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Abstract
Analysis of DNA copy number profiles requires methods tailored to the specific nature of these data.The number of
available data analysis methods has grown enormously in the last 5 years.We discuss the typical characteristics of
DNA copy number data, as measured by microarray technology and review the extensive literature on preproces-
sing methods such as segmentation and calling. Subsequently, the focus narrows to applications of DNA copy
number in cancer, in particular, several downstream analyses of multi-sample data sets such as testing, clustering
and classification. Finally, we look ahead: what should we prepare for and which methodology-related topics may
deserve attention in the near future?
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INTRODUCTION
In the late 1990s, array comparative genomic hybrid-

ization (aCGH) technology was developed for

the investigation of copy number changes on a

genome-wide scale and at sub-megabase resolution

in one single experiment [1]. In such an experiment,

genomic DNA from test and reference sample are

hybridized together on a glass slide containing an

array of genomic sequences. When measured inten-

sity log2-ratios are plotted according to the physical

position of their corresponding probe on the

genome, a genomic profile is obtained. Here, the

log-scale is used to symmetrize positive and negative

signals. Such a profile can be viewed as a chain of

contiguous genomic regions in which probes share

the same copy number, which can be inferred from

the log2-ratio data.

Array CGH is applied primarily in clinical and

tumor genetics. In clinical genetics, chromosomal

aberrations and germ-line variations in patients or

healthy individuals are studied [2]. In tumor genetics,

the emphasis is usually on somatic copy number

aberrations in individual cases or in series of profiles.

Although this review discusses many analysis meth-

ods that apply to both research areas, it focuses on

cancer applications, which require dedicated analytic

tools.

DNA copy number may also be measured by

single-channel arrays, such as provided by single

nucleotide polymorphism (SNP) platforms [3].
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The ‘comparative’ part (as in aCGH) is introduced

after the hybridization, when the intensity signals

obtained are ‘compared’ to normals on another

array hybridized with normal DNA or pool of

normal arrays. SNP arrays measure another dimen-

sion in addition to DNA copy number: loss of

heterozygosity (LOH). Array CGH misses copy

number-neutral LOH (also called acquired unipar-

ental disomy in tumors), because such an LOH

results in two copies, yet of identical origin. Array

CGH is ubiquitously applied though, because it

often outperforms SNP arrays for determination of

copy number [3] and can be applied to

formalin-fixed paraffin-embedded (FFPE) material,

which is often the only material available. Copy

number data from single-channel arrays may be ana-

lyzed very similarly to aCGH data, although perfor-

mance of some of the preprocessing modules may

be platform dependent. Hence, many methods

discussed in this article are appropriate for both

one- and two-channel data; if not, we mention the

platform to which the method applies.

DNA copy number detection plays an increas-

ingly important role in cancer research. The ultimate

goal is to identify and narrow down chromosomal

regions associated with tumor progression, survival

and treatment success [4]. The current high-quality

and high-resolution arrays provide the technical

means for this purpose. Equally important are

up-to-date analysis methods tailored to this data

type. Many methods have become available since

2004. In the beginning, these methods mostly

concerned analysis of individual profiles, e.g. seg-

mentation. Later, multi-sample analysis approaches,

such as testing and clustering, were considered.

The consensus on analysis of copy number array

data is not as strong yet as it is for the analysis of

mRNA gene-expression data [5], probably due to

the longer history of the latter. Care should be

taken when transferring methods from one data

type to the other. Where appropriate, we mention

crucial differences between mRNA and copy

number data plus the consequences for data analysis.

We aim to cover many aspects of DNA copy

number analysis. We look back to the developed

analysis procedures with a focus on methods that

are relevant for the state-of-the art high-resolution

copy number data. We distinguish preprocessing and

downstream analysis. Preprocessing comprises all

preliminary operations on the data necessary to

arrive at the quantity of interest, being the copy

number of a genomic segment for these data.

