional fingerprints. The obtained fea-
ture vectors were referred to as the ‘chemical profile’ of the
compounds. Phenotypic effects of drugs were obtained from
FDA Adverse Event Reporting System, and each of the 2594
drugs were represented as a 16 075-dimensional feature vec-
tor, where each dimension represents the presence or absence
of a phenotypic effect. This data set was named as the ‘pheno-
typic profile’ of a drug. Compound–target interactions and the
bioactivity values were obtained from seven different data-
bases. Their total activity set comprised 1 287 404 interactions
involving 519 061 compounds and 3736 targets. This data set
was referred as the ‘chemical protein interactome data set’.
Molecular features of diseases were obtained from the
International Classification of Diseases (ICD10) and the KEGG
DISEASE database. The diseases were represented as 6342-di-
mensional binary feature vectors, where each dimension rep-
resents presence or absence of a molecular feature. Drug–
disease associations were obtained from medical books and
from the KEGG DRUG database. This data set comprised 5830
drug-disease associations involving 2271 drugs and 463 dis-
eases. Disease–target associations were obtained from the
KEGG DRUG database. They created a data set consisting of
2062 disease-target associations for 250 diseases and 462
therapeutic target proteins, and this data set was named as
the ‘disease-target association template’. Their prediction
method was composed of three parts, which were called as
the Target Estimation with Similarity Search (TESS), Indication
Prediction by Template Matching (IPTM) and Indication
Prediction by Supervised Classification (IPSC). In TESS, the aim
was to predict potential targets of a given drug based on simi-
larity search. Each compound was represented by a 3736-di-
mensional target interaction profile. The similarity search was
performed against the compounds in the chemical–protein
interactome data set based on the chemical and phenotypic
profiles of the compounds. Subsequently, for each target, the
compounds that were associated with the corresponding tar-
get were retrieved, and the drug-target similarity score was
assigned using the similarity score between query drug and
the most similar compound that were associated with the cor-
responding target. In IPTM, the aim was to predict novel drug
indications for the query drugs. First, target proteins of the
query drug were retrieved. For each target, the diseases that
were associated with the corresponding target were obtained
from the disease target association template. This way, the
query drug was linked to the diseases based on their target
associations. In IPSC, the aim was to predict novel drug

indications using a supervised classification method. In this
method, target proteins of the query drug and molecular fea-
tures of diseases were used. Each drug–disease pair was repre-
sented by a feature vector, and drug indication prediction was
formulized as a binary classification problem, where the out-
put of the regression-based classifier shows if the drug could
be applicable to the paired disease. The cross-validation
results showed that IPTM and IPSC methods outperformed the
previous methods from the literature.

A supervised feature-based PCM method was proposed for
GPCR and protein kinase targets [162]. The positive training data
set was generated using the GLIDA database by extracting ex-
perimental compound-target interactions, containing 5207
interactions for 317 targets and 866 compounds [209]. Negative
training samples were generated among the unknown
compounds-target pairs. Compounds were converted into 929-
dimensional molecular descriptors. Descriptors for targets were
generated using a string kernel, resulting in 400-dimensional
feature vectors. Two vectors, that is, compound and target
descriptors, were then concatenated for each positive and nega-
tive interaction. Finally, the generated feature vectors were fed
to an SVM classifier to train predictive models for each target
family. Selected novel drug predictions were also experimental-
ly validated for both GPCR and protein kinase families.

A supervised feature-based PCM method for the identifica-
tion of novel drug combinations was described by Iwata et al.
[11]. Orange Book and the KEGG databases were proposed to ex-
tract beneficial drug–drug combinations [170, 210]. Interacting
drug–target pairs were collected from seven different databases.
Furthermore, 4007 DTIs were incorporated for 588 drugs and 930
targets. Each drug was represented by a 1078-dimensional bin-
ary feature vector, where 930 of them represent the presence or
absence of each target, and 148 of them represent the presence
or absence of ATC code annotations. Subsequently, each drug–
drug pair was represented as a binary feature vector by combin-
ing individual feature vectors of the corresponding drug pairs.
Finally, the obtained feature vectors were fed to a logistic re-
gression classifier. When a new drug–drug pair is given as a
query to the system, the output was calculated as potentially
beneficial or not.

Another supervised PCM method was proposed for DTI pre-
diction [211]. In this approach, compounds were represented
using fingerprints, and targets were expressed as sequence
alignment-based profiles. First, the position-specific scoring
matrices were generated for all target protein sequences.
Subsequently, a local binary pattern method was adapted to ex-
tract features from position-specific scoring matrices. In the
end, targets and compounds were represented by 256- and 615-
dimensional feature vectors. Next, principal component ana-
lysis was applied for both target and compound feature vectors
to obtain an uncorrelated and a reduced number of features.
Four different data sets were employed: enzymes, GPCRs, ion
channels and nuclear receptors. The positive samples were
interacting compounds-target pairs, and same number of nega-
tive samples were selected randomly from remaining inter-
action sets. Finally, obtained features were fed into
discriminative vector machine classifier which was proposed by
the same group. Support vector machine classifier based on the
same features was trained, and the performance of two classifi-
cation methods was compared. The results were compared
with three conventional methods, and this method had a better
performance.

In terms of the methodological approach used in modelling
the pairwise relationships, a highly studied topic is the

Deep learning in drug discovery | 1893

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/5/1878/5062947 by guest on 23 April 2024



development of network or graph analysis-based DTI prediction
methods. In these methods, compounds and targets are repre-
sented as nodes on a graph, where the edges connecting these
nodes indicate interactions. Modelled this way, estimation of
unknown DTIs becomes a link prediction task. Various techni-
ques, borrowed from the fields of graph theory and social and
biological network analysis, are employed to solve the problem
at hand. Frequently, the relationships in-between the com-
pounds (i.e. in terms of molecular/structural similarities) and
in-between the targets (i.e. in terms of homology or protein-
protein interactions) have been incorporated in the generated
networks to enrich the input information. An advantage of the
network/graph-based approach is that the system can work
well even when the number of training instances is low.
Network/graph-based DTI prediction methods can be
similarity-based, feature-based or a combination of both. One
seminal work on this subject is by Yamanishi et al. [184], where
the authors integrated both the similarities within the genomic
space (using pairwise sequence alignment) and within the
chemical space (using molecular and pharmacological effect
similarities) in their network, for the first time. In this study,
chemical, pharmacological and genomic spaces are unified and
used together with the known DTIs to generate predictions for
target families of enzymes, ion channels, GPCRs and nuclear
receptors. In another study, Gönen [212] incorporated target
protein sequence similarities and compound molecular struc-
ture similarities in a kernelized Bayesian matrix factorization
framework to predict unknown DTIs. Other examples for

network/graph-based methods can be given as Shi et al. [161],
Sawada et al. [54] and Li et al. [211], which are reviewed in this
study. It is also important to note that the gold-standard data
set generated by Yamanishi et al. (explained in the section enti-
tled: ‘Gold-Standard Data Sets for VS’) is suitable for testing net-
work/graph-based DTI prediction methods.

