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Abstract

Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive
immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their
binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in
the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on
antibody-based therapeutic development. Antibody-specific computational protocols currently benefit from an increasing
volume of data provided by next generation sequencing and application to related drug modalities based on traditional
antibodies, such as nanobodies. Here we present a structured overview of available databases, methods and emerging trends
in computational antibody analysis and contextualize them towards the engineering of candidate antibody therapeutics.
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Introduction
Antibodies are immune system proteins that recognize the
surfaces of foreign molecules (antigens) for subsequent elimi-
nation from the organism during an adaptive immune response
[1] or self-antigens from healthy tissues in autoimmune
diseases [2]. The antibodies have evolved to be versatile binders,
capable of recognizing a wide variety of molecular surfaces
[3]. Because of such favorable binding properties, antibodies
have been harnessed for therapeutic purposes and are cur-
rently the largest class of biotherapeutics. Five of the current

top-selling blockbusters are monoclonal antibodies: adali-
mumab and infliximab (anti-TNFα), rituximab (anti-CD20),
bevacizumab (anti-VEGF), trastuzumab (anti-HER2/neu) and
their market presence is still expanding [4].

Continued exploitation of antibodies for therapeutic pur-
poses relies on more efficient ways to develop these molecules.
Computational approaches hold promise in advancing the
field by providing faster results than arduous experimental
approaches that are the current standard in antibody discovery
[5]. Established structural bioinformatics methods such as
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homology modelling [6, 7], protein–protein docking [8, 9] or
protein interface prediction [10] are already used for rational
antibody design [11–13]. There are also pharmaceutically
focused computational approaches that aid in assessing
the immunogenicity [14] and biophysical properties [15] of
antibodies. The increasing number of structural [16], sequence
[17] and experimental data [18–21] on antibodies being deposited
in the public domain provides the necessary foundation for
improving such data-driven methods. Specifically, the recent
decade saw the advent of next generation sequencing (NGS)
of B-cell receptor (antibody) repertoires [22]. NGS provides a
snapshot of millions of antibody sequences sampled from the
theoretically possible 1012–1015 antibody sequences in a human
repertoire [23, 24]. Discerning the biases of antibody repertoires
can provide insights into the natural diversity of the immune
system [25]. Among others, such natural preferences can be used
as a reference to assess the biophysical properties of therapeutic
antibodies [13] or to develop naturally focused surface display
libraries [26]. The accumulated methodology of computational
antibody protocols could potentially be applied to novel antibody
formats with intrinsically better biophysical properties, such as
nanobodies [27]. Altogether, computational antibody analysis
methods have matured enough to allow for wider applications
in therapeutic development.

In this review we give a structured overview of the currently
available databases, algorithms and resources for computational
analysis and design of antibodies and the prediction of their
binding mode to antigens. We provide context to these methods
in the form of current efforts for therapeutic antibody design and
delineate the emerging trends in the field.

Antibody structure, function and therapeutic
formats
Antibodies, or Immunoglobulins (Ig), are produced in jawed ver-
tebrates by B-cells. Each of the estimated 5 × 109 B-cells in an
organism [23] produces a distinct B-cell receptor (membrane-
bound) or antibody (in soluble form) through somatic recom-
bination of variable (V), diversity (D), joining (J) and constant
(C) gene segments [28, 29]. The process of V(D) J recombination
results in a Heavy (H) chain, assembled from V, D, J and C
gene segments from the H chain locus, and a Light (L) chain,
assembled from V, J and C gene segments from one of the L chain
loci. In humans, the H and L chains can naturally assemble into
five isotypes: IgG, IgD, IgE (all three monomers), IgA (dimer) and
IgM (pentamer) [30]. The most biologically frequent format, IgG,
consists of one crystallizable (Fc) and two antigen binding (Fab)
fragments and is illustrated in Figure 1A.

The Fab contains the H and L chain variable segments (VH and
VL) that bind their cognate surface on the antigen, the epitope
(Figure 1B). The VH and VL each harbor three hypervariable loops
that define the complementarity determining regions (CDRs).
The CDRs contain the majority of the antigen-binding residues,
or paratope (Figure 1B–C). Upon antigen exposure, the antibody-
producing B-cells undergo a natural process of affinity matura-
tion, based on somatic hypermutation [31]. This process intro-
duces mutations primarily in the CDR regions, which develop
a specific and high-affinity binder. Together with the diversity
introduced by V(D) J recombination, somatic hypermutation can
produce an estimated 1012–1015 possible antibody sequences [23,
24]. The large number of diverse antibodies in an organism
increases the probability of recognizing an arbitrary foreign anti-
gen, thus initiating an immune response.

Despite the intrinsic sequence diversity in the CDRs, all
hypervariable loops with the exception of CDRH3 adopt a

constrained set of conformations termed canonical classes [32].
CDRH3 possesses the highest sequence and structural diversity
of the six CDRs [33] and is very important for antigen recognition
[34, 35]. Due to their central role in antigen recognition and
binding, CDR loops undergo the most extensive engineering
during development of monoclonal antibody (mAb) therapeutics
[36, 37].

Standard mAb therapeutics have limited tissue penetration
as a result of their large molecular weight (∼150 kDa). As such,
significant efforts, mostly based on modern protein engineer-
ing techniques, have been placed in the development of non-
standard antibodies with superior properties. Some of these
include Fab domains and other modular formats with single
chain Fvs (scFv) (linked VH and VL domains) as the main com-
ponent, e.g. scFv, (scFv)2, diabody and minibody (reviewed by
Holliger and Hudson [38], Farajnia et al. [39] and Kwon et al. [40]).
In addition, bi-specific and polyspecific antibody formats, which
can engage two or more antigens at the same time, have been
developed, e.g. combining L and H chains from two different
mAbs or fusing the V domains from two different mAbs to create
an antibody with dual specificity. Bi- and tri-specific antibody
formats aimed at solid tumors have been recently reviewed [41].

Single-domain antibody formats, called VHH or nanobodies,
are found in camelids and sharks (Figure 1D). Single domain
antibodies have attracted attention because of their smaller size
and better biophysical properties with respect to antibodies
(higher stability and lower suspected immunogenicity) [27].
Despite being half the size of a standard antibody variable
domain (Figure 1D), nanobodies retain similar binding affinity
and specificity as standard mAbs. Therefore, these molecules
are of increasing therapeutic interest with the first nanobody
therapeutic (caplacizumab) approved in 2018 [42].

Antibody databases
Computational approaches to analyze and design antibodies
rely on the availability of suitable datasets. Resources exist
that curate the therapeutic antibody information, such as TABS
(https://tabs.craic.com/) and SAbDab-Therapeutic-Antibodies
[13]. Most other resources can be classified based on whether
the content is sequence, structure or experimental information,
with some databases being a combination of the three (Table 1).
Most of these repositories collect both antibody and nanobody
data; however, there are also some databases specializing only
in the latter, e.g. sdAb-DB [58].