It includes normalization, segmentation and calling

of copy number aberrations. Downstream analysis

comprises all operations on the pre-processed data,

whether it be a simple descriptive analysis, hypothesis

testing, clustering or prediction. Many preprocessing

techniques are relevant for both clinical and tumor

genetics, whereas downstream analysis is more spe-

cific. For tumor profiles, such analysis focuses on

combining copy number data with other (clinical)

data such as subtypes, tumor progression stadia, sur-

vival and treatment success.

Finally, we look ahead to data-analysis challenges

which may emerge from new types of high-resolu-

tion copy number data and discuss a few unresolved

methodological issues.

PRELIMINARY ISSUES
The chromosomal unit of interest
In DNA copy number experiments, there is no a

priori unit of interest, as opposed to the majority

of mRNA experiments, for which the genes as

coding regions for proteins are a natural unit. By

nature, the crucial DNA copy number events, aber-

rations, arise when a piece of DNA is either deleted

or gained. Such a piece can be an entire chromoso-

mal arm, but also just 1/106 of an arm. Chromosomal

banding is available as well, but most aberrations take

place within or across these bands. Depending on the

desired resolution, an array with several thousands

(cDNA or BAC clones) or even millions of elements

(oligos) is used. We refer to those array elements as

‘probes’. The unit used is then often defined by the

design of the array. Alternatively, a data-driven, vari-

ably sized unit, as discussed in the section on dimen-

sion reduction, may be preferred.

Design of the experiment
Most DNA arrays are dual channel, using normal

tissue as reference material. As opposed to the

mRNA normal reference, it is known what DNA

reference material should reflect: copy number equal

to 2, apart from the sex chromosomes and germ-line

variations. This knowledge is useful for the identifi-

cation of aberrant DNA parts. The reference material

may be a pool of normal DNA or, for tumors,

normal tissue DNA of the same person. The latter

strategy implies that germ-line variations cancel out,

but normal from the same tissue as the tumor may

not always be available. These and other design issues
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such as choice of the array platform and collection of

sample material are discussed in [6].

PREPROCESSING
Preprocessing is typically more complex for DNA

copy number data than for mRNA data. Almost all

researchers agree that at least some form of quality

control, within array normalization and smoothing/

segmentation, is needed. Whether additional steps

are applied depends on data quality and planned

downstream analysis.

Feature extraction, quality control and
visualization
State-of-the-art copy number arrays deliver high-

quality spots. Many researchers opt not to filter

flagged spots as provided by feature extraction

software. Otherwise, simple techniques such as

K-nearest neighborhood imputation, where the

neighborhood may be restricted to genomically

close probes, may be used to impute the created

missing values. Note that imputation is usually a

matter of convenience, because many downstream

multi-sample analysis modules require matrix input

without missings.

Assessing the quality of copy number profiles is

possibly the most subjective step in array analysis.

Visual inspection of the data is still the most

common practice. While mRNA array data are usu-

ally visualized by MA-plots, DNA copy number data

are mostly displayed as profile plots such as Figure 1a,

because these take the genomic order into account.

A commonly used quality measure is the median

absolute deviation (MAD), which is robust against

outliers. Alternatively, the median of MADs or stan-

dard deviations as computed over a moving window

may be reported. The latter is a more local assess-

ment of the noise than the global MAD.

Removing artifacts from genomic
profiles
Artifacts may be caused by several technical and bio-

logical parameters such as: GC content, i.e. the local

density of G and C nucleotides in probes or DNA

hybridized; DNA sample quantity and quality; label-

ing efficiency of the dyes and cellularity, i.e. the per-

centage of normal cells in the biopsy. Subsequently,

we discuss several methods to remove those artifacts.

High-resolution aCGH profiles may show wavy

patterns (see Figure 1b). These waves appear to

correlate with GC-content [7]. Presence of waves

may hamper detection of (small) aberrations.

Therefore, algorithms have been devised to remove

waves for tumor profiles, either by regression on

GC-content [8] or by regression on calibration pro-

files [9]. The first does not rely on calibration, while

the second also removes artifacts not related to

GC-content.

