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Abstract
Like most other ®elds in biology, immunology has been revolutionised by the techniques of

molecular biology and the resulting explosion in available experimental data. It is argued that

efforts to integrate the data to gain insight into how various subsystems in the immune system

interact and function require mathematical modelling and computer simulation in close

collaboration with experimentalists. This paper illustrates some of the techniques available for

modelling immune systems, and highlights the issues that should be borne in mind by anyone

starting down the modelling path.

INTRODUCTION
The human immune system is

enormously complex and the battle to

understand it has presented problems that

pre-date those being faced now by

geneticists and molecular biologists

dealing with genomic data: abundant

information within a theoretical

framework that is relatively

underdeveloped. Mammalian immune

systems show a high degree of

evolutionary conservation and through

studies of both humans and other species,

a great deal of the molecular mechanisms

at work and the interactions at the

intercellular level that drive immune

responses have been uncovered.

However, our understanding of the

properties of the immune system as a

whole is still limited, and this in turn

constrains therapeutic approaches. This is

apparent, for example, in autoimmune

diseases or in the case of HIV infection.

In order to put the current challenges

into context, we can divide the

development of the biological sciences,

and immunology in particular, into three

stages:

· Cell biology/physiology era. This was

largely an experiment-driven whole

animal or cellular black box approach

in which inputs were compared to

outputs without much understanding

of the genetic or molecular events that

linked them. Great insights into system

behaviour were gained with relatively

simple discriminative experiments.

· Molecular biology era. This has been

characterised by the recent `data

explosion' from high-throughput

molecular biology techniques, the

development of advanced experimental

techniques and information

management, leading to genome

sequencing, extensive cataloguing of

the structure and function of gene

products and the description of

metabolic and signalling pathways.

However, insight into system

behaviour has lagged behind data

acquisition, partly due to the

reductionist approach that is frequently

employed.

· Post-genomic era. We are currently faced

with the dif®cult but exciting task of

integrating huge experimental data sets

with new theoretical frameworks to

produce useful models of system

behaviour.

It is increasingly being realised that the

properties of whole biological systems

cannot be deduced by intuition alone, nor

deduced directly from the data being

provided by the molecular biology
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approach. This is due to a number of

factors:

· Combinatorial complexity. The number

of potential interactions between

individual elements (eg proteins) in a

system grows extremely rapidly with

the number of elements. There is

increasing evidence that this network of

interactions cannot be ignored. The

action of every protein will be

modulated and affected by the presence

of many other proteins. This is not

addressed using current experimental

technique. One can attempt to

determine the function of every gene

by knocking them out individually in

an animal (a massive job that has been

completed for Drosophila but not for

the mouse). However, to understand

the function of a gene it would be

necessary to knock out every pair,

triplet, etc. of genes. This is clearly not

feasible.

· Feedback loops appear to be ubiquitous

in physiological systems, and these

operate at various levels in the immune

system. For example, antigen stimulates

the formation of the appropriate

antibody, which then results in the

clearance of the antigen, a classical

negative feedback loop. A similar

example at the intracellular level is that

of NF-kâ which activates the

transcription of Ikâ, which binds to

NF-kâ and inactivates it. Positive

feedback loops are also seen, for

example, when the presence of active

TNF-á results in the recruitment of

immune cells which then release more

TNF-á, as described in the TNF-á
model below. Although the effects of a

single feedback loop can probably be

understood intuitively, this is no longer

the case when several feedback loops

begin to interact.

· Delays. Similarly, most biological

effects involve a delay. Thus for

instance when a T cell receives a

proliferative signal, it ®rst needs to

synthesise DNA and undergo the

biochemical changes required for cell

division. Delays, especially when

combined with feedback loops

introduce many unforeseen effects into

a system, for instance oscillations (eg

Haurie et al.1).

