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Abstract

Although there are a large number of structural variations in the chromosomes of each individual, there is a lack of more
accurate methods for identifying clinical pathogenic variants. Here, we proposed SVPath, a machine learning-based method to
predict the pathogenicity of deletions, insertions and duplications structural variations that occur in exons. We constructed three
types of annotation features for each structural variation event in the ClinVar database. First, we treated complex structural
variations as multiple consecutive single nucleotide polymorphisms events, and annotated them with correlation scores based
on single nucleic acid substitutions, such as the impact on protein function. Second, we determined which genes the variation
occurred in, and constructed gene-based annotation features for each structural variation. Third, we also calculated related
features based on the transcriptome, such as histone signal, the overlap ratio of variation and genomic element definitions,
etc. Finally, we employed a gradient boosting decision tree machine learning method, and used the deletions, insertions and
duplications in the ClinVar database to train a structural variation pathogenicity prediction model SVPath. These structural
variations are clearly indicated as pathogenic or benign. Experimental results show that our SVPath has achieved excellent
predictive performance and outperforms existing state-of-the-art tools. SVPath is very promising in evaluating the clinical
pathogenicity of structural variants. SVPath can be used in clinical research to predict the clinical significance of unknown
pathogenicity and new structural variation, so as to explore the relationship between diseases and structural variations in
a computational way.
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Introduction
Compared with single nucleotide polymorphisms (SNPs),
structural variation (SV) has a greater impact on living
organisms [1]. Recent studies have further shown that
many diseases and phenotypic differences are related to
the structural variation of the genome [2]. In the genome
of each individual, the number of nucleotides affected
by structural variations may be as many as millions [3].
But determining whether a structural variant event is
pathogenic is very challenging. The first premise is to
compare the structural variation of the diseased popu-
lation with the healthy population. The diseased popula-
tion may carry too many pathogenic structural variations
[4, 5]. Another strategy is to determine the inherited
structural variation through the affected family [6]. How-
ever, these two strategies may require decades of effort to
determine the pathogenic structural variations and the
mechanism of action [7].

Another way to identify the pathogenicity of a variant
event is to predict it by calculation. For example, Kircher

et al. [8] proposed Combined Annotation-Dependent
Depletion (CADD), which pre-calculated the C scores of
all 8.6 billion possible SNPs by using a support vector
machine (SVM) method. The C scores are related to allelic
diversity, pathogenicity and complex trait associations.
Ioannidis et al. [9] developed rare exome variant
ensemble learner (REVEL), a comprehensive method for
predicting the pathogenicity of missense variants based
on multiple tools, providing pre-calculated REVEL scores
for all possible human missense variants. Jagadeesh
et al. [10] used the gradient boosting trees method to
classify the pathogenicity of rare missense variants
by integrating related pathogenicity scores (including
SIFT [11], Polyphen-2 [12] and CADD [8]) and new
feature values. Another part of the related research is
based on the gene level rather than the mutation level.
They explore the correlation scores between genes and
diseases by introducing the correlation between proteins,
genes and diseases, so as to predict pathogenic genes,
such as [13–17]. Alyousfi et al. [18] established a model
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to prioritize the identification of single-gene disease
genes by integrating gene-level predictors and combining
essentiality-specific pathogenicity prioritization (ESPP)
scores. Several variant annotation tools are designed to
predict the impact of SNP mutations, such as snpEFF [19]
and VEP [20].

However, most of the current methods like these are
used to predict the pathogenicity of SNPs, there are few
tools for structural variations. In fact, due to the large
variation length, structural variation plays a vital role
in the occurrence and development of various diseases
[21]. SVScore [22] uses the precomputed SNP scores from
CADD and applies an operation (such as maximun, sum,
mean and mean of the top N scores) to predict structural
variation impact. One limitation is that SVScore does
not consider other types of important information on
the genome, and it cannot predict the pathogenicity
probability of variants like the SNP pathogenicity predic-
tion method. SVFX [23] integrates a variety of features,
such as average histone marker signal, CTCF signal,
methylation level and other data, and uses random forest
machine learning methods to evaluate a pathogenicity
score for deletions and duplications structural variations.
But SVFX only considers epigenome feature data, and
ignores the influence of structural variation on other
biological features, such as protein structure or function.

Structural variations in exons are likely to occur in
the position of the protein encoded by the gene. Such
variations are likely to cause gene function inactiva-
tion and lead to diseases. Here, we propose SVPath to
predict the pathogenicity of deletions, insertions and
duplications structural variations in human exomes. We
collected feature data related to mutation from vari-
ous aspects to train an ensemble supervised machine
learning framework. These feature data mainly include
mutation scores based on single nucleic acid substitu-
tion, gene-level scores and transcriptome-based related
features. We hypothesized that a structural variation is
caused by a series of SNP events to take into account
the impact of every base substitution in the structural
variation on cell activity. Experimental results show that
SVPath exhibits excellent prediction and generalization
capabilities. SVPath still shows stable prediction perfor-
mance on two independent test sets, which is very impor-
tant for solving the pathogenicity prediction of structural
variants on exons.