The assumptions of symmetry in the number of

over- and under-expressed genes and of the majority

being non-differentially expressed are the basis of

most within-array normalization methods for

mRNA data. These assumptions are not sustainable

for aCGH data (see Figure 2 and [10]). Assuming

that the bulk of probes corresponds to the 2-copy

state, mode-subtraction is the best simple option,

although the mode may be biased upward when

a sample contains many gains. Alternatively,

more advanced normalization methods are available

[10, 11]. The first method fits a Lowess curve using a

preliminary estimate of the most predominant copy

number class, and applies the resulting correction

curve to all the data. The second method detects

a ridge—a two-dimensional mode—in the two-

channel intensity density plot and then calibrates

the two-channel signal on this ridge.

Between-array normalization (quite common for

mRNA arrays), such as scaling by the standard devi-

ation or variance modeling, may do more harm than

good for aCGH, given the potentially large propor-

tion of aberrations in a DNA sample. However, in

cancer data sets, it is wise to correct for cellularity,

because normal cells dilute the signal of the cancer

aberrations. Basically, for the measured ratio M, pro-

portion tumor cells c and true ratio T we have:

M¼ 1� cþ cT, because normal cells result in a

ratio equal to 1. So, T¼ (M� (1� c) / c.

Segmentation and calling of normalized
copy number profiles
Recovering the segmental structure (Figure 1c) and

the hidden discrete copy number values (Figure 1d)

from the raw data are specific and well-studied pre-

processing steps for the analysis of copy number data.

While some consider ‘calling’ of chromosomal copy

number as the ultimate goal, others concentrate on

segmentation only. Calling may be performed after

segmentation, or directly on the log2-ratio data. The

latter approach is discussed first.

Calling consists of the assignment of discrete copy

number states to probes. The number of states may
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vary, but covers, for diploid samples, at least ‘dele-

tion’ (or ‘loss’; <2 copies), ‘normal’ (¼2 copies) and

‘gain’ (>2 copies). Deletion may be further stratified

as homozygous (0 copies) and heterozygous (1 copy),

while gain includes single gain (3 copies), double

gain (4 copies) and amplification (>4 copies). If

{Y(xt)} denotes the sequence of ‘observed’ log2-

ratios at coordinates {xt} on the genome, the aim

Figure 1: Preprocessing an aCGH tumor profile. (a) Raw data, (b) mode-normalized data. Segmentation shown for
comparison with (c) de-waved plus segmented data, (d) called data. (a^ d) genomic order on the x-axis.
Chromosome 23 refers to the X-chromosome, while the Y-chromosome (24) is not shown. Grey dots indicate
log2-ratios, segments are black horizontal lines. (a^ c) log2-ratio sample/reference on the left axis. (d) Bars indicate
posterior loss and gain probabilities. Probability scale on the left axis; reversed (‘‘1’’) for the gains. Amplifications
are indicated by tick marks on the top axis.
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is to recover {Z(xt)}, the corresponding ‘hidden’

sequence of copy number states. This task would

resume to clustering if the data where not spatially

ordered, but when interested in the copy number at

xt it is likely that neighboring positions (xt�1, xtþ1)
provide information as well. As a consequence, many

different modeling strategies have been considered to

cluster genome-ordered data. An intuitive way to

account for spatial dependency is to model the

sequence {Z(xt)} as a Markov Chain, leading to hid-

den Markov chain models (HMM) with Gaussian

emissions. Using HMMs leads to a probabilistic seg-

mentation of the chromosomes into regions

of homogeneous posterior probabilities for the

‘hidden’ states using Pr{Z|Y}. Such models have

shown large flexibility to handle aCGH data-specific

characteristics. For instance, the inter-clone physical

distance is introduced to account for heterogeneities

in the resolution of the investigated regions [12].

Clone overlap can also be accounted for in contin-

uous-time models [13]. However, the corresponding

computational strategies use iterative algorithms that

may be prohibitive on large signals, especially for

their fully Bayesian version [14].

Most alternative methods have not focused on the

recovery of the ‘hidden’ sequence {Z(xt)}, but rather

on the structure of the ‘observed’ data {Y(xt)}. Such

segmentation methods assume that the data is orga-

nized into segments with homogeneous means.

Consequently, segmentation methods have focused

on the identification of breakpoints in the distribu-

tion of {Y(xt)} to delimit chromosomal aberrations.