Sequence databases

The leading database of germline antibody sequences is the
International Immunogenetics Information System (IMGT)
[46] and it is widely used to derive gene assignments for
recombined antibodies. Most other resources typically store
the recombined sequences of the variable regions (VH and VL).
Such databases can be divided into those that specialize in
single sequence depositions, e.g. DIGIT [48], Abysis [47] or bulk
raw reads produced by NGS experiments, e.g. iReceptor [49],
Observed Antibody Space [17]. Tools such as DIGIT and Abysis
source their data from the European Nucleotide Archive (ENA)
[60] and the National Center for Biotechnology Information
(NCBI) [61]; their sequence volumes are of the order of 105

and contain multiple artificially engineered sequences. These
data typically originate from single molecule depositions,
often derived by Sanger sequencing, and thus can be regarded
as of high quality. Repositories containing NGS data derive
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Figure 1. Antibody structure and binding. (A) Antibodies in soluble form often adopt the IgG isotype, a Y-shaped molecule consisting of two heavy chains (blue and

amber) and two light chains (green and magenta). Each IgG molecule can be subdivided into an Fc and two Fab fragments through papain cleavage of the (hinge) region

between these. At each end of a Fab fragment is a variable domain (VH/VL) involved in antigen binding. (B) Structure of an antibody VH(blue)/VL(magenta) in complex

with cognate antigen (grey). The antibody paratope (light green) and antigen epitope (light brown) are highlighted. (C) Structure of an antibody VH(blue)/VL(magenta)

highlighting the six hypervariable loops that make up the paratope; CDRH1 (white), CDRH2 (red), CDRH3 (amber), CDRL1 (green), CDRL2 (light blue), CDRL3 (yellow).

(D) Comparison of antibody VH/VL domain (grey) and nanobody (red) structures. Nanobodies are devoid of the light chain, thus all the binding is mediated by the

VH-homologous portion including its three CDR loops (CDRH1–3).

their contents from the raw sequence reads deposited in
multiple repositories, including ENA and NCBI. Due to the high-
throughput nature of NGS, sequence volumes are of the order of
108 and are associated with non-trivial error rates [62]. The raw
sequences are annotated with antibody-specific information
such as CDRs, numbering schemes and wherever available
experimental data on the immune state of the donor at the point
of sequence collection. Certain resources, such as Observed
Antibody Space, address this by offering an annotation of the
predicted sequence errors [62]. The NGS databases typically
offer only the unpaired heavy and light chains; however, as
the paired NGS technology becomes more mainstream, it is to
be expected that such data will also become publicly available
[63, 64].

Structure databases

The Protein Data Bank (PDB) is the main global repository of
3D structure information for proteins [65]. Resources that mine
the PDB for antibody fragments such as canonical classes (PyIg-
Classify [51]), antibody–antigen interaction data (PCLICK [50])
or their entire structures (IMGT/3D-Structure-DB [66], Structural
Antibody Database (SabDAb [16]), Abysis [47] and AbDb [52]) exist.
According to SAbDab, of the approximately 150 000 structures
deposited in the PDB to date as many as 3500 are identified as
containing at least one antibody (or nanobody) chain. SAbDab
specifically allows for a bulk download of its weekly updat-
able database, providing an up-to-date resource for applica-
tions such as antibody modelling or docking. SabDab and Abysis
allow retrieval of particular structures given a query antibody
sequence (SAbDab) or by using more advanced features such as
canonical classes of the CDRs (Abysis). Other resources such as
the Immune Epitope Database (IEDB) [18] link structural infor-
mation to experimentally derived epitope data.

Experimental databases

Sequence and structure data can be further enriched with
antibody-specific experimental information. Data on epitopes
targeted by antibodies can be readily downloaded from the
IEDB that now links such information to epitope-specific
antibody sequences [67]. One of the crucial pieces of information
to characterize antibody–epitope interactions is the binding
affinity. Such data is contained in resources such as SAbDab
and PDBBind [54]. Other, more specialized, resources exist such
as Ab-Bind [19], which hold data on 1101 mutations across 32
antibody complexes, and SKEMPI [55], which curates binding
energy data for available structures but is not limited to antibody
information only.

Computational characterization of antibodies
The increasing availability of antibody-specific sequence,
structure and experimental data allows development of
bioinformatics tools facilitating antibody engineering (Table 2).
Routine bioinformatics methods such as homology modelling
and protein–protein docking can be harnessed to guide the
engineering of therapeutic antibodies [5]. Antibody-based
therapeutics are developed via well-established processes that
can be broadly categorized into Lead Identification and Lead
Optimization. During Lead Identification animal immunization
or surface display technologies are used to generate a large
number of ‘hit’ molecules, which need to be further triaged.
Following various rounds of further screening and design
during Lead Optimization, a small number of high affinity
lead candidates are selected. During Lead Identification and
Optimization, molecules are assessed for unfavorable character-
istics such as immunogenicity or poor biophysical properties.
This assessment of ‘developability’ risk is of key importance
before undergoing clinical trials and to ensure the successful
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Table 1. Databases containing information on antibody and nanobody structure and sequence. Most of the databases are free for academic use.
In cases where the authors made it clear that a commercial version is available, this is indicated next to the database name. In some cases,
such as IMGT or SKEMPI, conditions for non-commercial reuse are defined. In such cases, the authors of the respective databases should be
contacted for details on commercial re-use of their material. Example contents of the databases are summarized in Supplementary Section 1.
An up-to date list of antibody-related database resources is maintained at http://naturalantibody.com/tools

Database Name Link Description Reference

TABS (commercial use) https://tabs.craic.com/users/sign_in Database of therapeutic antibodies n/a
SAbDab-therapeutic
antibodies

http://opig.stats.ox.ac.uk/webapps/
sabdab-sabpred/Therapeutic.html

Database of therapeutic antibodies
linked to structures

[13]

Andrew Martin’s
Antibody Resources

http://www.bioinf.org.uk/abs/ Resources on antibody-related
analytics

n/a

AAAAA https://www.bioc.uzh.ch/
plueckthun/antibody/index.html

Resources on antibody-related
analytics

[43]

AbMiner https://discover.nci.nih.gov/abminer/ Database of available monoclonal
antibodies

[44]

IgPdb http://cgi.cse.unsw.edu.au/∼ihmmune/
IgPdb/information.php

Database of inferred allelic variants
for immunoglobulins

[45]

IMGT® http://www.imgt.org/ Leading antibody genetics database [46]
Abysis (commercial
license available)

http://www.abysis.org/ Sequence and structural data on
antibodies

[47]

DIGIT http://circe.med.uniroma1.it/digit/help.php Antibody sequence database [48]
Ireceptor http://ireceptor.irmacs.sfu.ca/ NGS sequence data on B-cell

receptors
[49]

Observed Antibody
Space

http://antibodymap.org/oas NGS sequence data on B-cell
receptors/antibodies

[17]

SystimsDB (commercial
license available)

https://www.systimsdb.ethz.ch NGS sequence data on B-cell and
T-cell receptors

n/a

PCLICK http://mspc.bii.a-star.edu.sg/minhn/
cluster_pclick.html

Clusters of antibody–antigen
interactions

[50]

PyIgClassify
(commercial license
available)

http://dunbrack2.fccc.edu/PyIgClassify/ Database of CDR canonical classes [51]

Structural Antibody
Database

http://opig.stats.ox.ac.uk/webapps/sabdab-
sabpred/Welcome.php

Self-updatable database of
antibody/nanobody structures

[16]

AbDb http://www.bioinf.org.uk/abs/abdb/ Database of antibody structures [52]
Immune Epitope
Database

http://iedb.org Manually curated epitope data [18]

AntigenDB http://crdd.osdd.net/raghava/
antigendb/

Antigen database [53]

PDBBind http://www.pdbbind.org.cn/ Affinity data on proteins in the PDB [54]
Ab-Bind https://github.com/sarahsirin/AB-

Bind-Database
Mutational antibody data related to
binding affinities

[19]

SKEMPI
(non-commercial use)

https://life.bsc.es/pid/skempi2/ Not-antibody specific interaction
database

[55, 56]

Non-redundant
Nanobody database

https://www.sciencedirect.com/science/
article/pii/S2352340919301052

Non-redundant structures of
nanobodies

[57]

Single Domain
Antibody Database

http://sdab-db.ca/ Sequence and structural data on
nanobodies

[58]

Institute for analysis
and collection of
nanobodies

http://ican.ils.seu.edu.cn/ Sequences and structural data on
nanobodies

[59]

development of a lead candidate into a stable, manufacturable,
safe and efficacious therapeutic. Computational methods, such
as homology modelling, docking or interface prediction can be
used during the Lead Identification and Optimization phases to
generate 3D models of the antibodies and predict or identify the
key residues involved in antigen binding.