· Non-linearity. A system is called non-

linear if its response is not always

proportional to the stimulus. Non-

linearity is all-pervasive in biological

systems, and indeed is essential for their

functioning. Examples include

saturation of signalling pathways or the

ability of some signalling molecules to

switch on different genes at different

concentrations (eg Shimizu and

Gurdon2). It is well known that even

simple non-linear feedback systems can

exhibit complex and counter-intuitive

behaviour (eg Callard et al.3).

It is therefore clear that more rapid data

acquisition and more sophisticated

information management are insuf®cient

by themselves to understand the

complexities of the immune system. Our

belief is that increasingly mathematical

modelling is becoming an essential tool to

complement experimental and

conventional bioinformatical techniques

in immunology. Together, such

approaches offer the possibility of gaining

new insights into the behaviour of the

immune system, of providing new

frameworks for organising and storing

data and performing statistical analyses, of

suggesting new hypotheses and new

experiments, and even of offering a

`virtual laboratory' to supplement in vivo

and in vitro work.

However, mathematical modelling in

immunology, and in the life sciences

more generally, is far from

straightforward, and suffers from a

number of potential pitfalls:

· Mathematically sophisticated but biologically

useless models. These can arise because of

a lack of biological input, leading to

models that are biologically unrealistic,
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or address a question of little biological

importance. The latter, more insidious,

problem often arises because the

reasons for constructing the model have

not been clearly articulated.

· Biologically realistic but mathematically

intractable models. The converse problem

usually arises because biologists

unfamiliar with the limitations of

mathematical analysis want to include

every known biological effect in the

model. Even if it were possible to

produce such models they would be of

little use since their behaviour would

be as complex to investigate as the

experimental situation.

In our experience, the single most

important factor in avoiding either of

these is to formulate clear explicit biological

goals before attempting to construct a

model. This will ensure that the resulting

model is biologically sound, can be

experimentally veri®ed and will generate

biological insight, or new biological

hypotheses. We stress that the aim of a

model should not simply be to reproduce

the biological data, and indeed often the

most useful models are those that exhibit

discrepancies from experiment. Such

deviations will typically stimulate new

experiments or hypotheses. Our ideal is

therefore an iterative approach, starting

with a biological problem, developing a

mathematical model, and then feeding

back into the biology (Figure 1). Once

established, this collaborative loop can be

traversed many times, leading to ever-

increasing understanding. There are many

potential bene®ts for the biological side of

the collaboration. As well as indicating

new experimental directions, developing

the mathematical formulation of a system

may focus thinking and clarify de®nitions.

At the same time it will frequently

motivate new mathematical questions and

lead to unexpected pay-offs for the

mathematical side. It is crucial that both

sides bene®t in this way and the

collaboration is conducted between

equals. If either the mathematician is

simply seen as providing a service to the

biologist, or conversely the

mathematician fails to be interested in

solving the biological problem (rather

than a mathematical one), then it is

unlikely that the collaboration will

survive, or produce any worthwhile

results. It is therefore essential that there is

good communication between the

disciplines, and this can take a long time

Formulating the
question

BIOLOGY MATHEMATICS
NEW

EXPERIMENTS
NEW

THEOREMS

Figure 1: The collaborative loop
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to establish. Our experience has been that

it may be several years for a collaboration

to become productive, and often several

rounds of discussion before

experimentalist and theorist can agree on

a common question and methodology.

On the other hand we are convinced that

such an investment to build an effective

collaboration is then repaid many-fold.

It can obviously be dif®cult for an

immunologist unfamiliar with

mathematical modelling to know how to

start in this area. Our experience has been

that mimicking existing role models can

be valuable. In this paper, we therefore

illustrate a number of modelling issues and

approaches using examples developed

over the last few years at the Centre for

Mathematics and Physics in the Life

Sciences and Experimental Biology

(CoMPLEX) at University College

London.

A BRIEF TOUR OF THE
IMMUNE SYSTEM
Adaptive immune responses in vertebrates

are generated following exposure to a

foreign antigen, generally an infectious

microorganism such as a virus or bacteria.