Circular binary segmentation (CBS) was one of the

first-proposed methods, and was shown to be very

robust and effective [15]. It is based on a sequential

dyadic split of the data, using a statistic similar to the

Student statistic and a P-value which gives informa-

tion on the strength of the split. Bayesian segmenta-

tion has also been proposed to estimate the true level

of segments with better accuracy [16]. All segmen-

tation models are based on the assumption that chro-

mosomal aberrations are delimited by abrupt changes

in the signal. However, some data show more

smooth transitions, possibly due to cell-to-cell vari-

ability in copy number [17]. In [17, 18], heavy-tailed

random effects and wavelets are applied, respectively,

for smoothing profiles. From the computational

point of view, smoothing methods are very compet-

itive. In addition, smoothing may result in a larger

signal-to-noise ratio than segmentation, but tends to

be less precise on segment boundaries [19].

One limitation of segmentation methods is that

these do not provide information about the sequence

{Y(xt)} of copy number states. ‘Merging’ steps have

been proposed as a posteriori calling on segment

level. These strategies are based on statistical tests

[20] or on mixture models [21, 22], which also

return posterior call probabilities. This downstream

step was shown to be of ‘paramount impor-

tance’ when using segmentation for aCGH [20].

Figure 2: Density plot (smoothed histogram) for one tumor profile. Raw log2-ratios on the x-axis, relative fre-
quency on the y-axis. Solid and dashed vertical lines correspond to mode and mean, respectively. Assuming that
the largest mode corresponds to the normal two copy number state, gains are clearly present as opposed to losses.
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The merging step only constitutes a second-stage

procedure. Segmentation can, however, also learn

from the calling step in a unified model to detect

breakpoints that correspond to changes in copy

number states and not only to changes in the mean

of the signal [22]. Most current calling methods do

not result in an estimate of the actual copy number.

Copy number arrays that also contain probes for

interrogating SNPs provide allele specific frequen-

cies. These were shown to be useful in estimating a

more exact copy number [23]. Tumor heterogene-

ity, referring to the presence of different cell subpo-

pulations in a sample, may hamper accurate

estimation of copy number. In [24] tumor heteroge-

neity is accounted for by modeling the observed

log2-ratio as a function of two calibrated parameters

and a weighted sum of subpopulation contributions.

A comparison of 11 segmentation methods

showed that these perform consistently well on

simulated and real data sets [19]. However, these

methods ignore inter-clone distance, and their com-

putational burden is O(n2) when n is the number

of probes. In practice, this is partly solved by applying

the methods to subparts of the profiles (such as

chromosome arms). Combining wavelet-denoising

and segmentation appears to be very promising

from detection and computational efficiency per-

spective [25].

Overall, every strategy has its advantages and

drawbacks. Initiatives such as ADaCGH [26],

which combines many detection algorithms, are

very valuable. Because >30 competitive methods

have been published since the useful comparison

studies [19, 20], an update to these studies that also

accounts for computational efficiency will be wel-

comed by the community.

Sample measured on multiple platforms
Recently, existing preprocessing methods have been

challenged by the availability of multiple DNA copy

number profiles of the same sample measured on

different platforms. Issues such as resolution/cover-

age, signal (intensities versus log2-ratios) and

platform-specific artifacts need to be resolved

before such data can be combined. Papers on this

subject recently appeared [27, 28]. In the first, a nor-

malization method to make such data from different

platforms more comparable is proposed, while in the

latter CBS [15] is extended to arrive at a sample’s

consensus segmentation profile from its multiple

DNA copy number profiles.

DOWNSTREAMANALYSIS
Copy number log2-ratios data undergo several pre-

processing steps, each of which yields a different data

type: normalized log2-ratios, segmented log2-ratios,

(discrete) calls or call probabilities. There appears to

be little consensus on which is most appropriate for

what downstream analysis method. Below we discuss

such methods and we specify the data type to which

the method is applicable.

Dimension reduction for identifying
copy number units
Dimension-reduction techniques, such as principle

component analysis, are commonly used for creating

more stable features in mRNA array data analysis,

e.g. for the purpose of sample classification. For

aCGH data, dimension reduction serves many

more purposes.