Antibody numbering

The first step in antibody computational analysis is to map the
antibody sequences onto a standardized reference framework
(Table 2A). Raw nucleotide sequences of variable regions can

be translated into amino acids by aligning them to germline
sequences, thus identifying the V, D and J regions. This can
be achieved by programs such as IgBLAST [68] or IMGT V-
Quest [69] and multiple other tools aimed at processing raw
antibody data (Table 2A, reviewed in [150]). Similarities between
antibody amino acid sequences further allow for the creation
of a standardized reference framework, or numbering scheme,
giving each variable region amino acid an identifier [151].
The numbering schemes contextualize each position within
the structure of an antibody, allowing for rapid delineation
of CDR and framework regions. Since the seminal work to
define a standard numbering scheme for antibodies was
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Table 2. Computational antibody tools. The algorithms or software packages were grouped by the core area of their application: Antibody
Annotation/Numbering, Structural Antibody Modelling, Antibody–Antigen Interface Prediction, Antibody Design and Pharmaceutically-specific
applications. We provide the name for each method together with a reference and weblink to the software if available. Some resources are
currently not maintained, in which case we suggest contacting the authors directly. A web-based version of this table where the resources
listed below and newly released ones are curated is maintained at http://natuarlantibody.com/tools

A. Antibody
Annotation/Numbering

Role Link Reference

IgBLAST Raw data processing https://www.ncbi.nlm.nih.gov/igblast/ [68]
IMGT V-Quest Raw data processing http://www.imgt.org/IMGTindex/V-QUEST.php [69]
MiXCR Raw data processing https://mixcr.readthedocs.io/en/master/ [70]
Immcantation Raw data processing https://immcantation.readthedocs.io [71, 72]
IgRec Raw data processing https://yana-safonova.github.io/ig_repertoire_constructor/ [73]
ImmuneDiversity Raw data processing https://bitbucket.org/ImmunediveRsity/immunediversity/ [74]
IMSEQ Raw data processing http://www.imtools.org/ [75]
Partis Raw data processing https://github.com/psathyrella/partis [76]
IGoR Raw data processing https://github.com/qmarcou/IGoR [77]
Vidjil Raw data processing http://www.vidjil.org/ [78, 79]
ImmuneDB Raw data processing https://immunedb.readthedocs.io/en/latest/ [80]
AbRSA Numbering http://cao.labshare.cn/AbRSA/ [81]
Abnum Numbering http://www.bioinf.org.uk/abs/abnum/ [82]
ANARCI Numbering http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/ANARCI.

php
[83]

B. Structural Antibody
Modelling

Role Link Reference

AbodyBuilder Full FV modelling http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/
Modelling.php

[84]

LYRA Full FV modelling http://www.cbs.dtu.dk/services/LYRA/index.php [85]
PIGS Full FV modelling https://cassandra.med.uniroma1.it/pigspro/ [86]
Kotai Antibody Builder Full FV modelling http://kotaiab.org/ [87]
RosettaAntibody Full FV modelling http://rosie.rosettacommons.org/antibody [88, 89]
BIOVIA Full FV modelling https://www.3dsbiovia.com/ [90]
MoFvAb Full Fv Modelling - [91]
WAM Full Fv Modelling - [92]
BioLuminate Full Fv Modelling https://www.schrodinger.com/products/bioluminate [93]
MOE Full Fv Modelling https://www.chemcomp.com/ [94]
ABGEN Full Fv Modelling - [95]
AbPredict Full FV modelling http://abpredict.weizmann.ac.il/bin/steps [96]
SmrtMolAntibody Full FV modelling https://www.macromoltek.com/ [97]
PEARS Ab-specific side chain

prediction
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/PEARS.
php

[98]

H3LoopPred Antibody specific loop
prediction

- [99]

SCWRL Side Chain Prediction http://dunbrack.fccc.edu/scwrl4/ [100]
BetaSCPWeb Side Chain Prediction http://voronoi.hanyang.ac.kr/betascpweb/ [101]
SPHINX Antibody specific ab initio

loop prediction
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/Sphinx.
php

[102]

FREAD Database-search loop
prediction

http://opig.stats.ox.ac.uk/webapps/fread/php/ [103]

PLOP Ab initio loop prediction http://www.jacobsonlab.org/plop_manual/plop_overview.htm [104]
Chothia Canonical
Assignment

CDR Canonical structure
prediction

http://www.bioinf.org.uk/abs/chothia.html Based on [105]

SCALOP CDR Canonical structure
prediction

http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/SCALOP.
php

[106]

Roche VH/VL orientation VH/VL orientation - [107]
Rosetta VH/VL
orientation

VH/VL orientation Rosetta Suite [108]

AbAngle VH/VL orientation http://opig.stats.ox.ac.uk/webapps/abangle/index.html [109]

(continued)
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Table 2. Continued

C. Antibody–Antigen
Interface Prediction

Role Link Reference

Antibody i-Patch Paratope Prediction http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/ABipatch.
php

[110]

Paratome Paratope Prediction http://ofranservices.biu.ac.il/site/services/paratome/ [111]
ProABC Paratope Prediction http://circe.med.uniroma1.it/proABC/ [112]
Parapred Paratope Prediction https://github.com/eliberis/parapred [113]
AntibodyInterface
Prediction

Paratope Prediction https://github.com/sebastiandaberdaku/
AntibodyInterfacePrediction

[114]

AG-FAST-Parapred Paratope Prediction - [115]
ISMBLab-PPI Protein contact prediction,

applied to paratopes
http://ismblab.genomics.sinica.edu.tw/predict.php?pred=PPI [3]

Rapberger et al. 2007 Ab-specific epitope
prediction

- [116]

PEASE Ab-specific epitope
prediction

http://ofranservices.biu.ac.il/site/services/epitope/index.html [117, 118]

EpiPred Ab-specific Epitope
Prediction

http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.
php

[119]

Jespersen et al. Ab-specific Epitope
Prediction

- [120]

EpiScope Ab-specific Epitope
Prediction

- [121]

MabTope Ab-specific Epitope
Prediction

- [122]

ASEP Ab-specific Epitope
Prediction

- [123]

BEPAR Ab-specific Epitope
Prediction

- [124]

ABEPAR Ab-specific Epitope
Prediction

- [125]

ClusPro Ab-specific docking https://cluspro.bu.edu/login.php [8, 126]
surFit Ab-specific docking https://sysimm.ifrec.osaka-u.ac.jp/docking/main/ [127]
SnugDock Ab-specific docking http://rosie.graylab.jhu.edu/snug_dock [9, 89]
FRODOCK Ab-specific docking http://frodock.chaconlab.org/ [128]
DockSorter (ab-specific
scoring)

Ab-specific docking
scoring

http://www.stats.ox.ac.uk/&#x007E;krawczyk/dockingsupp.
html

[110]