In a review study by Chen et al., the available resources for
DTI prediction were presented, including databases, web serv-
ers and computational methods [213]. Methodological
approaches were categorized as graph/network-based, machine
learning-based and other methods, and the advantages and dis-
advantages of each approach were discussed. For graph/
network-based drug discovery, the integration of different net-
work models and sequencing technologies has been indicated
to provide significant improvements for personalized medicine.
As a suggestion to further improve the DTI prediction perform-
ance, the employment of heterogeneous training data by com-
bining different data sources was recommended. The graph/
network-based approach (excluding artificial neural networks),
which was highly employed in the DTI studies, especially be-
tween 2006 and 2013 [67, 90, 184, 212, 214–218], was mostly left
out of this study to focus on novel DTI prediction approaches.

Both the similarity and the feature-based approaches are
used extensively in the literature. One of the main advantages
of similarity-based approach is that when the problem involves
heterogeneous data, different types of similarity matrices can
be combined in the same model. Another advantage of
similarity-based methods is that, sophisticated kernel methods

Figure 5. Schematic representations of different DNN architectures frequently used in the literature.
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can be applied [207]. They are also relatively simple and easy to
model. However, they are computationally not practical to
apply on large data sets, as they require extremely high number
of similarity calculation operations. Considering the feature-
based methods, one advantage is that, they can reveal intrinsic

properties of compounds and targets that play critical roles in
DTIs, which leads to more interpretable results. Another advan-
tage is that, a problem-specific feature selection can be per-
formed to obtain relatively more accurate predictions. One of
the challenges about the feature-based methods is the selection

Table 8. Deep learning architectures together with the VS studies that use each architecture

Architecture name Description DNN-based VS studies

Citation Input protein
features

Input compound
features

Feedforward DNN –
FFDNN (an inter-
changeably used
term in some of
the resources:
multilayer percep-
tron–MLP)

A feedforward DNN can be considered as the most
basic DNN architecture, which has multiple hid-
den layers that are usually fully connected to each
other (Figure 5). These networks are mostly struc-
tured to predict multiple number of tasks (usually
targets in DTI prediction) in a single model (i.e.
multi-task networks)

Dahl et al.
[238]

– Several different mo-
lecular descriptors

Ma et al. [163] – Atom pairs and
donor-acceptor
pair descriptors

Unterthiner
et al. [243]

– ECFP12

Ramsundar
et al. [242]

– ECFP4

Koutsoukas
et al. [164]

– ECFP4

Pairwise input neur-
al network (PINN)

PINNs are feedforward neural networks that take
two different feature vectors as input and predicts
their relation as output. In some of the PINN appli-
cations, the two individual input vectors are proc-
essed by separate groups of neurons before they
are merged at a subsequent fully connected layer.
PINNs are especially suitable for the prediction of
pairwise relations such as DTIs

Wang et al.
[244]

Binding sites 2D structural
fingerprints

Wan et al.
[245]

Amino acid trip-
lets in protein
sequences

2D structural
fingerprints

Lenselink
et al. [246]

Physicochemical
properties

Morgan fingerprints

Recurrent neural
network (RNN)

RNNs are specialized artificial neural networks that
contain feedback loops to extract patterns using
not only the current input but also the previously
perceived inputs. RNNs successfully extract pat-
terns from sequential data such as texts, protein
sequences, audio signals and time series data.
RNNs mainly have applications in speech
recognition

Goh et al.
[247]

– SMILES strings

Restricted
Boltzmann ma-
chine (RBM)/Deep
belief network
(DBN)

RBMs are single layer generative artificial neural net-
works, which can learn probability distributions
given the training data. DBNs are constructed by
stacking RBMs to solve more complex problems.
Different from FFDNNs, DBNs are trained stack-
by-stack. DBNs are used in several applications
such as clustering and generating objects such as
images.

Wen et al. [85] Sequence com-
position
descriptors

2D structural
fingerprints

Wang et al.
[248]

Direct (e.g. compound-target binding) and
indirect (e.g. compound changes the
level of expression of the target) interac-
tions on the multidimensional DTI
network

Convolutional neur-
al network (CNN)

CNNs inherently extract the features hidden in the
input samples by applying sequential layers of
convolutions and pooling modules. The convolu-
tion layers extract local patterns (sub-features) by
moving a window over the sample and the pool-
ing layers are used to sub-sample and reduce the
features. CNNs are mainly used in image process-
ing applications.

Wallach et al.
[165]

3D binding sites 3D structures of
compounds

Gonczarek
et al. [249]

Binding pockets 3D structural
fingerprints

Goh et al.
[250]

– 2D structure images
of compounds

Graph convolutional
neural network
(GCN)

GCNs are created by applying convoluting opera-
tions on graph encodings. GCNs can be used to
model any entity that is expressed as a graph
such as social networks and chemical
compounds.

Kearnes et al.
[251]

– 2D graphs of
compounds

Altae-Tran
et al. [167]

– 2D graphs of
compounds
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of negative samples for the construction of negative training
sets. Although chemical databases include experimentally vali-
dated DTIs, they do not provide sufficient number of experi-
mentally validated non-interacting compound–target pairs.
When this is the case, the frequently employed approach for
negative sample selection is to randomly select pairs from the
set remained after excluding the positive training samples.
However, this approach is problematic since the randomly
selected pairs may also include pairs that are interacting, which
is unknown (and therefore not recorded in the source database)
so far. Negative sample selection is not only a problem for the
VS field but also a problem for cheminformatics and bioinfor-
matics in general [219–221]. There are alternative algorithmic
methods to construct more reliable negative training data sets
[207, 213, 222–224]. The lack of sufficient negative training data
sets also leads to the class imbalance problem, which highly
affects the prediction performances of computational systems.
The class imbalance problem may produce a bias towards the
class having most training samples, causing the model to give
excessive number predictions for this class, resulting in a high
number of false positive (FP) predictions. In their recent studies,
Soufan et al. focused on the class imbalance and FP prediction
problems. Models using five different solutions were trained to
overcome class imbalance problem and the performances of
these systems were compared. Classifier performance aware
methods were also used along with several evaluation metrics
to reduce the FP rates [70, 71]. Another challenge for the feature-
based methods is the high-dimensionality of feature vectors,
which can reach the order of millions [67, 225]. Extremely high-
dimensional vectors create computational overhead, and they
often lower the accuracy of predictions. Usually combining dif-
ferent types of informative features increases the performance
of classifiers; however, after a certain point, adding more fea-
tures to the system starts to decrease the performance, which is
known as curse of dimensionality [226]. Therefore, feature-based
methods may require the application of feature selection tech-
niques to reduce dimensions and keep only the most relevant
and distinctive features in the model. Various studies have
been performed to analyse and compare feature reduction and
selection techniques in the literature [227–232], which also have
been discussed in the supplementary material.