The increasing resolution of the DNA copy

number arrays enables us to detect very small

(focal), but nevertheless relevant, aberrations [29].

Large aberrations may cover entire chromosomes in

tumor profiles. Generally, the length of an aberration

does not determine its importance. If one leaves the

data dimension unchanged, large aberrations will

mainly drive multivariate downstream analyses like

clustering. In addition, a high number of probes may

severely challenge multiple testing corrections,

which are usually too conservative for such highly

positively correlated data. Therefore, it is useful to

apply data-driven dimension reduction.

In [30], regions of consecutive probes are deter-

mined that have (nearly) the same call-signature,

which is the vector of calls over the samples. The

acceptable amount of information lost by this oper-

ation is set a priori. The size of the regions varies: the

algorithm adapts the resolution to the number of

locally observed copy number changes. The data is

then reduced to these regions and the medoid sig-

nature of all probes in the region. The advantage of

using regions instead of calls was demonstrated for

testing [30] and clustering [31].

Statistical testing for associationwith
clinical data
An immediate question for multi-sample cancer pro-

files is: which probes or DNA regions are signifi-

cantly associated with clinical outcome, such as

survival, tumor progression stadia, relapse, treatment

success, etc? The assumption of Gaussian distribu-

tions is often used for mRNA data. However,
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implicit to the nature of copy number data, this

assumption can not be maintained, irrespective of

the data type used (see Figure 3). For non-discretized

data, one may consider using standard rank tests such

as Wilcoxon–Mann–Whitney, although these are

designed to have power for shift rather than

multi-modality. A tailored nonparametric test for

detecting multi-modality may be more suitable

[32]. For calls, common nonparametric tests like

chi-square or log-rank tests (survival data) may be

used. It is wise to propagate uncertainty of the calls

into the testing by using call probabilities, thereby

achieving superior power [33].

Correction for multiple testing is essential, as for

all high-throughput data. Powerful methods to con-

trol False Discovery Rate (FDR) and Family Wise

Error Rate (FWER) for discrete data such as the calls

are provided in [34].

Clustering of samples for subtype
discovery
The discovery of subtypes is the aim of cluster ana-

lysis. It seeks meaningful data-determined groupings

of samples, such that the samples within groups are

more ‘similar’ than the samples across groups. Cancer

of a particular tissue type is often a collection of

multiple different diseases. This may be reflected

in DNA copy number profiles of samples of

such a cancer. In fact, DNA copy number data

have been successfully used to identify molecular

subtypes.

Subtype identification on the basis of DNA copy

number data was initially done using clustering

approaches designed for analysis of mRNA data

(e.g. [36, 37], using normalized and segmented

DNA copy number data, respectively). More

recently, tailor-made clustering methods for DNA

copy number data have been published. Roughly,

these can be divided in distance and model-based

approaches, both are discussed below.

At present only a few distance-based approaches,

tailor made for clustering of called copy number

data, have been published: a K-means approach

[38] and WECCA, a hierarchical clustering method

[31]. Each method develops similarity measures to

deal with the discrete nature of called data, with

the similarity measure in [38] being a special case

of those proposed in [31]. Reducing the calls to

(minimal common) regions before clustering causes

a desired effect of small amplifications (focals) con-

tributing equally to the similarity measure as long

‘dull’ chromosomal areas with normal DNA copy

number [31]. A similar approach is taken in [39].

Use of (minimal common) regional copy number

data in combination with a similarity measure tailor

made for discrete data yields clusterings with the best

stability (I. Brito et al., manuscript in preparation).

Alternatively, subgroups of samples have also been

discovered by the use of dimension-reduction tech-

niques such as principal component analysis (PCA;

Figure 3: Visualizations of unsegmented, segmented and called data for clone CTD-2371A5 (16p-arm) in ERþ and
ER� breast cancer samples [35]. Density plots indicate the smoothed relative frequencies of log2-ratios (x-axis) in
the ERþ (solid) and ER� (dashed) groups. (a) Normalized, unsegmented data and (b) segmented data and call fre-
quencies (loss, normal and gain) as vertical bars.
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[40, 41]). Clusters are identified from the resulting

low-dimensional PCA plot by visual inspection for

groups of samples that occupy well-separated sub-

spaces of the plot.