Hex Docking, not antibody
specific

http://hex.loria.fr/ [129]

ZDOCK Docking, not antibody
specific.

http://zdock.umassmed.edu/ [130]

HADDOCK Docking, not antibody
specific

https://haddock.science.uu.nl/services/HADDOCK2.2/ [131, 132]

ATTRACT Docking, not antibody
specific

http://www.attract.ph.tum.de/services/ATTRACT/attract.html [133]

GRAMM-X Docking, not antibody
specific

http://vakser.compbio.ku.edu/resources/gramm/grammx/ [134]

pyDockWeb (pyDock,
FTDock)

Docking, not antibody
specific

https://life.bsc.es/pid/pydockweb [135]

Swarmdock Docking, not antibody
specific

https://bmm.crick.ac.uk/&#x007E;svc-bmm-swarmdock/ [136]

PatchDock Docking, not antibody
specific

https://bioinfo3d.cs.tau.ac.il/PatchDock/ [137, 138]

D. Antibody Design Role Link Reference

OPTCDR Design Protocol http://www.maranasgroup.com/submission/OptCDR_2.htm [139]
OPTMaven Design Protocol https://github.com/maranasgroup/OptMAVEn_2.0 [140, 141]
RosettaAntibodyDesign Design Protocol https://www.rosettacommons.org/docs/latest/application_

documentation/antibody/RosettaAntibodyDesign
[142]

AbDesign Design Protocol https://www.rosettacommons.org/node/9206 [12, 143]

(continued)
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Table 2. Continued

E. Pharmaceutically-
specific applica-
tions

Role Link Reference

Humanness Score Humanization http://www.bioinf.org.uk/abs/shab/ [14]
Humanizer Humanization https://drive.google.com/file/d/1seCQYMlMG4_oC1-0

EjiDhZHnMf9D-1R5/view?usp=sharing
[141]

Tabhu Humanization http://circe.med.uniroma1.it/tabhu/ [144]
Human String Content Humanization - [145]
Human String Content Humanization - [145]
T20 Score Humanization https://dm.lakepharma.com/bioinformatics/ [146]
CODah Humanization - [147]
Developability Index Developability - [148]
Delayed HIC retention
prediction

Developability - [149]

Therapeutic Antibody
Profiler

Developability http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php [13]

Lonza Developability - [15]

carried out by Kabat in 1970 [152], the Chothia [32] and IMGT
[153] schemes have been adopted as the main alternatives.
Additional numbering schemes such as Contact [154], North
[155], WolfGuy [107] and Aho [43] exist but these are less
prevalent. Kabat and IMGT definitions are based on sequence
alignments identifying conserved positions in the variable
region [152, 153] whereas Chothia takes into account the
3D structure of the CDR loops. The antibody numbering
scheme developed by the Chemical Computing Group (CCG)
combines several antibody numbering schemes and offers a
broader definition of CDR boundaries based on Martin and
collaborators’ CDR definitions (http://www.bioinf.org.uk/abs/#
martinnum). To the best of our knowledge, there are three
freely available software packages to perform numbering of
antibodies, ANARCI [83], Abnum [82] and AbRSA[81], to act
as the first step in computational antibody analysis such
as homology modelling.

Antibody modelling

Structural antibody modelling creates a 3D structure from its
sequence alone, based on existing knowledge of antibody struc-
tures in particular and protein structures in general. The high
degree of antibody sequence and structure conservation in the
framework region and the five canonical loops leads to an overall
high accuracy of antibody homology modelling [7].

Antibody modelling generally follows a five-step process
(Figure 2A). The first step is selection of a suitable framework
template that can harbor the CDR loops. This is typically
achieved by finding close sequence matches to the H and L
chains in available databases [16]. The second step involves
accurate determination of the relative orientation of the VH and
VL domains, which is crucial to determine the correct shape of
the paratope [107, 109]. Specific algorithms have been developed
for this and incorporated into available software packages such
as AbAngle [109]. The third step involves modelling of the
CDR loops. Knowledge-based methods are currently capable of
providing accurate predictions for the five canonical loops, but
CDRH3 remains a challenge [156]. Antibody-specific knowledge-
based approaches are fast and accurate if a template is available
[103]. If there is no suitable template, as can be often the
case with CDRH3, more computationally expensive ab initio
approaches can be employed that generate a large set of novel

loops. The biggest challenge in such ab initio modelling remains
selection of best loop models among those generated [102].
Hybrid methods such as Sphinx [102] combine knowledge-
based and ab initio approaches to provide better all-round
predictions irrespective of the presence or absence of a priori
structural information. The fourth step involves building and
refining of the side-chains [98]. Here, protein-generic approaches
such as SCWRL [100] can be employed although it has been
demonstrated that an antibody-focused approach, such as
PEARS, could yield better results [98]. The final antibody model
can be further refined by optimizing the energetic packing of the
molecule, through packages such as Rosetta [89].

Available tools that employ the methods described above are
summarized in Table 2B, including those specific for individual
steps in the modelling process. The modelling protocols
are currently available via free-to-use web-servers, e.g. PIGS
[86], AbodyBuilder [84]; as commercial packages, e.g. Biovia
from Accelrys (https://www.3dsbiovia.com/), SmrtMolAntibody
from Macromoltek (https://www.macromoltek.com/), MOE
from CCG (https://www.chemcomp.com/) and BioLuminate
from Schrodinger Inc. (https://www.schrodinger.com/products/
bioluminate); or for local installation, e.g. AbPredict [96], Rosetta
[89]. The tools vary radically in run-times, with tools such as
AbodyBuilder capable of producing a model in around 60 s, to
Rosetta-based frameworks that can take up to several hours.
Despite different run times, the tools produce comparable
results as exemplified by the Antibody Modelling Assessment
II [7], a benchmarking experiment in which blinded predictions
using some of the aforementioned tools were conducted. AMA II
reported that the overall accuracy of modelling the entire anti-
body FV is 1.1 Å Root Mean Square Deviation (RMSD) on average,
with the most challenging region being the CDRH3, which is
modelled to >5 Å RMSD in some targets. Such results cannot rival
the accuracy of experimentally derived structures, but a model
with 1.0 Å RMSD, especially across the CDR region, can be used
as a rapid proxy to delineate structural features of the molecule.
Modelled structures can be used at the Lead Identification stage
to select surface exposed paratope residues for mutations [110]
or to characterize the binding with respect to the cognate epitope
[119]. Accurate structural information can be used during
the Lead Optimization stage to assess various developability
indicators, such as hydrophobicity [13] that rely on accurate
models of the molecular surface of the paratope and epitope.
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Figure 2. Computational antibody methods schematic. (A) Antibody modelling produces three dimensional coordinates from the sequence of an antibody. Framework

templates are identified and the VH/VL domains can be oriented with respect to each other if the two regions originate from different molecules. CDRs are modelled

onto the framework followed by side-chain prediction and refinement of the entire structure by energy minimization. (B) Antibody interface prediction identifies the

residues on the antibody (paratope) that are in contact with the antigen (epitope). This is a special case of molecular docking in which the antibody–antigen docking

aims to recapitulate the complex between the antibody and the antigen. (C) Antibody design optimizes the binding of an antibody against an epitope of choice through

a series of modelling, docking and energy minimization steps. In ab initio design, novel paratopes are generated computationally and their structural stability and

binding propensity against the cognate epitope assessed by energy functions. Hotspot grafting involves transferring known interaction motifs from the antigen partner

protein to an antibody template. (D) Antibodies need to be immunologically safe and have favorable biophysical properties in order to be administered to humans.