The infected individual responds rapidly

by the production of speci®c antibodies

made by B lymphocytes and by the

expansion and differentiation of effector

and regulatory T lymphocytes. This

response aimed at clearing the infectious

agent is coordinated by a network of

highly specialised cells that communicate

through cell surface molecular

interactions and through a complex set of

intercellular communication molecules

known as cytokines and chemokines.

Following clearance of the infectious

agent, the individual is able to respond

more rapidly and more vigorously to a

second exposure to the same infection

(antigen). This is known as

immunological memory. Induction of

immune memory is the basis for long-

term immunity to pathogens we have

already encountered, either through

infection or vaccination. The adaptive

immune response is highly speci®c, and

antibodies and T cells generated in

response to one pathogen generally fail to

respond to antigens from unrelated

pathogens. In addition, the immune

system is able to discriminate between self

and foreign antigens. The processes

involved in this tolerance to self-antigens

include deletion, anergy and active

regulation. Failure of these safety

mechanisms can result in autoimmunity,

in which the immune response is directed

towards the host tissue.

One of the most intriguing features of

the immune system is its multi-

functionality. Its cellular components are

complex, context-sensitive agents that

respond in a non-linear fashion to an

enormously diverse set of signals from

cytokines, chemokines and direct cell±

cell interactions. Further, the messenger

molecules are typically expressed by

several cell types and are themselves

multi-functional. Laboratory experiments

tend to isolate and study one or two

interactions at a time, but this approach

alone will not shed light on the

interacting whole. Our understanding of

the immune system has reached a level

such that mathematical modelling is

becoming a useful and powerful

investigative tool. The abundance of

experimental information has led to a

situation in which higher levels of

description are needed to integrate the

data.

The immune system can often be

viewed as operating in isolation from

other physiological subsystems. This

allows us, at least in principle, to describe

it from both top-down and bottom-up

perspectives. Some authors have

prescribed `goals' to the immune system

in order to construct models of its

behaviour (see, for example, Segel and

Lev Bar-Or4). Others have tried to

demonstrate how properties may have

emerged or evolved by considering

optimal solutions to trade-offs (eg

selection of T-cell receptor repertoires5).

Another modelling philosophy is to build

dynamical models based on experimental

data and attempt to understand the

Repeated interaction
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emergent behaviour of complex

interacting systems of cells and/or

molecules. The latter approach is the one

we have pursued to date. Some of the

questions we have started to tackle are the

following:

· How can the immune system

effectively distinguish between self and

foreign antigens? Under what situations

does tolerance to self break down?

· How does a coherent immune response

emerge from the multiple interactions

of the cytokine network?

· How is immune memory maintained in

the face of multiple serial infections

throughout the life of an individual?

We describe these below. There are

obviously many other areas that merit

investigation. For further background, the

reader is advised to consult one of the

many good immunology textbooks, eg

Paul6 and Janeway and Travers.7 A good

mathematical introduction to modelling

in biology is Murray,8 though

unfortunately there does not appear to be

a comparable text suitable for those with a

biological background. Other reviews of

the application of modelling to

immunology are Perelson and Weisbuch9

and Morel.10

MODELLING ISSUES
Level of detail
As indicated above, attempting to

incorporate every single known

interaction rapidly leads to an

unmanageable model. Further, parameter

determination in such models can be a

frightening experience. Estimates come

from diverse experiments, which may be

elegantly designed and well executed but

can still give rise to widely differing values

for parameters. Data can come from both

in vivo and in vitro experiments and results

that hold in one medium may not always

hold in the other. Further, despite the

many similarities between mammalian

immune systems, signi®cant differences

do exist and so results obtained from

experiments using animal and human

tissue may not always be consistent. Given

the mathematical tools currently available

to us and uncertainty in the data, then,

any modelling approach is obliged to be

coarse-grained to some extent. How does

one decide which are the crucial

components? Typically the temptation is

to include a multitude of factors. In most

immunological contexts, many of the

interactions, components or parameter

values are ill de®ned, and even for well-

characterised systems a thorough

exploration of parameter space for

exhaustively detailed models is effectively

impossible. The experimentalists' insight

into which interactions are important is

the ®rst resource.