Subtypes discovery is also done using

model-based clustering. Given the number of clus-

ters k, a mixture of k HMMs is used in [42]. Each

HMM models the observed log2-ratios arising from

an underlying aberration profile. The HMM mixture

model is fit by iterative application of a coordinate

ascent algorithm. The number of clusters is deter-

mined by optimizing the Silhouette coefficient

over models with different numbers of clusters.

Finally, for each cluster the latent vector of calls,

that represents the pre-dominant DNA copy

number aberration profile of the samples in the clus-

ter, is estimated.

No studies have been performed yet that quanti-

tatively compare distance- and model-based methods

alongside. Distance-based methods may be favored

for their philosophical simplicity and visualization by

means of dendrogram and heatmap. A model-based

approach has the advantage of a statistical model with

(interpretable) parameters at its core. Without such

comparison studies the method that yields the most

stable identified subtypes (to be assessed, e.g. by

bootstrapping) may be preferred.

Classification by genomic profile for
prognosis and diagnosis
Classification aims to construct a rule (classifier)

which assigns objects (e.g. tumors) to pre-specified

classes on the basis of measurements (e.g. their geno-

mic profile) on these objects. Classifiers constructed

from mRNA profiles have been successfully used in

the prognosis of clinical outcome and disease diag-

nosis. DNA copy number profiles may potentially be

used for the same purpose. If this potential is fulfilled,

DNA copy number-based classifiers have a major

advantage over their gene expression-based counter-

parts. The DNA molecule is much more stable than

the mRNA molecule. Moreover, unlike mRNA

expression, DNA copy numbers are not sensitive to

environmental and circadian rhythms. Finally, the

number of independent dimensions in the data is

lower than for mRNA, which may result in more

stable classifiers and features. DNA copy number

classifiers (when shown to be specific and sensitive)

are thus more practical to use in clinical practice.

Neither the application of, nor methodology for,

prediction analysis using high-throughput DNA

copy number profiles is abundant. Support vector

machines (SVM) with a pre-specified number of

features (to be optimized a posteriori) are used to clas-

sify tumors from normalized aCGH data [43, 44].

An SVM is also used in [45] (modified in [46]),

but with a pre-selected set of genomic intervals con-

sistently exhibiting an excessive signal (rather

than the probes themselves) as features. When com-

paring three traditional classifiers (k-nearest neighbor,

naive Bayes and SVM) on one aCGH data set, SVM

was found to perform the best [47].

Two tailor-made copy number classifiers have

been proposed [48, 49]. We discuss the former: a

‘fused SVM’ for classification with normalized

aCGH data. The fused SVM is a regular SVM

with a hinge loss function subject to two parameter

constraints (penalties). The first is the standard

LASSO penalty that shrinks feature contributions

toward zero, whereas the second shrinks the differ-

ence of the contributions of two successive features.

The latter is desirable for aCGH data due to extre-

mely high correlation between successive features.

The SVM is fitted with a convex optimization

procedure using cross-validation to tune penalty

parameters. Application to bladder and melanoma

tumors shows promising results.

No independent, full-scale comparison study of

the classification methods above has been published.

The advantage (as opposed to clustering), however,

for classification is that true labels are known for

at least a subset of the samples and, hence,

cross-validation and/or bootstrapping may be used

to select the most promising classifier.