Deep learning applications in VS

Deep learning algorithms have been extensively used in recent
years because of their successful results in computer vision,
speech recognition and bioinformatics [233–236]. The term deep
learning represents a group of machine learning approaches,
which contain multiple data processing layers. Deep learning
algorithms yield successful learning of the representations of
the input data through multiple levels of abstraction [237]. Deep
neural networks (DNNs) are artificial neural network methods
that have multiple hidden layers. In this sense, DNNs are con-
sidered as a group of deep learning algorithms. DNNs convert
the low-level features obtained from the input into more and
more complex features in each subsequent layer. An example
of a basic feedforward DNN (i.e. a multilayer perceptron—MLP)
architecture is given in Figure 5, along with other popular DNN
architectures. In this figure, nodes correspond to neurons and
the edges between nodes correspond to neural connections,
where the signal is transmitted. According to the model choice,
neurons at different layers can be fully connected to each other
or not. At each neuron, a non-linear activation function, whose
coefficients are determined during the training procedure, takes

the input signal from multiple connected neurons at the pre-
ceding layer and modifies it before transmitting it to the next
neuron. A standard feedforward artificial DNN has three differ-
ent types of layers: the input layer, hidden layers and the output
layer, each of which are composed of multiple parallel-
connected neurons. A neural network with two or more hidden
layers is considered as a DNN [233]. The input features are dir-
ectly fed to the input layer and after a number of non-linear
transformations using hidden layers, the predictions are gener-
ated at the output layer. Each output node corresponds to a task
(i.e. class) to be predicted. If there is only one node in the output
layer, then the corresponding network is referred as a single-
task DNN. Otherwise, it is called a multi-task DNN.

A deep learning algorithm won the Kaggle Virtual Screening
Challenge, which was sponsored by Merck, and it drew consid-
erable attention to employing deep learning techniques for VS
purposes [163, 238]. Recently, it was shown that deep learning
algorithms outperformed the state-of-the-art methods in nu-
merous VS studies [164, 165, 195, 238–243]. Several advantages
of deep learning architectures have been reported for VS:

• deep learning algorithms inherently build relationships between

multiple targets; therefore, they are suitable for multi-task

learning;
• they provide higher-level abstractions by building complex fea-

tures from raw input data in a hierarchical manner and are able

to identify the unknown structure in the data, and the observed

high performance of DNNs is usually attributed to this ability;
• shared hidden units among the targets enhance the prediction

results of the targets having less training samples.

There are several DNN techniques (or architectures), and
each has advantages and disadvantages according to the nature
of the data being analysed and the types of features employed.
The most commonly used ones can be listed as feedforward
DNNs with multiple hidden layers [163] which can be consid-
ered as the standard application, deep convolutional neural net-
works–CNNs–(highly used in computer vision), where each of
the several convolutional layers will capture a specific feature
from the multi-structured input data [165, 239], and pairwise in-
put neural networks (PINNs), where the features belonging to
compounds and proteins can be fed to the model together [245].
DNN-based techniques are also divided into two according to
the number of prediction tasks in a model, such as the single-
task and multi-task DNNs. Single-task networks are modelled
in such a way that one model can only produce answer for one
specific question (e.g. is there an interaction between this com-
pound–protein pair) [163], whereas multitask networks are
modelled to infer multiple unknowns in one model (e.g. which
of the 20 potential target proteins can interact with the input
compound) [238]. All of these DNN architectures can be consid-
ered under the title of feature-based machine learning methods.
Below we review a large collection of studies of deep learning
applications in computational drug discovery with an emphasis
on DTI prediction. Table 8 summarizes frequently used DNN
architectures in the field of VS and groups the reviewed studies
in terms of the employed DNN architectures. Figure 5 shows the
schematic representations of those DNN architectures
explained in Table 8.

One of the early studies employed multi-task feedforward
DNNs for the prediction of activities of compounds against 19
target assays from the PubChem database [238]. Active and in-
active labels of compounds were used against each of the 19 tar-
gets, and the training data set comprised 69 396 active and
70 331 inactive compounds. The problem was stated as a
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classification problem, where inputs were the compound
descriptors, and outputs were the presence of interaction
against the modelled targets. Furthermore, 3764 dimensional
molecular descriptors were generated to represent the com-
pounds. The performance of a multi-task neural network was
compared with random forests, gradient boosted decision tree
ensembles and logistic regression methods. The results showed
that multi-task neural networks performed best in most of the
cases. The performance of single-task and multi-task neural
networks was compared as well, and multi-task neural net-
works achieved better performance in the test cases. Feature se-
lection was further performed. However, no significant
performance gain because of feature selection was observed.

To select hyper-parameters and compare single-task and
multi-task DNNs, Ma et al. [163] made use of Merck’s Kaggle
challenge data set along with the Merck’s in-house data sets.
Each compound was represented as molecular descriptors
based on atom pairs and donor–acceptor pair descriptors. In
total, there was 30 data sets, which included 129 295 unique
compounds. Several models were created using different hyper-
parameters, and it was reported that the use of a single set of
hyper-parameters can perform better than using optimized
parameters for different data sets. The performance was com-
pared with the performances of models trained with random
forest classifier and DNNs achieved higher performance.
Furthermore, on the average, multi-task DNNs obtained better
prediction performance than the single-task DNNs. The per-
formance of the single-task DNNs was reported to increase with
the increasing size of training data sets.

In another early study, Unterthiner et al. [243] used multi-
task DNNs for the prediction of activities of compounds for tar-
gets. ChEMBL database was used to obtain known compound–
target interactions and the corresponding bioactivity values,
which were discretized as active, weakly active, weakly inactive
and inactive based on pre-defined bioactivity thresholds. This
way, a data set was generated that comprised 2 103 018 (972 268
active—1 130 750 inactive) bioactivity measurements distrib-
uted across 5069 targets and 743 336 compounds. In the models,
each compound was represented as about 13 million dimen-
sional fingerprints using ECFP12 features and then the number
of features were reduced to 43 340 dimensions by discarding the
features that were absent in the majority of compounds.
Finally, multi-task DNNs were trained where the inputs were
compound feature vectors and the outputs were target activity
values. The performance of their multi-task neural network was
compared with support vector machine, binary kernel discrim-
ination, logistic regression, k-nearest neighbour and Parzen-
Rosenblatt methods. Multi-task neural network outperformed
all other algorithms.

A particular type of DNNs, pyramidal multi-task DNNs was
described and applied for VS [242]. In this pyramidal architec-
ture, layers are organized such that each layer has less number
of neurons than its previous layer. Training data sets were col-
lected from four different publicly available data sources, which
consisted of nearly 37.8 million experimental compound–pro-
tein interactions for 1.6 million compounds and 259 targets. The
compounds were represented by ECFP4 fingerprints. Several
experiments were conducted by changing the number of tasks
and training samples in their models. The performance of pyr-
amidal multi-task neural networks was compared with logistic
regression, random forest, single-task neural network, pyram-
idal single-task neural network and one-hidden layer multi-
task neural network. Pyramidal multi-task neural network

performed best among the other methods. The following im-
portant observations were reported:

• the multi-task deep architecture achieved significant improve-

ment over standard machine learning algorithms;
• the performance of multi-task networks increased as more tasks

and data points were added;
• shared bioactive compounds among targets had a significant

positive impact on performance.