Robustness
Robustness is another important guiding

principle: the cellular components of the

immune system operate in noisy media,

with signi®cant environmental and

genetic variation among individuals, and

yet immunity to most pathogens is

maintained. Realistic models of biological

systems may need to be insensitive to

changes in kinetic parameters or

concentrations of mediators, eg Barkai

and Liebler.11 This is something we have

tried to explore in our models to date.

Rather than set out to construct models

with these properties, however,

robustness can be used as a means of

evaluating or comparing models that have

been developed purely with the biological

data in mind.

Modularity
Despite its complexity, it seems likely that

hierarchical or modular descriptions of the

immune system are possible. The most

obvious example is that of the inter-/

intracellular split, in which we consider

cells to be `black boxes' with complicated

but nonetheless calculable input/output

characteristics. This has certainly been the

implicit assumption in many successful

models. An excellent review of

Background reading

Using experimental
data
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modularity in biological systems can be

found in Hartwell et al.12

Another aspect of modularity is the

repetition of common motifs or

components in molecules involved in

cellular interactions or communication.

For example, cytokine receptors are

typically constructed from several

components, some of which may be

common to several distinct receptor types.

Many cytokine interactions may have

arisen from a small set of precursors that

duplicated and diversi®ed over time,

resulting in repeated units with similar

structure but different functions. This

modularity can simplify aspects of

modelling as it both allows individual

parts of the whole system (modules) to be

initially considered in isolation and allows

the application of common approaches to

different aspects of the same system.

Anatomical and spatial
considerations
The immune system does not operate in a

well-stirred chamber with no structure.

The cells move between different

anatomical compartments and molecules

on the cell surface can be organised into

particular spatial patterns that are

important for their function. For example,

germinal centres are highly organised,

temporary structures in lymph nodes

within which B cells pass through

repeated rounds of antibody mutation,

proliferation and selection. This results in

the generation of antibodies of high

af®nity during an immune response, eg

Oprea et al.13 Similar spatial

compartmentalisation is seen in the

thymus, an organ in which newly

generated T cells that are both viable and

not overly reactive to self are selected and

exported to the periphery. At the cellular

level, when T cells recognise their antigen

there is a reorganisation of molecules on

the surface of both the T cell and the

antigen-presenting cell (APC) to form the

immunological synapse, which has a

distinct spatial and temporal

organisation.14

Stochasticity
One of the major tools in modelling is the

use of simple differential equations. When

dealing with large, well-mixed

populations of cells and relatively long

time-scales it is reasonable to use this

approach. However, many processes in

the immune system are probabilistic or

have stochastic elements (see, for

example, Borghans et al.5 and van den

Berg et al.15). Examples are the

recognition of foreign antigen by T-cell

receptors amid a noisy background of self-

peptides, the generation of an effective

and safe T-cell repertoire, and somatic

hypermutation of B cells. We discuss our

approach to the ®rst example in the

section on `Cross-talk between T-cell

receptors' below.

Many processes, particularly

intracellular reactions, involve small

numbers of molecules and stochastic

effects are likely to be very important.

This is an area of research that has

received very little attention.

MODELLING EXAMPLES
We now present four examples from our

own work illustrating the points

developed above. A common theme

running through these is the presence of

non-linear effects and both negative and

positive feedback loops. These are often

thought of as simply damping down and

amplifying mechanisms respectively. We

show that they have a role to play in

cellular differentiation, as a rapid response

mechanism, as well as in preserving

diversity in the memory pool and

enhancing the speci®city of the immune

response. These varied roles of feedback

are not intuitively obvious, and become

apparent only through modelling.