Detection of recurrently aberrated
regions in tumor profiles
Identifying aberrations that are present in a large pro-

portion of samples in a tumor set may narrow down

the search for causal genes. Consequently, an impor-

tant research direction is the identification of recur-

rent regions of alteration, i.e. genomic regions that

are aberrated in a substantial proportion of the sam-

ples. Despite an apparent simplicity in the notion,

there is no consensus on a formal definition of recur-

rent regions as many scenarios may correspond to

relevant biological situations [50]. For instance,

gains and losses may be considered separately or

not, and determination of a relevant threshold for
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the fraction of samples containing the aberration is

difficult. An attempt has been to add the condition

for a recurrent region to be more frequently aber-

rated than neighboring regions, leading to the con-

cept of ‘minimal regions of overlap’, which is a

recurrent region that does not contain any smaller

recurrent region [51]. Algorithms for detecting

recurrent regions differ by several properties such

as: input (unsegmented, segmented, called data,

etc.), output (P-values available or not), use of

biological knowledge and ability to detect sample

subsets. Considering called data as input has the

advantage of reducing noise, but it may result in a

decrease in the sensitivity of prediction [52]. An

alternative is to use call probabilities in the compu-

tation of recurrent regions. The advantage of using

these probabilities rather than log2-ratios is that

inter-array differences in those log2-ratios are

avoided [53]. Finally, a different strategy that

accounts for the amplitude of aberrations in the

raw data is the use of hierarchical HMMs to jointly

model patient-specific alterations and shared alter-

ations using a ‘master’-process [54]. These algorithms

and the corresponding software have been exten-

sively reviewed in [50, 52].

OUTLOOK ANDDISCUSSION
Many existing methods for downstream analysis do

not make full use of the richness of high-resolution

data and available data bases. Subsequently, we con-

sider types of information other than (relatively large)

aberrations which deserve attention when develop-

ing new analysis methodology.

Germ-line copy number variations (CNVs) are

small parts of the genome of which the copy

number can vary between healthy individuals.

These CNVs can be as large as 3 Mb [55] and

cover 12% of the human genome [56]. The extent

of CNVs was only recently discovered due to the

increasing resolution of aCGH (�100 kb resolution).

High-resolution aCGH not only exposed the extent

of these germ-line variations, but also that of

focal aberrations (�3 Mb) in cancer, which are thus

somatic [57].

CNVs are immediately observed when healthy

individuals are directly hybridized against each

other, as gains or losses in a flat background. CNVs

and focal aberrations add new dimensions to the

analysis of aCGH experiments. For cancer samples,

one prefers to detect germ-line and somatic muta-

tions separately. Germ-line CNVs can be indicated

by using public databases like http://projects.tcag.ca/

variation/. Better still, tumors are now frequently

hybridized against normal DNA from the same indi-

vidual, such that only chromosomal aberrations are

detected [57]. When normal DNA is available for

a subset of samples only, candidate locations

of focal aberration can be extracted from this set,

after which recurrence can be calculated for the

entire set [29].

The impact of CNVs and focal aberrations on

tumorigenesis needs to be evaluated. Inherent to

their size, such aberrations encompass only one or

few genes. This makes integration with mutation,

clinical variables and/or expression data enormously

attractive since driver genes are relatively easy to

identify [29]. For incorporation in downstream ana-

lysis, proper dimension-reduction techniques are

essential, such that these small aberrations do not

disappear against the background of large tumor

aberrations. Alternatively, separate analysis modules

are applied to CNVs and somatic aberrations. CNVs

can also be implemented in genome-wide associa-

tion studies, using methodology developed for the

analysis of SNP-association studies [56]. Yet the

amount of CNVs is lower than the amount

of SNPs rendering less severe multiple-testing

corrections.

The ultimate resolution for detecting CNVs or

focal aberrations is next-generation sequencing,

termed digital karyotyping when used for copy

number detection [58]. Note that digital karyotyping

is still more costly than aCGH. Moreover, the same

and more focal aberrations are detected in a small

series of tumors by using arrays as with digital kar-

yotyping [29]. Digital karyotyping requires different

preprocessing techniques, because it provides count

data rather than intensities. Moreover, computational

efficiency is extremely important. To make optimal

use of the information provided by digital karyotyp-

ing, data-adaptive dimension-reduction techniques

like [30] need to be further developed, possibly lead-

ing to a multi-resolution representation of the data.

Such a representation is necessary to allow identifi-

cation of very small markers, while maintaining

power at a coarser scale. Dimension reduction may

also be necessary to relieve the computational burden

for downstream analysis. We anticipate that, when

digital karyotyping data are properly preprocessed

and compressed, only limited adjustments to the

methodology used for the analysis of copy

number-array data are needed.
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A large advantage of next-generation sequencing

with respect to arrays is that it provides more

information than copy number alone using a single

measurement device, such as mutations,

SNPs, unbalanced translocations and inversions.