The main difference between the study by Ramsundar et al.
and the study by Unterthiner et al. is that, the number of known
ligands for each target was much higher in this study (i.e. �2
million samples for 1230 targets versus �40 million samples for
259 targets). In addition, the main concern of the study by
Ramsundar et al. was to discover the causes of performance
changes based on parameter selections (i.e. number of tasks,
training data sizes and layer organizations), whereas in
Unterthiner et al., the main aim was to demonstrate the per-
formance gain of multi-task DNNs over other baseline methods.

An investigative study was performed for virtual screening
by Koutsoukas et al. [164], using single-task feedforward DNNs.
Their study was composed of two major parts: first, the effects
of the hyper-parameter choices on the performance were inves-
tigated. In the second part, the aim was to compare the DNNs
with other types of classifiers in terms of performance. ChEMBL
database was used to create training data sets for seven differ-
ent targets from diverse protein families and an individual pre-
diction model was constructed for each target. Furthermore,
7218 active compounds were tested against these targets, and
the compounds were represented as 1024-dimensional molecu-
lar fingerprints. The rectified linear unit activation function per-
formed better than the other activation functions during the
experiments. It was also reported that the number of neurons at
each layer that give the best performance was highly dependent
on the data set and should be determined separately for each
model. The drop-out regularization helped to gain better per-
formances around 50% drop-out rate. In the second part of the
study, the performance of DNNs was compared with Bernoulli
Naive Bayes, k-nearest neighbour, random forest and SVM clas-
sifiers, and DNNs outperformed all of them.

PINNs where inputs represented pairs of target–ligand fea-
ture vectors are also a popular type of DNNs. Pursuing a PCM ap-
proach, Wang et al. considered target–ligand interaction as a
binary classification problem, where inputs represented pairs of
target-ligand feature vectors, and the binary output represented
the interaction prediction for the corresponding pair [244]. The
training data set was obtained from sc-PDB database and com-
prised 836 targets, 2710 ligands and 6830 target-ligand pairs
[179]. Binding sites of proteins were used as target features,
which were represented as 199-dimensional vectors. The com-
pounds were represented as 413 dimensional fingerprints.
Subsequently, each known interacting target and ligand pair
was labelled as a positive example, and the remaining pairs
were considered as the negative examples. This information
was used then to train a four-layered pairwise neural network
model. The method achieved better performance than the con-
ventional methods from the literature in terms of several
criteria.

Wan et al. [245] proposed a DNN for DTI prediction. Their
framework also included an unsupervised representation learn-
ing for feature generation by identifying low-dimensional repre-
sentations of the initial input features. The initial input features
were composed of Morgan fingerprints for compounds and
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protein sequences for targets, which were embedded to a fixed
low dimensional space (i.e. 200 dimensions for compounds and
100 for proteins) using natural language processing (NLP) tech-
niques (i.e. latent semantic analysis and Word2vec). Sub-
structures in compounds and amino acid triplets in proteins
were treated as words for the embeddings. The system was
trained on large-scale ChEMBL bioactivity data by generating
training set sizes of 360 835 positive and 93 903 negative exam-
ples. These examples were selected using activity measurement
values (i.e. IC50/Ki values � 1 lM for positive and � 30 lM for
negatives). The performance was measured using k-fold cross-
validation in different settings, and it was compared against
random forest as the baseline classifier, where the proposed ap-
proach significantly surpassed on the difficult-to-predict set-
ting. The prediction performance was also measured on a test
set composed of DUD-E gold-standard data set interactions and
compared with another deep learning-based DTI prediction
method AtomNet [165]. The elevated performance has indicated
effectiveness of the word-embedding approach.

Lenselink et al. [246] proposed a PCM deep learning solution
to DTI prediction. The training data set was generated using
verified bioactivities in the ChEMBL database. Target protein
sequences were represented as 169-dimensional feature vectors
based on their physico-chemical properties. Compounds were
represented by varying lengths of Morgan fingerprints (e.g.
4096, 2048, 512 and 256-dimensional). The interacting target-
compound pairs were fed to multi-task DNN to create the pre-
dictive models. The performance change was investigated
based on multiple criteria such as the length of the fingerprints,
input feature utilization approach (i.e. ligand-based against
PCM), the depth and the architecture of the DNNs. The perform-
ance was compared with the models trained by naive Bayes,
random forest, support vector machines and logistic regression
classifiers for both ligand-based and PCM approaches, where-
ever possible. As a result, the DNN models outperformed the
models generated using conventional techniques, and the aver-
age performance of PCM-based models was slightly higher com-
pared with the ligand-based ones.

SMILES2vec is a recurrent neural network (RNN) deep learn-
ing solution to predict the same physical properties of com-
pounds directly using the SMILES representations as the input
[247]. The aim here was also similar to their previous study in
terms of performing minimal amount of feature engineering
and pre-processing for model construction. Recurrent DNNs
were used to train the predictive models and Bayesian opti-
mization technique was used to select the best hyperpara-
meters. The performance results of SMILES2vec were compared
with the performances of DNNs trained using engineered fea-
tures. According to the results, SMILES2vec outperformed other
methods on regression tasks and underperformed on classifica-
tion tasks. The results of these two studies indicated the poten-
tial of deep learning in extracting relevant properties from the
training data even without carefully constructed features,
which may render feature extraction and selection applications
unnecessary in the future.

In one of the earliest applications of DNNs for DTI prediction,
restricted Boltzmann machines (RBMs), which is a two-layer un-
directed graphical model was employed [248]. An RBM is not
considered as a deep architecture since it only contains one hid-
den layer. However, an individual RBM was generated for each
target, and a large network composed of multiple RBMs was
implemented as the final model. The main aim in this study
was to construct a multidimensional DTI network model by
incorporating DTIs from diverse set of compounds and targets

with different types of interactions. The interaction types were
divided between ligands and receptors into two groups as direct
and indirect interactions. The physical binding of small mol-
ecule drugs to target proteins was referred to as direct inter-
action. The indirect interactions corresponded to the effects of
the compounds on proteins by means other than direct binding
(e.g. changing the expression level of the gene that encodes the
target). The interaction type information was incorporated by
adding edge properties to their network. Besides, additional
models were constructed for predicting drug modes of action
(e.g. activation and inhibition). DTI information in the
MATADOR and STITCH databases were used for the training
and testing of their method, and it was found that the method
was able to predict different types of DTIs and drug modes of ac-
tion with high accuracy. The proposed method was compared
with a simple logic-based approach, and it performed better.
Finally, new DTI predictions were produced using the proposed
method and verified through literature evidence.

DeepDTIs were developed for the prediction of DTIs using
deep belief network (DBN), which is constructed by stacking
multiple RBMs [85]. In DeepDTIs, targets are not separated into
classes according to protein families to train individual models,
instead all targets in the training data are pooled to train one
predictive model. The training data was composed of DTIs from
the DrugBank database (i.e. 6262 DTIs between 1412 approved
drugs and 1520 targets). To generate input features, ECFP finger-
prints were employed for compounds, and sequence compos-
ition descriptors were used for target proteins, and they were all
merged to represent drug-target pairs (i.e. a 14 564-dimensional
vector for each pair). Experimental drug-target pairs from
DrugBank was used to assess the performance of DeepDTIs and
to compare it with other ML methods (i.e. Bernoulli naive
Bayesian model, decision trees and random forests). The
method was also applied to predict the unknown DTIs between
all combinations of drug and targets in their training set and
the most probable predictions were manually verified through
literature-based evidence. Finally, to test the ability of DBN in
abstracting the input and generating a more informative repre-
sentation of the data in each successive hidden layer, the trans-
formed data generated at each layer was used to train a simple
logistic regression classification model for the prediction of
DTIs. The performance of the LR model increased with the
increasing hidden layer depth, which indicated the effective-
ness of the approach.