Humanization involves modifying an animal-derived sequence to resemble one with a higher degree of human amino acid content without affecting its affinity

and specificity. Developability-specific applications annotate regions on the surface that might lead to poor solubility or aggregation altogether. (E) Entire antibody

repertoires can be used to draw information on the mechanics of the adaptive immune system. Identification of antigen-specific sequences post-vaccination can

identify antibodies that could bestow passive immunity. The dynamic state of the repertoire can be analyzed to identify diseases in the organism. The diversity of

antibodies can be harnessed to create surface display libraries recapitulating naturally evolved preferences and advantages.

Interface prediction and antibody–antigen docking

Understanding the epitope–paratope interactions at the atomic
level is key to rational development of effective therapeutics.
The ‘gold standard’ for obtaining this information is by
experimentally determining the 3D structure of the antibody–
antigen complex using X-ray crystallography. Other structural
methods such as cryo-electron microscopy (cryoEM) or nuclear
magnetic resonance (NMR) can be used but the size of the
complexes makes it challenging for the latter. Experimental
methods can be very time and resource consuming with
success not being guaranteed. Thus, computational methods
that predict antibody–antigen contact surfaces could be a
rapid alternative during therapeutic discovery efforts. These
methods can be categorized into those that predict the
paratope, the epitope or the entire antibody–antigen complex
(Figure 2B and Table 2C).

About half of the 40–50 residues in the CDRs are in direct
contact with the antigen, forming the paratope [157–159].
Analyses of high resolution crystal structures of antigen-

antibody complexes show that the framework residues can
bury a substantial amount of surface area upon complex
formation [159, 160]. Computational predictors of paratopes
address this problem (Table 2C) and they could have an
impact in constraining and guiding mutational choices for
rational affinity engineering of therapeutics during Lead
Optimization. They can also provide valuable information to
guide the modelling of antibody–antigen complexes during
Lead Identification. For instance, statistical approaches such
as Antibody i-Patch [110] assign a score to each residue with
respect to its propensity to be part of the paratope, with high-
scoring residues offering potential candidates for mutagenesis.
Since not all paratope residues are constrained to the CDRs, tools
such as Paratome [111, 159] can be used to identify positions
in the framework region that might contribute to antigen
recognition as well. Recently, Antibody i-Patch and Paratome
were outperformed by machine learning approaches such as
the random forest-based proABC [112], support-vector machine-
based AntibodyInterfacePrediction [114] and the deep learning-
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based, Parapred [113] and AG-Fast-Parapred [115]. To the best
of our knowledge AntibodyInterfacePrediction and AG-Fast-
Parapred are currently the best performing paratope prediction
methods as compared to previously available methods; however,
they were not compared against one another. AG-Fast-Parapred
predictions are obtained with reference to the antigen; therefore,
as the authors suggest, the method might be applicable to
epitope prediction as well.

Accurate delineation of an epitope is an important step in
characterizing the function of an antibody [161] (Figure 2B). From
a therapeutic perspective, knowledge of the epitope can be used
for rational design in targeting an immunogenic region for vac-
cine development [162]. From a legal perspective, characteriza-
tion of the antibody–antigen interaction is of importance when
filing therapeutic antibody patents [163]. To achieve such goals,
epitopes can be identified by various experimental methods
[163] or be predicted by computational protocols [164]. Meth-
ods for computational epitope prediction can be divided into
predictors of linear epitopes, which focus on identifying con-
tiguous stretches of primary amino acid sequence, and con-
formational epitope predictors, which aim to identify the 3D
configuration of the epitope. The majority of epitopes are con-
formational in nature therefore predictors that use structural
antigen information offer more accurate results than linear
methods [165, 166]. Many epitope prediction methods do not
include information on the antibody, thus focusing on iden-
tifying generic immunogenic molecular surfaces [167]. How-
ever, arbitrary molecular surfaces appear to be indistinguish-
able from epitope regions [167–169] suggesting that predictions
should be performed with reference to a particular antibody [116,
118–120]. We summarize the linear and conformational epitope
predictors in Supplementary Information and those following
the new paradigm of including antibody in providing epitope
predictions (antibody-specific predictors) in Table 2C. Antibody-
specific epitope prediction was first addressed by Rapberger and
co-workers in 2007 [116] and subsequently by methods such
as ASEP [123], BEPAR [124], ABEpar [125], EpiPred [119], PEASE
[117, 118], MabTope [122] and Jespersen et al. [120]. The most
recent approaches, such as those by MabTope and Jespersen
et al., perform antibody-specific epitope predictions in conjunc-
tion with protein-protein docking to offer information on the
paratope-epitope pairings.

Paratope and epitope prediction can offer useful information
on antibody–antigen recognition, which can be exploited for
therapeutic design but these methods do not provide infor-
mation about the specific interactions involved in antibody–
antigen binding. This issue is addressed by antibody–antigen
docking, a specialized application of the broader field of molec-
ular docking [170] (Figure 2B). Molecular docking aims to pre-
dict the biological complex starting from the unbound pro-
teins. It typically involves two steps; the sampling step, dur-
ing which thousands of possible complex conformations are
generated (e.g. antibody-specific ClusPro [8, 126], SnugDock [9,
89] and general protein HADDOCK [131, 132], ZDOCK [130]) and
the scoring step, where the conformations are ranked accord-
ing to a specific scoring function (e.g. antibody-specific Dock-
Sorter [110] and general protein ZRANK [171], FireDock [172],
SIPPER[173]) to discriminate models that are closer to the native
conformation. According to the sampling strategy used during
the simulation, docking methods can be classified into two
categories. The first class includes algorithms that perform a
global search around the whole interfaces of the components
without taking into account previous information about the
binding region (ab initio docking). On the other hand, experi-

mental or predicted information about the binding interface is
often available and can be used to drive the sampling during
docking (information-driven, local or integrative docking) [174].
Both classes can benefit from available information during the
scoring step to select models that are consistent with the avail-
able information about the interaction. Additionally, inputs from
experimental studies such as hydrogen-deuterium exchange
(HDX) coupled with mass spectrometry and mutational analyses
can help refine the computational models of antibody–antigen
complexes [175, 176].

Another important aspect to be considered in the study
of the biomolecular interactions regards the conformational
changes that the molecules undergo upon binding. Most
docking algorithms do not take into account conformational
changes of the components, performing only ‘rigid-body
docking’. Examples of widely used rigid-body docking software
are ClusPro [8, 126], ZDOCK [130] and PatchDock [137, 138].
Since in most cases flexibility of the molecule is a crucial
factor to be considered [177], approaches that tackle this
problem have been developed over the years. Examples of such
methods are for example Swarmdock [136], HADDOCK [132] and
SnugDock [9].

All of the aforementioned methods allow the user to provide
information about the binding interface using different strate-
gies to implement the methodologies during the simulation.
This feature is particularly relevant in the case of antibody–
antigen docking as CDRs in particular offer a reasonable proxy
of the binding interface. In fact, some docking methods such as
ClusPro and PatchDock are able to automatically define the anti-
body CDRs in order to use this information during the docking
process. The most challenging aspect is identification of the epi-
tope since, despite the great efforts of the community in develop-
ing accurate epitope prediction methods, existing systems still
do not provide reliable predictions, limiting their applicability in
molecular docking.