Therefore, an enormous challenge is the develop-

ment of efficient downstream-analysis methods for

these data that integrate those sources of information.

Integrative analysis is also needed for experiments,

where alongside DNA copy number data other

high-throughput measurements (e.g. gene expres-

sion, methylation, microRNA expression) are gen-

erated from the same individuals. Integration is a vast

area, requiring specific methods for the type of

molecular markers studied. From the methodological

point of view, integration involving copy number

data is a young field, likely to extend quickly in

the near future.

The field of copy number data analysis has

received a lot of attention the last few years, resulting

in a large variety of preprocessing algorithms (in par-

ticular, segmentation) and algorithms for determin-

ing recurrent regions. To a lesser extent, dedicated

methods for downstream analysis, such as testing,

clustering and classification, have been developed.

One important topic that is missing in the current

literature is sample-size determination for aCGH

experiments. Several sources are available for

mRNA and SNP experiments, but the breakpoint

nature of copy number data does not allow the use of

such methods directly. Moreover, while exploratory

analysis for determining co-aberrated regions in a set

of tumors is quite common, we believe a structural,

multivariate approach to this problem may lead to

promising hypotheses on tumorigenesis. To account

for the extra dimensions added by CNVs and focal

aberrations, a completely new class of analysis meth-

ods for high-resolution copy number data of tumor

samples is needed. Inclusion of prior information

from the CNV databases in the downstream analysis

could be valuable. To this extent, model-based stra-

tegies could be particularly efficient to estimate the

probability for an aberration to be somatic or

germ-line.

In short, methodology for the analysis of

high-resolution copy number data has grown

toward a substantial research field. However, many

challenges remain, in particular, to account effi-

ciently for the increasing resolution and to unravel

the role of copy number in the context of multiple

genomic data types.

Key Points

� Inherent to its nature, copynumber data requires dedicated ana-
lysismethods

� For several types of analyses such as segmentation/smoothing,
clustering and classification, full-scale comparisons studies
would be highly valuable.

� Data-adaptive dimension-reduction methods are essential for
dealing with the increasing resolution of copy number data.

� Joint analysis of copy number variations and aberrations of
(highly) variable sizesmay lead to new insights on tumor biology.

Appendix: software
We present two tables of software resources

for array CGH data analysis. We mostly cite R

software from the repositories CRAN [59,

Table A1: Software for preprocessing aCGH profiles

Reference Source Name Platform

Removing wave-like artifacts
Diskin et al. [8] http://www.openbioinformatics.org/penncnv/ PennCNV-gcmodel Stand-alone
Van de Wiel et al. [9] http://www.few.vu.nl/�mavdwiel/nowaves.html NoWaves R
Normalization
Staaf et al. [10] CRAN popLowess R
Chen et al. [11] http://ntumaps.cgm.ntu.edu.tw/aCGH supplementary/ Matlab
Segmentation, smoothing and calling
Marioni et al. [12] Bioconductor snapCGH R
Rueda et al. [14] CRAN RJaCGH R
Olshen et al. [15] Bioconductor DNAcopy R
Rancoita et al. [16] http://www.idsia.ch/�paola/mBPCR/ mBPCR R
Huang et al. [17] http://www.meb.ki.se/�yudpaw/ smoothseg R
Van de Wiel et al. [21] Bioconductor CGHcall R
Picard et al. [22] CRAN segclust R/Cþþ
Pique-Regi et al. [25] http://biron.usc.edu/�piquereg/GADA/GADA.html GADA Stand-alone
Di¤az-Uriarte et al. [26] http://adacgh.bioinfo.cnio.es/ & CRAN adaCGH Stand-alone & R
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http://cran.r-project.org/] & Bioconductor [60,

http://www.bioconductor.org]. Additional R-

software for aCGH analysis is discussed in [61]. For

software references on recurrent regions refer to [50].
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