The method ‘AtomNet’ by Wallach et al. [165] is one of the
earliest applications of CNNs for structure-based VS. The pro-
posed method incorporated both the compound and target fea-
tures for training by using the 3D structural information of
ligand–receptor (i.e. compound–target) complexes. 3D grids
placed over the atomic coordinates in the ligand–receptor com-
plexes were used as input to their CNN, where each grid con-
tained numerical structural features such as atom type
enumerations and structural protein–ligand interaction finger-
prints. Three data sets (i.e. the DUD-E set and two generated
data sets: a DUD-E like benchmark set composed of 78 904 ac-
tive compounds, 2 367 120 inactive compounds and 290 targets
and another data set with experimentally verified inactive mol-
ecules composed of 78 904 active compounds, 363 187 inactive
compounds for 290 targets, both constructed using ChEMBL)
were employed to train and validate their method. For the train-
ing of the system, targets that have at least one annotated bind-
ing site in sc-PDB database were used. The prediction results
were compared with two state-of-the-art structure-based VS
(i.e. docking) methods using abovementioned data sets, and the
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described method outperformed the other algorithms with a
large margin. This study is significant in terms of indicating
that CNNs can be used to model the structural properties of lig-
and–receptor complexes with a performance better than con-
ventional docking-based approaches.

A CNN architecture with a mixture of PCM and structure-
based DTI prediction approach was also proposed [249]. The
method takes protein 3D structure information (i.e. the specific
binding pocket of the target) along with compound descriptors
(i.e. fixed-size 3D structural fingerprints based on learnable
atom convolution operations generated from ECFPs) in a
pairwise-input format. The insufficiency of current benchmark-
ing data sets for testing structure-based methods was discussed
and instead, a new data set generated from DUD-E, PDBBind
and MUV data sets was described. The method was trained and
tested by this described data set. The method was compared
with the state-of-the-art methods (i.e. docking methods and
AtomNet: another DNN-based approach), and the models
trained with learnt compound features resulted in better per-
formance compared with the models trained with simple
ECFPs.

Another CNN-based method for the prediction of chemical
properties of compounds such as binding, toxicity and free en-
ergy solvation was described by Goh et al. [250]. CNN-based
techniques are highly used in computer vision with high per-
formance. The focus of this study was constructing predictive
models with minimal amount of feature engineering and chem-
ical knowledge. In this method, each compound was repre-
sented as an 80�80 pixel sized image based on their 2D
drawings, as shown in chemical databases. These images were
then fed to the CNN for classification. Three different data sets
were obtained from MoleculeNet benchmark database. The first
data set was Tox21, which was composed of 8014 compounds
labelled as ‘toxic’ or ‘non-toxic’. The second data set was
freeSolv data set, including 643 compounds with measured hy-
dration free energies of small molecules. Finally, HIV data set
included bioactivity measurements of 41 913 compounds
against the inhibition of HIV replication. Two classification
models were separately trained using HIV and Tox21 data
sets, and a regression model was trained using the freeSolv
data set. The results were compared with the results of the
models that were trained with conventional ECFP4 fingerprints
using multi-task DNNs. The described method slightly outper-
formed the conventional feature utilization method in HIV
and freeSolv data sets and slightly underperformed in Tox21
data set.

A graph convolution deep learning method was described to
extract learnable features from the graph representations of
compounds (the vertices in the graphs correspond to atoms,
and edges correspond to bonds between atoms) and to perform
learning using the extracted features for DTI prediction [251].
Several data sets coming from PubChem, Tox21, MUV and DUD-
E were combined to achieve 38 million data points. The graph
structures of compounds were generated using SMILES repre-
sentations, and the extracted graphs were fed to the proposed
DNN to train the system. The described models were compared
with the models trained with multi-task DNN, random forest
and logistic regression methods, which were trained using
ECFP4 fingerprints. The described method could not outperform
the other methods but achieved a comparable performance.
Nevertheless, this work stands as a proof of concept that indi-
cates graph convolutions can be a good alternative for employ-
ing deep learning for VS with a simple compound feature
encoding.

A novel deep-learning architecture ‘iterative refinement
long short-term memory’ was developed using graph CNNs, es-
pecially for protein targets with low number of training instan-
ces [167]. The method allows the learning of sophisticated small
molecule features using one-shot learning methodology and
yield more reliable predictions when the training data set is
small. Training data sets were generated using assay results
from three different sources, which were Tox21 challenge data
set, SIDER database and MUV data set [173, 187, 241]. Drug-
target prediction problem was designed again as a binary classi-
fication problem, and multiple models were trained for each
target, where inputs were 2 D graph structures of compounds,
and outputs were binary variables as active or inactive. One-
shot deep learning architecture was combined with iterative re-
finement long short-term memories and graph convolutions.
Graph convolutional features of compounds were used as fea-
ture vectors to train neural network models. This novel method
was compared with random forest as a baseline classifier. The
proposed method obtained significant performance improve-
ment on data sets having low number of training samples com-
pared with the baseline classifier. The models were released as
a part of the open-source DeepChem framework (https://github.
com/deepchem/deepchem).

According to the ‘deep learning for virtual screening’ studies
published so far, DNNs are especially convenient for analysing
the relationship between the compounds and targets since the
data is high dimensional, and the attributes contributing to mo-
lecular interactions are not clearly known [238]. In these studies,
the deep models have exhibited elevated DTI prediction per-
formance even with minimal data pre-processing and minimal
parameter optimization. In these works, the authors mostly
focus on discussing the applicability of deep learning techni-
ques on DTI prediction problem over the architecture and
hyper-parameter selections [167, 242, 243], concluding that deep
learning has a substantial potential to advance the field of com-
putational drug discovery [163, 239].

Apart from DTI prediction, deep learning techniques are
also employed for other drug discovery-related purposes. For
instance, Mayr et al. developed DeepTox, an ensemble deep
learning-based compound toxicity prediction method and
won the Tox21 data challenge [241]. Related to this, Maltarollo
et al. reviewed the applications of various machine learning
approaches including DNNs for ADME-Tox (i.e. absorption,
distribution, metabolism, excretion and toxicity) prediction
[252]. Aliper et al. proposed a DNN-based therapeutic effect
predictor for compounds, using only the drug-induced tran-
scriptomic profiles in different cell lines as input [253]. In
one of the earliest applications of deep learning in drug discov-
ery Lusci et al. proposed an ensemble of recursive neural net-
works to predict the molecular properties of compounds such
as the aqueous solubility. The authors developed a web-based
tool ‘AquaSol’ for the prediction of the aqueous solubility of
compounds, which takes SMILES representations as input
[254].