TNF oscillations
Our ®rst example shows how even

extremely simple control systems in

immunology can exhibit unexpected

behaviour. Motivated by experimental

results demonstrating oscillations in the

level of the in¯ammatory cytokine

tumour necrosis factor á (TNF-á) in the
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aqueous humour of rabbits receiving

corneal allografts,16 we developed a simple

ordinary differential equation model17 for

these oscillations, based on the regulatory

interactions between TNF-á and its

inhibitors (IL-10, TGF-â, soluble TNF-á
receptor). The model is illustrated in

Figure 2. Such an intuitive model is then

converted into coupled ordinary

differential equations, using the simple

principle of balancing rates for each

cytokine:

rate of change of cytokine concentration

� rate of formationÿ rate of clearance

This leads to the coupled pair of

equations:

dx

dt
� v1

(xn � ån
1 )

(xn � án)

â

(y� â)
ÿ d1x (1)

dy

dt
� k2 � v2

(x� å2)

(x� ã)
ÿ d2 y (2)

where x is the concentration of TNF so

that dx=dt represents the rate of change of

cytokine concentration. The

concentration of the inhibitor is given by

y. The ®rst term on the right of equation

(1) models the positive feedback loop

shown in Figure 2 (and so is dependent

on x, the concentration of TNF). The

parameter v1 is the maximal rate of TNF

production, set by the strength of

antigenic stimulus. The parameters å1 and

á represent, respectively, a baseline level

of TNF-á production and the threshold

value of the TNF concentration at which

positive feedback on its own production

becomes apparent. The second term

incorporates the negative feedback

(dependent on y, the concentration of the

inhibitor), where â sets the threshold

inhibitor concentration for negative

feedback on TNF production.The ®nal

term represents the clearance (or

catabolism) of the cytokine, which is

considered to be dependent only on the

concentration of TNF. The equation

describing the rate of change of inhibitor

concentration is similar, though the rate

of formation of the inhibitor is dependent

only on x, as there is no positive feedback

loop. In all cases the interactions of x and

y are given by Hill functions, which are a

mathematical representation of a standard

sigmoid dose response curve.

For given parameter values, a plot of

the time evolution of TNF concentration

against inhibitor concentration results in a

phase diagram, which reveals the long-

term qualitative behaviour of the system.

Such plots can be easily generated using

general computer algebra software

packages (eg MapleTM or

MathematicaTM) as well as software

written for analysis of non-linear

dynamical systems (eg DsTool18). We can

also systematically vary each parameter

value and see how this affects the system

behaviour. This is known as bifurcation

analysis and is generally done numerically

using dedicated software (eg Auto19 or

Content20), though unfortunately such

packages are probably not easily used by

non-specialists. A list of dynamical systems

software is available at Dynamical Systems

Software.21

In this particular case, bifurcation

analysis was used to characterise the

qualitatively different solutions of the

model. It revealed that even such a simple

two-component network could show a

rich set of behaviours under quanti®able

conditions, including excitability,

oscillations (Figure 3), hysteresis,

Activator inhibitor
model

Figure 2: Regulation of TNF-á by both
negative and positive feedback. After
illustration in Chan et al.

17

TNFInhibitor

+

- +

+

Antigen

Clearance Clearance

Antigen
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threshold behaviour and bistability. One

of the interesting predictions of the model

is that oscillations exist only for an

intermediate degree of antigenic driving,

and both increasing and decreasing the

antigen load can abolish these oscillations.

The possibility of such counter-intuitive

behaviour should obviously be borne in

mind by those attempting to perturb `real'

cytokine networks for therapeutic

purposes, for example, in the use of anti-

TNF monoclonal antibodies to treat

rheumatoid arthritis.22

Th1/2 differentiation
Although real cytokine networks are

highly complex, it is sometimes possible

to reduce the complexity drastically by

separating time-scales so that a lower

dimensional system is obtained. Then the

tools mentioned above (eg phase plane

analysis) can be used to analyse this

reduced system. Such an approach is

described next.