HADDOCK is one of the few methods that can encode
a variety of experimental and predicted information into
restraints throughout the entire docking process to both
drive and score the generated models following a data-driven
strategy. Restraints can be derived from various experimental
sources such as NMR chemical shifts perturbations, HDX and
chemical cross-linking detected by mass spectrometry and
mutagenesis data. In the case of antibodies, it has recently
been demonstrated that HADDOCK is able to already provide
high quality models when only a loose definition of the epitope
and the hypervariable loops of antibodies are used to drive
the docking [178]. Despite the availability of experimental data
and their use to drive the docking and/or score the generated
models, accurate prediction of biomolecular complexes remains
a real challenge with much room for improvement. Current
docking methods still cannot rival the reliability of X-ray
crystallography-derived structures and their performance is
regularly assessed by the Critical Assessment of Predicted
Interactions (CAPRI) [179]. Here, scientists are typically provided
sequences of the interacting partners (or in rare cases the
structures of the unbound components) and are tasked with
predicting the native complex. CAPRI rounds over the years
have catalyzed and demonstrated improvements in protein–
protein docking methodology. Targets consisting of antibody–
antigen complexes are regularly included. Therefore, as methods
for antibody–antigen interaction prediction improve, it is to be
expected that triangulation of results from paratope prediction,
epitope prediction and antibody–antigen docking methods could
provide a relatively fast and cost-effective route to obtaining
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reliable information on which to base rational antibody design
decisions.

Computational methods for therapeutic
antibody discovery
Antibody design

Antibody modelling and interface prediction/analysis tools can
be used to create novel molecules ab initio during Lead Identifi-
cation or as auxiliary tools during Lead Optimization (Figure 2C
and Table 2D). The availability of an antigen structure opens
up the possibility to develop a novel antibody binder computa-
tionally [180]. The seminal work on the subject was published
by Lippow and co-workers, who computationally improved the
binding of an antibody against its target, starting from an exist-
ing structural complex [181]. The authors performed compre-
hensive computational mutagenesis of the CDRs and assessed
the binding of the novel designs using the CHARMM energy
function [182]. Selected molecules had better affinity for the
target, demonstrating that in some scenarios computational
approaches alone can be used for affinity maturation.

Since then, four methods have been made available: OptCDR
[139], OptMAVEn[140], AbDesign [143] and RosettaAntibodyDe-
sign [142]. These protocols can be broadly categorized as ab
initio since they aim to design novel paratopes through four
sequential steps: CDR generation, modelling, antibody–antigen
docking and binding energy evaluation. OptCDR and RosettaAn-
tibodyDesign generate CDR conformations by sampling known
canonical classes and modelling the CDRH3 loop. In contrast,
OptMAVEn and AbDesign generate molecules by modular design
in a process akin to that of V(D) J recombination. The new CDRs
are grafted onto a framework and the structures are energy-
minimized by well-established energy functions such as Roset-
taEnergy [183] or CHARMM [182]. The affinity of each variant
is further optimized by docking the antibody onto the target
antigen and scored by assessing the interaction energy between
antibody and antigen. Ab inito methods such as these are still
emerging and although some of them demonstrated the validity
of their constructs experimentally there exists for them to be
validated across multiple projects in industrial setting to assess
their utility.

The four methods outlined above facilitate the re-design of
CDRs to improve antibody stability and affinity through a com-
bination of conformational and free energy change optimization
upon modification of specific residues. In contrast, Liu and co-
workers validated an approach in which binding site motifs from
existing protein–protein complexes were transferred directly
onto an antibody in a process termed ‘hot-spot grafting’ [11]. A
further approach to data mining existing structures to improve
antibody affinity is ‘re-epitoping’, pioneered by Ofran and col-
laborators [184]. Here, existing antibodies are tested for comple-
mentarity to a target epitope and the best candidates are used
to computationally construct focused surface display libraries.
This protocol is exemplary in showing how the computational
constructs can guide the traditional discovery methods to accel-
erate the discovery of therapeutic lead candidates.

The methods outlined above offer the potential for discover-
ing specific and selective binders computationally, reducing the
experimental effort during the Lead Identification stage. Such
binders need to be further developed during Lead Optimization
stage by assessing their immunogenicity and overall ‘devel-
opability’ potential through understanding of their biophysical
properties.

Immunogenicity prediction

A large proportion of currently developed antibodies are discov-
ered by animal immunizations. Molecules raised in animals,
such as mice, carry the risk of inducing an immunological
response in humans in the form of anti-drug antibodies (ADAs).
To avoid such issues, animal-derived antibodies undergo a
process called humanization [185, 186]. During this process
the CDRs from the (typically) mice-derived antibodies are
grafted onto human frameworks, or alternatively, the mice-
derived frameworks are engineered to resemble human ones.
Traditionally, humanization involves comparing the animal-
derived sequence with approximately 1000 human germline
sequences before selecting the appropriate template. Germline
sequences however only offer a limited view of overall
mutational antibody diversity, which can be addressed by
computational humanization, comparing the animal-derived
therapeutic to the distribution of amino acids in human antibody
sequences (Figure 2D, Table 2E).

This was addressed by Tabhu [144], a web-server that
compares a query therapeutic sequence to thousands of
recombined variable region sequences from DIGIT [48] and
serves as a reference in humanization. Although this takes
into account antibody sequence diversity, humanization is
a complex process where simple pairwise homology and
alignments might be insufficient. Thus, statistical approaches
to assess the ‘humanness’ of the query sequence have been
developed (Figure 2D and Table 2E). One of the earliest examples
is the Humanness score by Andrew Martin’s group [14] in
which the authors contrasted the distribution of amino acids
in antibody sequences in humans and mice. This allowed
them to develop a statistical score indicating whether a
query sequence is close in its amino acid content to the
human distribution and provided a global metric based on
the entire antibody variable region. Since immunogenicity is
mediated by short peptides on the molecule, Lazar and co-
workers developed the Human String Content (HSC) score
that takes into account short (9-mer) sequences along the
variable region to indicate regions requiring modification
to conform with the human amino acid distribution [145].
Humanness score and HSC are primarily sequence distance-
based approaches and it has been demonstrated that more
sophisticated methods that take the positional correlations
between residues into account could be superior [187, 188].
These methods remain sequence-based and do not explicitly
use the structure of the antibody to be humanized, although
HSC uses a contact-based score derived a priori. Since the
immunogenic portions of the antibody would naturally be
found on the surface, structural modelling can readily identify
solvent-exposed positions aiding in a process called re-
surfacing [189]. Choi and co-workers elegantly demonstrated
how deimmunized functional antibody molecules can be
created through structure-based design and simultaneous
integration of HSC [147].