There are several review articles on deep learning applica-
tions on the biomedical data [203, 235, 236, 239, 240, 250, 255,
256]. In some of these studies, the authors explained several
DNN architectures that has been successfully applied on
non-biomedical fields and discussed the current and poten-
tial applications on biomedicine [203, 235, 236, 239, 240]. In a
few of these review studies, specific applications of DNNs in
VS have been discussed as well [239, 256, 257]; however,
most of the original research articles on this topic came out
just recently (in late 2016 and in 2017), which were not
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included in these reviews. Apart from the machine learning-
based prediction methodologies, some review studies focused
on available toolkits, frameworks, databases and representa-
tions/descriptors for computational drug discovery [37, 41,
213, 257].

Evaluation metrics and performance comparison of VS
methods

Evaluating the performance of machine learning methods is
crucial to be able to assess how well a method performs and to
fairly compare the performances of different methods. Here, we
demonstrate the most widely used evaluation metrics in the lit-
erature, which are precision, recall, F1-score, F0.5-score, accur-
acy and Matthews correlation coefficient (MCC) (formulations
are given below together with quantitative ranges).

Precision ¼ TP
TPþ FP

Range 0; 1½ � (1)

Recall ¼ TP
TPþ FN

Range 0; 1½ � (2)

F1 score ¼ 2 � Precision � Recall
Precisionþ Recall

Range 0; 1½ � (3)

F0:5 score ¼ 1:25 � Precision � Recall
0:25 � Precision þ Recall

Range 0; 1½ � (4)

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Range 0; 1½ � (5)

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � ðTNþ FNÞ

p Range �1; 1½ � (6)

False positive rate FPRð Þ ¼ FP
FPþ TN

Range 0; 1½ � (7)

AUROC ¼ Area under the receiver operating

characteristic curve Range ½0; 1�
(8)

In the equations above, TP, FP, TN and FN represent the
number of true positives, false positives, true negatives and
false negatives, respectively. Each of these metrics has different
properties. For example, precision refers to fraction of the cor-
rectly predicted samples (TP) among all positively predicted tar-
gets, whereas recall (i.e. TPs rate) denotes the fraction of
correctly predicted samples among all truly positive samples.
Evaluating the performance of methods using only precision or
only recall may result in unrealistic conclusions. For example, if
using only precision as the evaluation metric would results in
overlooking the high number of FN predictions, since precision
does not take FNs into account. The same case is applied for the
recall and the FPs. To overcome this issue, F1-score is employed,
which is a harmonic mean of precision and recall, to consider
both the FPs and FNs. F1-score gives equal weights to precision
and recall; therefore, both metrics are treated same. However,
in some VS studies, reducing the number of FPs is considered to
be an important issue to provide more reliable predictions [70,
71]. For this, F0.5-score is used, where twice the weight is given
to precision compared with recall, to minimize number of FP
predictions, in other words, to increase the probability of a posi-
tive prediction to be a TP. Accuracy measure can be defined as
the fraction of correctly predicted samples among all samples
in the training data set. Evaluating the system performance
based on accuracy may result in high bias, especially when the

positive and the negative classes are imbalanced. Considering
the VS data, the number of negative samples are usually signifi-
cantly higher than number of positive samples. For a failing pre-
dictive model which classifies all instances as negative (i.e.
inactive or non-interacting), the accuracy measure would result
in overestimated performance. MCC is another measure which
also is a balanced performance calculation metric similar to the
F1-score. It was reported that MCC can very well be used for per-
formance evaluation when classes are imbalanced [258]. The
main difference between MCC and F1-score is that F1-score
does not take TNs into account, whereas MCC does. Therefore,
using MCC for performance evaluation can be more convenient,
especially when one has a reliable negative training data set. All
of the metrics explained above are used to measure the per-
formance of a predictive model at one point (i.e. at a selected
prediction score threshold, above which the corresponding
compound-target pair is predicted to be interacting/active, and
below which they are estimated to be non-interacting/inactive).
However, the generalization of the performance over the whole
threshold spectrum is also required, especially to fairly compare
the performance of multiple methods. The area under the re-
ceiver operating characteristic (AUROC) curve (i.e. a 2D plot
where the horizontal and the vertical axes correspond to FPs
rate and the TPs rate, respectively, drawn considering the per-
formance measures at different arbitrarily selected score
thresholds) or the area under the precision versus recall curve
(AUPR; i.e. a similar plot where the precision and recall values
are used as the two dimensions) are employed for this purpose.
It is also important to note that the discriminative power of
AUROC diminishes at low FPs rates; as a result, AUROC is usual-
ly considered inferior to AUPR. Considering the range of values
that can be obtained using these metrics, 1 usually indicates a
perfect classifier, and the classifier performance decreases with
the resulting measure getting closer to 0. As for MCC where the
range is between �1 and 1, the measure of 0 indicates a random
classifier and �1 indicates a perfect negative correlation. As a
conclusion, the evaluation metrics should be selected based on
the nature of the problem at hand. Calculating the performance
of different systems using multiple evolution metrics is general-
ly preferred to be able to observe the system behaviour from dif-
ferent perspectives.

In most of the VS studies where a new predictive method-
ology is developed, the performance of the proposed models is
measured using the abovementioned evaluation metrics and
compared with the performance of the state-of-the-art methods
from the literature. This process provides a general idea about
both the biological relevance of the results of the proposed
method and its added value over the previously published
approaches. Here, we combined the selected performance
results from the reviewed deep learning studies and presented
them in Table 9. Nearly all of the included works employed a
different test data set and used different evaluation metrics; as
a result, it is not possible to make a cross performance compari-
son between the methods mentioned in different studies.
However, we included the results of the performance compari-
son provided in each individual study (i.e. the proposed method
is usually compared against a few other methods) in Table 9,
which indicates the effectiveness of each approach in a broad
way. In other words, performance values given in each row of
Table 9 are comparable with each other. According to the
reported performance comparison results in Table 9, deep
learning-based models usually performed better when com-
pared with shallow (i.e. non-deep learning) machine learning
methods; however, in some cases the performance gain is only
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minor. Random forest classifier is generally the best performing
shallow method, and its performance is close to the deep learn-
ing-based methods in many cases. Convolutional DNNs, which
employ target structure features, perform better than the con-
ventional structure-based VS methods (i.e. docking). There is no
consensus regarding the performance comparison between
different deep learning-based architectures; nevertheless,
multi-task architectures generally perform better than their
single-task counterparts. In terms of the input feature utiliza-
tion, methods that employ both the compound and target fea-
tures together at the input level (i.e. PCM-based approaches)
perform better compared with the ones that employ only com-
pound features.

Discussion and conclusion

In this survey, we focused on the recent machine learning appli-
cations in VS with methods, tools, databases and the resources
that are used to construct models. First, we defined the terms
relevant to the field of VS and the importance of this field for
the drug discovery process. We presented examples of VS stud-
ies that led to discoveries of novel bioactive compounds and
drugs. In the following parts of the study, we described several
types of features that are used in VS studies, especially for ma-
chine learning applications. We investigated various chemin-
formatics toolkits and libraries, which can handle different
representations of compounds, generate molecular descriptors
and carry out basic analyses. We examined currently available
chemical structure and bioactivity databases that are employed
for data set generation. We also discussed gold-standard data
sets that are frequently used to train and test VS models.
Subsequently, the two main machine learning approaches,
namely, supervised and unsupervised, were discussed with sev-
eral applications. We examined several VS methods based on
the input feature representation (i.e. similarity-based and the
feature-based). Along with this, we discussed novel deep learn-
ing applications, which outperformed the conventional meth-
ods in terms of predictive performance. Our observations and
comments about recent VS studies are given below together
with future perspectives.