Complex networks of cytokine

interactions pervade the immune system

but there are a few subsystems that are

suf®ciently isolated and well studied to be

amenable to modelling. One such area is

T-helper cell differentiation. After

encountering foreign antigen in the

periphery, APCs migrate to lymph nodes

and display antigen fragments to T cells.

APC±T cell encounters of suf®cient

speci®city lead to activation, proliferation

and differentiation of T cells into clones

with effector functions. An important

subset of T cells, CD4� T helper cells,

can be further subdivided into Th1 cells

that are involved in cellular immunity and

in¯ammation, and Th2 cells that interact

with B cells and are associated with

antibody production and isotype

switching. The immune system `decides'

which T-helper response is the most

appropriate for a given pathogen, based

on both signals from the innate immune

system (costimulatory signals from APCs

and cytokines produced by other cell

types), the antigen dose and the cytokines

produced by the proliferating T cells

themselves.

We developed an ordinary differential

equation model of T-helper cell

differentiation23 in order to determine the

essential factors determining the Th1/2

outcome of an immune response. The

model was simpli®ed signi®cantly by

making the assumption that the rates of

cytokine production and consumption

were much faster than the rates of cell

proliferation, allowing us to make quasi-

steady state assumptions and hence treat

the various cytokine concentrations as

simple functions of Th1 and Th2 cell

numbers. In other words, fast dynamics

Reducing complexity

Figure 3: Oscillations arising from feedback interactions between TNF and inhibitors. (a) and (b) The time series and
phase diagram representations of the oscillations; (c) bifurcation diagram showing the range of values of the parameter í1,
the strength of antigenic stimulation, over which oscillations occur. Reproduced from Chan et al.,

17
copyright Royal Society
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drive cytokine concentrations to steady

states, which then track slow parameter

changes (ie cell numbers). The cytokine

concentrations are then eliminated as

dynamical variables. This `slaving'

principle re¯ects, to some extent, the

hierarchical structure in the immune

system. By separating time-scales we

reduce the need to consider the dynamics

in full. The interactions we included in

the model are illustrated in Figure 4.

The model generated a number of

interesting results, most of which were

rooted in asymmetries in Th1 and Th2

regulation. One feature of particular

interest was the induction of switches in

the immune response by external means.

The model predicted that to switch from

a Th2 to a Th1 response required both

addition of pro-Th1 cytokines and a

reduction in antigen load, which is borne

out by data in the literature. Further, it

highlighted differences in the regulation

of Th1 and Th2 responses: Th1 through

apoptosis induced by cell±cell contact,

Th2 by negative feedback of the

proliferating cells on the APCs.

Dynamical switches from Th1 to Th2

responses were also predicted in chronic

infections. Interestingly, we also found

that under a wide range of parameters,

varying the antigen dose induced a switch

between two stable states (Th1 and Th2

responses) through an intermediate

oscillatory phase, similar to that observed

in the TNF model described above.

Whether this is a generic feature of

cytokine networks is under investigation.

This model did not mimic in full the

detailed dynamics of a real T-cell

response. Rather, the two-dimensional

representation of the system reproduced

many of its features and predicted more.

These encouraging results reinforce the

idea that rather than building detailed

dynamical models of systems from scratch,

a more coarse-grained approach may be

preferable or even necessary in many

situations.

Maintaining T-cell memory
In this ®nal example of an ordinary

differential equation model, rate equations

for the number of resting and cycling

memory T-cell pools were derived by

balancing proliferation and clearance rates

as before. The model was then extended

to accommodate different T-cell clones

(basically by giving each clone its own set

of ordinary differential equations),

resulting in a model that could take into

account the heterogeneity of the T-cell

Th1/Th2 asymmetries

Figure 4: Schematic representation of the interactions governing Th1/2 differentiation, proliferation and death. Arrows
labelled with (�) or (ÿ) re¯ect positive or negative feedback respectively, mediated by cytokines as indicated. AICD is an
acronym for activation-induced cell death. Reproduced from Yates et al.,

23
with permission from Academic Press
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memory population that develops as the

organism is successively challenged by

different antigens.