The generation of immune responses against a biother-
apeutic requires multiple critical steps beyond reproducing
human antibody sequence diversity [190]. Indeed, humanized
and even fully human antibodies can elicit immune responses
among the patients receiving such medicines and generate
ADAs against them. Generation of ADAs is a multi-factorial
issue and depends upon patients genetic background and
disease history as well as quality attributes of the protein
therapeutics, particularly, presence of aggregates and other
degradants even in very minute quantities [190, 191]. A
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crucial first step towards ADA generation is the binding
of short biotherapeutic-derived peptide fragments to major
histocompatibility complex class II (MHC II) molecules. Several
computational approaches have been developed to identify
potential MHC I and MHC II binding T-cell epitopes as well
as conformational B-cell epitopes [192]. Prediction of T-
cell epitopes is addressed by machine learning approaches,
particularly, neural networks-based methods that often rely
on evaluating the binding affinity of a given short peptide
towards MHC-I or II [192, 193]. In addition to such predictions,
publicly available databases such as IEDB [18] provide free
access to experimentally validated immunogenic peptide and
protein sequences along with tools for their analyses. In
silico predictions of potential MHC II binding T-cell immune
epitopes in the amino acid sequences can be used as part of
immunogenicity risk assessment and mitigation during the
Lead Identification and Optimization stages along with other
measures of humanness of the lead candidate sequences. In
this regard, the immunogenicity scale developed by Epivax
Inc. can be particularly useful [194] for initial triaging of the
potential lead candidates and for formulating potential de-
immunization or risk mitigation strategies. Kumar and co-
workers have observed an overlap between potential immune
epitopes and aggregation prone regions (APRs) around the CDRs
of therapeutic antibodies [195, 196]. In addition to offering a
potential mechanistic understanding of how protein aggregates
can break immune tolerance, the existing overlaps between
immune epitopes and APRs in CDRs of biotherapeutics open
up exciting opportunities for simultaneous optimization of
potency, solubility and safety of antibody-based biotherapeutics
via rational structure-based design. Altogether, computational
methods that facilitate deimmunization might offer a faster
and cost-efficient way of pre-selecting molecules with better
immunogenicity properties during the Lead Optimization stage.
We must emphasize that connection between computational
predictions of immune epitopes and ADAs generated against
biotherapeutics remains largely untested. Therefore, it remains
to be seen whether computational deimmunization strategies
truly work in clinic.

Biophysical properties

Together with immunogenicity, developing a working thera-
peutic also relies on favorable biophysical properties of the
molecule. This includes properties such as colloidal stability
of the antibody solution, concentration dependent viscosity
behaviors and physicochemical degradation [197–201]. Good
solubility is crucial [202, 203] to avoid aggregation that can
potentially lead to loss of activity, degradation of antibodies
or immunogenicity, as discussed previously. From a general
perspective, protein aggregation remains a major unsolved
problem in biochemistry. Aggregation has two aspects, namely,
mechanistic and kinetic. Mechanistic aspects focus on protein
instability and on identifying potential APRs, mainly hydropho-
bic patches on the protein surface, which can potentially
nucleate aggregation. A number of groups have reviewed the
applicability of various algorithms (Figure 2D, Table 2E) available
to predict APRs in biotherapeutics [204, 205]. Wang and co-
workers have examined molecular sequences of commercially
available mAb drug products and shown that they contain
multiple well defined aggregation prone motifs often located
in their CDRs [206]. These CDR-located APRs also contribute
significantly towards antigen binding [160], which help us
rationalize how antibodies may lose potency upon aggregation

and suggest potential strategies for selecting APRs for disruption
without impacting biological activity. Recently, Rawat and
co-workers have collected experimental data on aggregation
kinetics available in literature and used machine learning to
identify aggregation rate enhancer and mitigatory mutations
in proteins [207]. Several generic predictors of solubility and
APRs in proteins have been developed [208, 209] and though
these have been successfully applied to antibodies [206],
antibody-specific protocols addressing these issues also exist
[204, 210]. Lauer and co/workers carried out a 2-year long
measurement of biophysical properties for 12 antibodies [148]
from which they derived a score, the developability index (DI),
and demonstrated that it correlated well with the favorable
biophysical properties of their antibodies. The DI combines the
computed hydrophobicity, SAP score [211] and net charge of the
molecule into a statistical score indicating APRs. Identification
of hydrophobic regions is an important step in aggregation
prediction that ideally requires a crystal structure of the
antibody or a reliable homology model. This was addressed
by Jain and colleagues who developed a surface accessible
area predictor that can be applied to an antibody sequence
to further create a propensity score that could be correlated
with aggregation risk [149]. Measures such as the DI and the
aggregation propensity risk score rely on the hydrophobicity
scales and charge annotations, demonstrating that there is
useful information in these parameters alone. An extended
set of physico-chemical parameters was used by Obrezanova
and colleagues [15] to create an Adaptive Boosting model for
aggregation prediction. The model was trained and validated
on a dataset of 500 antibodies with calculated biophysical
properties.

The aforementioned methods relied on proprietary datasets
of calculated aggregation propensity, data from clinical stage
or marketed biotherapeutics in order to develop fast compu-
tational methods to perform pre-selection of candidates with
more favorable developability properties during the Lead Opti-
mization stage. An alternative approach is to use natural anti-
body sequences under the assumption that they have favor-
able biophysical properties [13]. In this study Raybould et al.
stipulate five computational guidelines to define favorable bio-
physical properties in antibody therapeutics. Among these a
structure-based hydrophobicity score is calculated and the value
is then compared to the distribution of the same score in nat-
urally sourced NGS sequences. Score values diverging signif-
icantly from the natural distribution are highlighted and the
associated sequences flagged for developability risk. This work
demonstrates a new paradigm in employing the vast amount
of naturally-sourced NGS data to guide therapeutic antibody
development.

Developing trends
Data-mining NGS

Development of computational methods to aid antibody engi-
neering relies on successful exploration and exploitation of new
data sources. In this respect, the field currently benefits from a
steady stream of new data from NGS of B-cell Receptors (BCRs,
to be used as proxy for antibodies) [212, 213] and there is an
increasing number of resources available for downloading such
data [17], which are being used to analyze therapeutic antibodies
[13]. Current bioinformatic analyses of NGS repertoires focus
on large-scale decoding of the immune responses, with several
potential applications for therapeutic design [22, 25, 214].
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One of the main applications of computational analysis
of NGS outputs is the identification of antigen-specific BCR
sequences after immunization (Figure 2E). Upon administering
an immunogen to an organism, antigen-specific antibodies
are raised, thus polarizing the immune repertoire. Sequencing
a sample of the repertoire and identifying newly abundant
sequence-similar BCRs is being used as a simple bioinformatic
method to identify new antibodies specific for the antigen of
interest. Clustering by V, J genes and CDRH3 sequence to identify
large sequence-similar groups can identify antigen-specific
cells after vaccinating humans with Hepatitis B [215]. A similar
approach based on identifying highly abundant sequences was
used to select antigen-specific molecules in immunized mice
[216]. Such simple models however can still identify sequences
that are not antigen-specific or miss less abundant antigen-
specific sequences [215]. The selection of false positives can be
tackled by more complex statistical models as highlighted by
Fowler and co-workers [217]. Identification of antigen-specific
antibodies after immunization can readily inform vaccine
design since such antibodies can be used to confer passive
immunity [218].

Identification of antigen-specific sequences can be naturally
extended to detection of the immune state altogether (Figure 2E).
Since the immune system is a dynamic reflection of the overall
health of the organism, some antigen-specific signatures in
the repertoire could be indicative of particular diseases [219].
It was demonstrated that statistical classifiers can identify
immune profiles of patients with chronic lymphocytic leukemia
[220], multiple sclerosis [221] or influenza [222] from NGS
data alone. Further development of a larger variety of such
models could result in versatile diagnostic tools for multiple
conditions on the basis of an individual’s sequenced BCR
repertoire [220].