• Today, the prediction performance of even the best conventional

VS methods is low. FP hits constitute the main problem in these

methods. The precision measure should be considered during

the method optimization procedure, since using only accuracy

may result in over optimistic evaluations. However, it is also im-

portant to state that, FP hits are not considered as a problem in

some of the practical applications. Nonetheless, there is room

for a great improvement, and the application of novel machine

learning methods for VS may remain as a non-trivial task for lon-

ger periods of time.
• A significant issue in predictive model development in VS is the

training data set construction. In DTI prediction, as in all ma-

chine learning applications, training sets should contain reliably

labelled data. The labelling is usually a binary procedure, e.g. a

certain compound is either interacting with the corresponding

target (Label 1) or not (Label 0). However, in reality the interaction

is experimentally measured in a continuous scale (e.g. IC50 val-

ues measured in terms of molarity), and it is not clear what

should be the threshold activity value to assume interaction. In

most computational research studies, the IC50 values of 10 lM or

lower are accepted as active. However, in drug development

pipelines most candidate drugs that pass the lead discovery and

optimization steps have activity values below micromolar con-

centrations. The reason behind relaxing this threshold to 10 mM

in computational studies is that, with more stringent values, the

number of data points to be used in training is scarce. Naturally,

using relaxed thresholds comes with the cost of noisy training

data (e.g. labelling the cases, where the activity is not sufficient,

as active). This issue is even more complicated during the selec-

tion of negative training data set instances (i.e. the drug-target

pairs that are labelled as non-interacting). There is no consensus

on what constitutes a sufficient threshold, over which one can

assume non-interaction. In different studies, values such as

greater than 10, 20, 30, 40 or 100 lM are used. Data point scarcity

is even more pronounced in negative training data set selection.

Since high IC50 values are not desirable, experimentally observed

high activity values are often not reported in the literature and in

the bioactivity databases. In many cases experimentalists do not

even measure the activity after the accepted near border active

concentrations such as the 10 lM. In the end, there are few

instances to be used as negative training instances. This issue is

generally known as the class imbalance problem in machine

learning. The widely accepted solution to this problem in the

field of DTI prediction is removing the positive instances from all

possible combinations of drugs and targets and randomly select-

ing cases from the remaining set. It is assumed that the ratio of

truly active to inactive pairs is so low that random selection

would yield a good quality negatives set. However, this is not al-

ways guaranteed as knowledge regarding the truly active to in-

active ratio is not known. There are also alternative solutions to

this problem such as the advanced sampling techniques [259].
• A similar issue is also reflected during the predictive perform-

ance calculations in model testing. In most applications, when

the tested model predicts an active drug-target pair that was

marked as inactive in the validation set, the model is penalized

with an FP count. However, there is always a chance that the pre-

dicted activity would be true, but not experimentally proven yet

(especially when the random selection process is employed in

the generation of negative training sets). From a general perspec-

tive, the aim of constructing predictive models in the first place

is identifying those unknown pairs that are probably interacting.

Penalizing models in this sense directs them to predict only

those drugs that are structurally similar to the known ones, and

this is a common issue associated with a large portion of the

conventional VS methods. Various performance metrics have

been proposed to tackle this issue by evaluating the performance

of predictive models from different angles (this topic is explained

and discussed in the section entitled: ‘Evaluation Metrics and

Performance Comparison of VS Methods’). One of the solutions

proposed for negative test instance selection problem is employ-

ing decoys, which are compounds that have similar physico-

chemical properties but different topologies compared with the

known active compounds for the selected targets. These decoy

molecules are inactive against the corresponding targets; as a re-

sult, they can be used in negative test sets to accurately assess

the performance of the models regarding the FPs. The issue with

decoy sets is that they are available for just a few targets. Decoy

data sets are explained in the section entitled ‘Gold Standard

Data sets for VS’.
• The ATC Classification System provides valuable information for

the classification of drugs in terms of their therapeutic effect and

their pharmacological and physico-chemical properties.

Assigning an ATC code to a compound requires curation efforts,

as a result, only approved and experimental drugs have ATC

code annotations. Large-scale prediction of ATC codes for all

compounds recorded in chemical databases can help to
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identify the roles for these compounds. In addition, predicting

new ATC codes for known drugs can be used to aid drug reposi-

tioning. Currently, there are only a few ATC code prediction stud-

ies in the literature, most of which have been proposed in

the past few years. We expect to see more studies of this kind in

the future.
• Deep learning techniques have shown significantly better per-

formance for DTI prediction compared with the conventional

machine learning methods. As a result, we expect a significant

shift, not only in VS but also in the drug discovery field in gen-

eral, towards utilizing novel deep learning-based architectures in

the near future. Besides, the flexibility of deep learning architec-

tures allows researchers to model DTIs in various ways, each of

which may have specific advantages.
• Most of the deep learning-based studies so far emphasized the

potential and applicability of DNNs for the development of effi-

cient VS methods; however, there are no public production pipe-

lines to predict and publish large-scale DTIs. Considering the

current availability of the chemical structures and bioactivity in-

formation in public databases, which is required for constructing

such pipelines, we expect to see DNN-based large-scale analyses

and novel web-services presenting their results in the near

future.
• Considering the problem of noise in the training data (especially

in the negative training sets), which was discussed above, one

interesting point is that, deep learning methods have been

reported to be robust against the noise in the training data, not

only for negatives but also for positives. It would be interesting

to observe the situation in DTI data. If DNN models can be stable

against errors in the negative training data, the process of train-

ing data preparation may become trivial. Nevertheless, we ex-

pect to see new approaches in the literature to generate more

reliable negative training data sets, especially for conventional

machine learning techniques. One approach can be utilizing the

hierarchical structure of ATC classification system, as similar

ATC codes indicate similar functions and targets.
• In the literature, it was indicated that the prediction perform-

ance of computational methods was highly dependent on the

targets. Therefore, target-specific machine learning and feature

selection methods can be investigated more to enhance accuracy

of predictions. To the best of our knowledge, there is no study in

the literature that employs target-specific feature selection.

Conversely, it has been stated in the literature that deep learning

techniques do not require hand-crafted features generated with

the application of feature extraction and selection methods, and

simple encodings of the raw input data is sufficient for the mod-

els to produce high-quality predictions. This is because of the

ability of capturing the structures hidden in the data by building

complex features in a hierarchical manner. We expect to see

additional investigative studies to identify the status in the DTI

data.
• A trend in DTI prediction that we expect to become more popular

in the near future is integrating large-scale omic data (e.g. tran-

scriptomics, interactomics, epigenomics, metabolomics and

functional genomics) at the input level, to increase both the

quality and the coverage of DTI predictions. Conventionally,

known bioactivities are used along with the structural attributes

of compounds and/or target proteins to model the DTIs.