Our immune memory is carried in part

by a population of T cells that remains

approximately constant in number from

puberty onwards. This memory T-cell

pool is a diverse collection of clones (a

clone is a number of cells derived from

the same ancestor), each of which is

speci®c for a particular antigen. These

cells are ready to respond rapidly upon re-

encountering their speci®c antigen and

form the basis of lasting immunity. We

maintain memory to many pathogens for

years or even our lifetime, and yet the

lifetimes of the cells that make up our

immune memory may be as short as a few

weeks.

The mechanisms that maintain our T-

cell pools at a constant size are largely

unknown. Experiments suggest that

memory can persist in the absence of

repeated exposure to antigen or cross-

reactive stimulation. Other workers have

shown that cytokines produced by other

cell types may be suf®cient to drive the

low levels of proliferation necessary to

balance cell loss in the memory

compartment. Data from patients with

depleted T-cell pools (for example, those

who have undergone chemotherapy

followed by bone marrow transplantation)

show that normal homeostatic numbers of

T cells can be reconstituted after a year or

two.24 What is the mechanism at play

here? In a recent paper25 we used the

observation that proliferating cells, which

make up a small minority of memory cells

at any time, are susceptible to

programmed death or apoptosis by a

mechanism dependent on contact

between cells (known as activation-

induced cell death, or AICD). Proposing

a simple model of the memory pool

including resting and cycling cells (Figure

5), we predict that the homeostatic level is

insensitive to the lifetime of resting

memory cells (which may partly account

for the diverse experimental estimates of

this quantity) and that the dynamics of the

memory pool are determined largely by

the properties of the minority of dividing

cells. Reconstitution times agree well

with the data in the literature. Further,

individuals with genetic defects in the

AICD pathways have greatly increased

numbers of memory T cells, also in

agreement with the model.

When we extend this simple model to

include the multi-clonal structure of

memory it predicts that clonal proportions

are preserved under ¯uctuations in the

pool size. This appears to be intuitively

the simplest solution to the problem of

ensuring the preservation of the full range

of clones under various perturbations,

including the introduction of new clones

(caused by infection by hitherto

unencountered pathogens) into a memory

pool already full to capacity.

These results highlight a recent shift in

our perception of cell dynamics. The rate

of turnover of many cell types in

mammals is relatively high, particularly in

the blood: surely there is an energy cost

associated with this apparent continual

over-production and removal of cells?

The answer may be that it allows us to

respond rapidly to changes in our

environment or to trauma. Regulation of

apoptosis may allow rapid expansion or

contraction of cell numbers, while rates of

proliferation are constrained by the time it

takes cells to divide.

Homeostatis and
immune memory

Figure 5: The proposed model for T-cell memory homeostasis, after
Yates and Callard.

25
Resting cells become activated by cytokines or other

environmental stimuli at rate a, degrade at rate d and are replenished by
cells leaving cycle at rate r. Cycling cells divide at rate c and die through
contact with other cycling cells at rate f . This leads to the simple rate
equations dx=dt � ry ÿ ax ÿ dx and dy=dt � ax � cy ÿ fy2 ÿ ra

Relaxation

Proliferation
Activation

Resting Cells
x

Cycling Cells
y

AICDCell death
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Cross-talk between T-cell
receptors
Sometimes, the system we are interested

in is too complex to easily capture in the

form of an ordinary differential equation

model. For example, the behaviour of

individual agents may be highly complex,

or there may be stochastic or

heterogeneous spatial elements not easily

modelled using differential equations. In

such a case, we may still obtain insight

into the system using a Monte Carlo

simulation. The next model, which has

both stochastic and spatial elements,

attempts to understand the problem of

how T cells discriminate between ligands

accurately, and simulates individual T-cell

receptors (TCRs) as a Markov chain, with

the transition probability between states

determined by ligand binding and

modi®er signals from neighbouring

receptors.