Detection of antigen-specific sequences or the immune state
could be improved by defining sequence- and structure-based
rules governing adaptive immune responses through large
scale analysis of antibody repertoires [25]. From a sequence
perspective, it was demonstrated recently that despite the vast
numbers of diverse sequences in a typical human antibody
repertoire, a non-trivial amount of these is shared between
individuals [23, 223]. Human antibody repertoires can maintain
their fundamental sequence diversity despite the removal of as
many as 50–90% of sequences [214]. Human antibody repertoires
also appear to be constrained structurally, and this includes
regions of the antibody that display great variability such as
the CDRH3 loop [224]. Furthermore, many therapeutic CDRH3
loops can be found in naturally sourced NGS datasets, indicating
a certain degree of convergence between antibodies raised
experimentally and naturally occurring ones [225]. Studying
such convergence of immune repertoires might reveal strategic
preferences that have arisen through natural evolution. Such
constraints can be readily adapted to library construction
and used to identify binding antibodies (Figure 2E) [226].
This has already been demonstrated to some extent through
analysis of antibodies derived from 600 donors [24] followed by
construction of a library based on natural positional preferences
[26]. Deriving binders from more naturally focused libraries
might produce binders with more favorable biophysical and
immunogenic properties.

At this stage, further development of bioinformatic methods
for NGS analysis will depend as much on improving the
algorithms as on the quality of the data itself. In addition,
most of the NGS datasets produced to date do not offer
paired H and L chain sequences. Further development of

single-cell technology to provide paired NGS data [64, 227] will
expand our ability to query the immune system by compu-
tational methods, paving the way for better antibody-based
therapeutics.

Alternative antibody formats—nanobodies

New approaches to develop antibody-based therapeutics are
increasingly focused on different molecular formats. One of
the most promising is the H chain only antibody, or nanobody
that are naturally occurring in camelids (llamas, alpacas and
camels) [27] and sharks [228, 229] (reviewed by Muyldermans
[230] and Bannas et al. [27]). In line with its first therapeutic
approval in 2018 (caplacizumab), increasing levels of interest in
these molecules is demonstrated by recent nanobody-specific
databases and analyses [57, 58, 231, 232].

The nanobody contains just three highly variable loops
CDRH1, CDRH2 and CDRH3, which form an extended structural
paratope located at one side of the folded protein domain. The
absence of the L chain means that the nanobody’s CDRs are
distinct from those of antibodies in both sequence and structure,
and as a result nanobodies are able to bind antibody-inaccessible
epitopes in enzyme active sites, viral capsids and G protein
coupled receptors [233, 234]. Recent computational analyses of
large sets of antibody and nanobody sequences and structures
demonstrate that non-trivial systematic differences between
these molecules exist [231, 232]. Specifically, nanobodies
were found to exhibit less sequence and structure variation
across their framework regions, and similar levels of sequence
variation as classical antibodies within the CDRH1 and CDRH2
loops [232]. However, nanobodies translate this same level of
sequence variation into increased structural diversity across
the CDRH1 and CDRH2 loops, which are not classifiable by
established canonical rules, presenting additional challenges
to computational structural modelling tools compared to
classical antibodies [232, 235]. Furthermore, the nanobody
CDRH3 loop is on average three to four residues longer
than its antibody counterpart, and significantly more diverse
in terms of both primary sequence and tertiary structure
configuration, defying the canonical antibody VH-domain-based
rules and enabling nanobody CDRH3 loops to exhibit finger-
like protrusions that extend into epitope cavities on their
cognate antigens [230, 232, 235, 236].

Perhaps more significant in terms of challenges to compu-
tational modelling tools is that nanobody paratopes contain
on average nearly three additional residues, and moreover the
paratope is drawn from a wider set of aligned sequence positions
than classical antibody VH domain paratopes, comparable to
the set used by the entire VH-VL paratope [230, 232]. Given that
the VL domain is much less structurally variable, this suggests
that the application of computational structural modelling tools
to nanobody–antigen interactions will require innovation. In
addition, analysis of large sets of nanobody–antigen co-crystal
structures reveals that nanobody paratopes are made up of a
much greater diversity of structural subunits, further increas-
ing the modelling challenge [231]. CDRH3 loop residues that
are highly variable in both sequence and structure dominate
antigen-contacting residues within nanobodies, suggesting that
the nanobody-antigen interface will be difficult to model using
tools that have been developed in the context of classical anti-
body VH domains. Because of such differences it is not clear
whether the current methods for antibody modelling, docking
etc. are directly transferable to nanobodies. Thus, a systematic
benchmark of existing antibody computational tools would be
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highly informative to establish the extent to which these are
applicable to nanobodies, and the innovations that are necessary
to drive computational nanobody development.

Conclusions
Antibodies continue to dominate the field of biotherapeutics
with an increasing number of new clinical approvals each year.
Current approaches to bring these molecules to the market
have remained experimentally focused, with animal immuniza-
tion and surface display technologies accounting for the major-
ity of molecules developed to date. The increasing amount of
antibody-specific data in the public domain facilitates the mat-
uration of computational antibody design methods, resulting in
a growing uptake as part of standard pharmaceutical discovery
processes.

Computational methods are unlikely to replace the entire
discovery process. Indeed, their largest added value will con-
tinue to be in providing time and cost-efficient ways of guiding
experimental methods. Structural modelling can offer insight
on exposed residues to be used for mutagenesis to either opti-
mize binding, reduce immunogenicity or provide information
on hydrophobicity patches related to detrimental biophysical
properties. Predicting interface information can provide an ini-
tial guide for experimental epitope mapping efforts or offer a
starting point for a therapeutic campaign by providing the basis
for focused surface display libraries to design a novel antibody
binder for a given epitope. Exploiting the vast amount of data
generated by NGS will facilitate the derivation of more reliable
‘humanness’ and ‘developability’ profiles with which to guide
antibody therapeutic discovery.

Existing computational antibody design knowledge and tools
may benefit emerging biotherapeutic modalities akin to antibod-
ies, such as nanobodies. However, despite the similarity between
antibodies and nanobodies, systematic benchmarking will still
be needed to determine whether development of nanobodies
can benefit from computational antibody protocols in their cur-
rent form or whether they need to be adjusted accordingly.
Holistically, benchmarking of bioinformatic antibody methods
on a par with existing protein-generic initiatives such as CASP,
CAPRI or CAMEO [237] will benefit the entire computational
antibody field. Antibody-specific benchmarking challenges will
emphasize the shortcomings and advantages of each method
and enable improvements to be developed in a focused manner,
specifically with regard to their utility in therapeutic develop-
ment process.

Further progress in the development of antibody-specific
computational tools will be associated with access to more
and diverse data in the public domain. It will become increas-
ingly important that these data adhere to information manage-
ment and reusability best practices. Such efforts are exemplified
by AIRR community, which aims to standardize the increasing
amount of antibody NGS depositions and their metadata [213],
and from a broader perspective by the adoption of scientific
data management principles such as FAIR [238]. Organizations
involved in the discovery and development of antibody thera-
peutics have a unique opportunity to catalyze the development
of the computational antibody methods by participating in data
sharing and benchmarking efforts. Publishing proprietary data,
which has no or little commercial value, generated in the process
of developing a candidate therapeutic may yield a higher return
in the form of better computational methods.

As the importance of antibodies as therapeutics grows, faster
and more accurate computational methods are set to become

even more tightly integrated into therapeutic development
processes, thus accelerating the delivery of new medicines to
patients.

Key Points
• Antibodies are the largest group of biopharmaceuticals.
• Established bioinformatics methods such as protein

structural homology modelling and molecular docking
can be readily applied to the specific case of antibodies
in a therapeutic setting.

• Increasing amount of data from next generation
sequencing holds the potential to improve the compu-
tational methods and thus its applicability to therapeu-
tic design.

• Computational antibody methods might be transferable
to other immunoglobulin formats such as nanobodies,
which have more potential in certain therapeutic areas.

• Systematic benchmarking of the tools can emphasize
the advantages of computational methods and where
these can be used to support therapeutic pipelines.
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