However, the recent accumulation of the omic data presents

opportunities for the identification of the unknown parts of the

DTI space. The expected contribution of the omic approach

mainly comes from integrating different types of features in an

ensemble/hybrid setting, where different features complement

each other to produce a more complete picture. Since compo-

nents of the omic data have different structures (e.g. interac-

tomic data mostly define the pairwise relations between

proteins, transcriptomic data displays quantitative measure-

ments in terms of how the expression of genes change under dif-

ferent conditions), generation of the feature vectors with the

standardization of the information have critical importance.
• A significant factor affecting the performance of conventional

machine learning models (i.e. non-deep learning-based techni-

ques) is the quality of the input feature representation. The con-

structed feature vectors should accurately reflect various

properties of compounds and/or targets that play roles in their

interaction. Usually, manual feature engineering is performed

for this purpose, where the aim is to generate or select the most

representative features for the DTI. Generating and manually

testing these features is a tedious and an intensive process, and

automated feature selection methods are employed for this pur-

pose. Feature selection is especially important for methods that

integrate large-scale omic data, since the raw feature vectors

produced by ensemble methods are usually quite large, which

increase the computational complexity and hinders the optimal

training of the systems. With the increasing interest in incorpo-

rating omic data for DTI prediction, we expect the feature selec-

tion procedures to gain even more importance. For details

regarding the feature selection process, please refer to the sec-

tion entitled ‘Feature Selection’ in the supplementary material.
• It is reported in the deep learning literature that, as long as the

models are trained successfully, DNNs are capable of extracting

the information hidden in the data even without sophisticated

input features. The so called end-to-end learning approach

states that the multiple steps in a predictive procedure, such as

the data pre-processing, representative feature vector generation

and the prediction post-processing, can be automatically accom-

plished by the predictive network model itself. For this purpose,

usually a task-specific complex architecture is required to be

constructed by an expert. However, once the system is accurately

constructed, it is easy to accomplish prediction tasks. The fea-

tures fed to an end-to-end learning system can be as simple as

one-hot-encodings of biomolecular sequences (i.e. n by 20 matri-

ces filled with 0s and 1s, where n represents the sequence length,

each of the 20 columns represent a unique amino acid and 1s in

the matrix show the presence of the corresponding amino acid

at that position). DNNs are especially suitable for end-to-end

learning approaches because of their modularity and complex

nature. End-to-end learning-based DNN models are gaining

popularity lately, and we expect to see successful applications in

VS in the near future.
• A computational drug discovery topic that is rapidly gaining

popularity is the machine learning-based de novo drug design,

proposed as a solution to the problem of reduced diversity of

drug candidate compounds offered by the conventional predict-

ive models. The aim behind the de novo drug design is identify-

ing novel drug candidates that are structurally significantly

different compared with the ones already in the market (or the

ones in the development phase). Classical de novo drug design

methods follow a rather manual procedure, where the re-

searcher carries out a series of intensive computational proc-

esses such as docking and/or molecular dynamics simulations.

The desired molecular properties are extracted and combined
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with a fragment-based approach, to computationally generate

novel molecules. Various types of molecular properties can be

used for this process such as the physico-chemical properties

of compounds and the 3D structures of targets, including the

binding site information. At the end of a de novo drug design

process, the finalized computationally generated ‘non-existent’

compounds are chemically synthesized and employed in bioas-

says to verify the predicted interactions against the corre-

sponding targets. The directed approach used in classical de

novo drug design produces reliable results, but the experiments

are time consuming, and the output is small scale. In machine

learning-based de novo drug design, first, the desired structural

properties of molecules (i.e. the constraints) are identified (e.g.

molecular attributes of a hypothetical compound that would

yield a high affinity to bind to a specific target, and the proper-

ties that are required for the chemical synthesis and stability)

using ordinary labelled interaction data, similar to the classical

de novo drug design. After that, different varieties of these mol-

ecules, which harbour the identified properties, are computa-

tionally generated with a randomization factor to increase

diversity. This job is accomplished by generative models. This

is followed by constructing the feature vectors for the compu-

tationally generated molecules and feeding them to an inter-

action prediction model, as the input. The output score

obtained for each computationally generated molecule, which

indicates the probability of interaction, is fed back to the gen-

erative model to create additional varieties, and the process

continues in an iterative manner until the optimal point (i.e.

the maximum prediction probability) is achieved. Lately, DNNs

are employed to construct both the generative and the testing

models in a fully automated manner [260]. It is also possible to

construct just one model for both the generation and the test-

ing jobs, where the produced signals are transmitted back to

the initial (i.e. generative) layers using the backpropagation al-

gorithm. We expect that, with the employment of DNN-based

models, the field of de novo drug design will start to produce

truly novel drug candidates in the near future.
• For some of the traditional ML methods, such as the SVM, low

amount of training instances is often sufficient; however, the

training data should be error-free to generate a high-

performance predictive model. It is generally the opposite for

DNNs, as successful applications of DNN models are usually

trained with a large number of instances even though they con-

tain high error rates in some cases. Although finding labelled

data in this scale is not a problem in computer vision and NLP, it

usually is a difficult task considering the biological data.

Employment of the large-scale bioactivity data from public bio-

assay databases (e.g. ChEMBL, PubChem and BindingDB) is an

option that has already found applications in the literature.

Apart from that, we expect to observe training data set enrich-

ment implementations for the deep learning applications on bio-

medical data.
• One of the most important challenges regarding the develop-

ment of novel deep learning-based methods is still the com-

putational complexity. Especially, system training processes

using large-scale data requires extreme amounts of computa-

tional power. There is a growing field of research on novel al-

gorithmic approaches to reduce the complexity of DNN-based

techniques without compromising the prediction perform-

ance. Apart from that, GPU-based technologies are emerging

lately to provide affordable high-performance computational

equipment to scale to the level of big data. The big-tech com-

panies such as Google, IBM, Microsoft and Nvidia started

experimenting with deep learning libraries, frameworks and

related tools to provide open-access data analysis instru-

ments to the public (e.g. TensorFlow, Caffe, Theano, Torch,

cuDNN and Apache Spark). However, there is still some time

before these systems (in terms of both hardware and software)

become easily affordable, fully functional and available to the

non-specialist.
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Key Points

• There is room for great improvement in the predictive
performances of VS methods.

• The class imbalance problem and high FP rates of cur-
rent VS models are important issues to be considered
and handled carefully.

• Deep learning is replacing the state-of-the-art in terms
of the employed machine learning techniques in the
bio-medical data analysis domain, because of signifi-
cantly better predictive performances.

• Deep learning is also changing the long-standing
paradigms of machine learning regarding feature gener-
ation/selection and training data set quality require-
ments in the direction of reduced amount of manual
intervention.

• First applications of deep learning in DTI prediction
resulted in a significant boost in model performances.

• With the increasing number of available open access
programming libraries, toolkits and frameworks, to-
gether with the elevated public interest in deep learning
applications, we expect to see additional research stud-
ies and also the first examples of deep learning-based
production pipelines for computational drug discovery
(including DTI prediction) in the near future.
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