During an infection, antigen from an

infectious organism is captured by an

APC, and presented on the cell surface in

the peptide groove of major

histocompatibility molecules (MHC).

The recognition of the peptide±MHC

ligand complex by TCR is responsible for

maintaining the speci®city of the immune

response. It is known that 10±200 foreign

antigens mixed with perhaps 100,000 self-

antigens on the APC are suf®cient to

trigger T-cell proliferation and effector

response.26 This requires an astonishing

degree of accuracy from the TCR which

must rapidly discriminate between self

and foreign antigens. Even more

surprisingly, the TCR discriminates

almost exclusively on the basis of the

duration of ligand engagement,27 which is

a stochastic event. Previous models of

how the T cell achieves its exquisite

sensitivity and speci®city rely on the

concept of kinetic proofreading to explain

how TCRs discriminate ligands based on

their dissociation time,28 and the idea of

multiple serial encounters by the peptide±

MHC complex with different TCR to

explain its sensitivity.29 However, a

problem with this scenario is that owing

to the stochastic nature of ligand

dissociation, the T cell will be very

sensitive to both the duration of ligand

engagement and the ligand concentration,

and it is dif®cult to see how the T cell can

avoid being swamped by false positive

signals from the myriad self-antigens

presented by the APC.

Recent experiments have documented

both positive and negative feedback

regulating the response of TCR to

ligand.30 Surprisingly, these feedback

effects were not con®ned to the particular

TCR encountering ligand, but appeared

to affect neighbouring receptors as well.

Encounters of TCR with antagonist

ligands (which bind for an intermediate

duration) result in recruitment of

inhibitor molecules to the receptor's local

neighbourhood. Encounters with agonist

ligands (which bind for a long duration)

result in recruitment of protective

molecules to the neighbourhood, which

prevent docking of the inhibitor

molecules. When we included these

neighbour feedback effects in a Monte

Carlo simulation of the T cell±APC

interface,31 the model T cell could reliably

detect the presence of low densities of

foreign peptide with high speci®city.

Cross-talk between TCR effectively

allows the T cell to make more accurate

decisions about the nature of the ligands

on the APC by pooling information

about ligands encountered by different

TCR. This observation, coupled with

alterations in the degree of receptor cross-

talk (especially inhibition) during T-cell

maturation, also provides possible

solutions to several puzzles in

developmental T-cell biology, including

how T cells can respond differently to a

similar set of antigens presented at

different stages, how a single ligand can

generate a large T-cell repertoire and why

the sensitivity to weak ligands is reduced

several hundredfold during T-cell

maturation, but the sensitivity to strong

ligands remains unchanged. More

generally, this study shows how modelling

the interactions of the molecules involved

in negative and positive feedback with the

TCR complex helped reveal its role in

Monte Carlo models

Antigen presentation
and TCR sensitivity
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the emergent T-cell properties of

sensitivity and speci®city.

CONCLUSIONS
There are many avenues still to explore in

the projects described above. For

example, our models of Th1/2

differentiation are now focusing on the

information transferred from infected

tissues via APCs to T cells, and how this,

along with the dynamics of cytokine and

transcriptional factors, in¯uences T helper

cell polarisation. In the model of TCR

cross-talk, we are exploring the

consequences of a more realistic

distribution of both self and foreign

peptides on the APC; incorporating

spatial and mobility constraints governing

the interaction of peptide±MHC with

TCR; and studying the implications of

the model for how altered peptide ligands

work. We have found that one has to be

prepared to rebuild models from scratch

or change focus when new experimental

information comes to light, and be

rigorous in pursuit of well-de®ned

biological problems.

In summary, our approach is one of

close collaboration with experimentalists

(ideally with the mathematician actually

working in the laboratory) to develop

models that can accommodate our

uncertainty in our knowledge of the

systems we are studying. A good

mathematical model will shed light on

experimental phenomena and point the

way to new experiments. In turn this

leads to re®nement of the model and the

cycle continues.
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