Materials and methods
Data sets
The structural variation data used to train the pathogenic-
ity prediction model in this paper are all from the ClinVar
database [24] and dbVar [25]. The ClinVar integrated
dbSNP [26], OMIM [27] and other databases of genomic
variants and related phenotypes, as well as their clinical
data and information. ClinVar is a standard, accurate
and reliable database of mutation information and
clinical information. We eliminated the variant data

Table 1. The number of pathogenic and benign variations

Pathogenic
from ClinVar

Benign from
ClinVar

Benign from
dbVar

Deletion 6291 80 4396
Insertion 514 127 9
Duplication 2519 32 968

whose review status was no assertion, single submitter
and conflicting interpretations from ClinVar to make
clinical variant data more reliable. Because of the large
difference between the number of pathogenic and benign
variants in ClinVar, we screened out three structural
variant events that were clearly marked as benign from
dbVar, making the sample size more balanced. dbVar
contains individual instances of structural variation
observed in the study, based on the output of raw data
analysis. The variation data used in this paper are based
on the GRCh37(hg19) reference genome. The types of
genomic variation in ClinVar are divided into multiple
types according to clinical information, including:

• Uncertain_significance
• Benign
• Benign/Likely_benign
• Likely_benign
• Pathogenic
• Pathogenic/Likely_pathogenic
• Likely_pathogenic

First, we use the ANNOVAR [28] variant annotation
tool to annotate the ClinVar and dbVar variant data to
filter out the variants that occur on the exons. Second,
we filter out the structural variations of deletions,
insertions and duplications. Finally, we further filter out
the above three structural variation events with clinical
signals Benign, Benign/Likely_benign, Pathogenic and
Pathogenic/Likely_pathogenic. And, we regard Benign/-
Likely_benign as Benign, Pathogenic/Likely_pathogenic
as Pathogenic. We have performed a de-redundancy
operation on these variations, the number of variations
finally selected is shown in Table 1.

Since the imbalance between the number of pathogenic
and benign samples, we employed an oversampling
method to expand the benign variants. Although a
database DGV (The Database of Genomic Variants)
[29] only contains variant events in healthy people, a
variant in DGV does not mean that it will not cause
disease in patient samples. Therefore, we did not use
the variation in DGV as a benign control group. Two
independent mutation data sets, gnomAD (Genome
Aggregation Database) [30] and DECIPHER (DatabasE
of genomiC varIation and Phenotype in Humans using
Ensembl Resources) [31], are both used to test the pre-
diction performance of SVPath. (These two independent
mutation data sets were retrieved manually, see the
supplementary materials for specific retrieval methods).
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Figure 1. SVPath pipeline. In the first step, we obtained the structural
variation of deletion, insertion and repeat type that occurred in the exon
from ClinVar. In the second step, we construct features for each structural
variation from three aspects. These features are derived from the existing
database on the effects of variation. In this process, we speed up feature
annotation in a multi-process parallel manner. And one-hot encoding and
normalization of the annotated features are performed. In the third step,
we employ a machine learning method called gradient boosting decision
tree to train a structural variant pathogenicity prediction model.

We excluded the mutations shared with ClinVar and
dbVar from these two data sets. However, the mutation
data in DECIPHER is based on GRCh38. During the test,
we used the Remap tool provided by NCBI to map the
variation sites to the hg19 reference genome.

SVPath pipeline
SVPath is implemented with the Gradient Boosting
machine learning classifier model, the specific process
can be seen in Figure 1. First, we obtain the original
disease-related human genome variations data from
ClinVar, and then use Annovar to annotate it and filter
out the pathogenic and benign (clinically verified) dele-
tion, insertion and duplication type structural variations
that occur on the exons. Second, we introduced multiple
features for these three types of structural variations,
mainly including SNP-level features data (after convert-
ing structural variations into multiple consecutive SNP
events), gene-level features and transcriptomics related
features. Then post-process the annotated features
data, including one-hot encoding, oversampling and
normalization. Finally, we use the processed structural
variation data to train a Gradient Boosting machine
learning classifier model to predict the pathogenicity of
unknown deletions, insertions and repetitive structural
variations that occur in exons.

Variations transform
Similar to the SVScore [22] method, the calculation of
part of the features of our SVPath is also based on the
existing scores of the pathogenicity of a single base or
the impact on the protein structure. It’s just that SVScore

Figure 2. Convert structural variation to multiple consecutive SNPs.

is only based on CADD scores, and it uses the tabix [32]
method to calculate a variant’s interval scores. In this
paper, we treat a structural variation event as multiple
consecutive SNPs.

The structure variation transform method is shown
in Figure 2. REF is the reference genome segment (or a
base) on the pos coordinate, and ALT is alternate base(s),
which means the allele of the variant. Suppose the
length of the structural variation is len, which is the
absolute value of the difference between the length of
REF and ALT. For a deletion variation, we need to obtain
the genome fragment from pos+len+1 coordinates to
pos+2*len from the reference genome, which we call
snpREF. As shown in Figure 2a, the missing sequence
is TAC, which we call snpALT, and snpREF is GCG. Here,
the length of snpREF must be the same as the length of
snpALT. Then the deletion structural variation (pos:ATAC-
A) can be converted to (pos+1:T-A, pos+2:A-C, pos+3:C-
G). Similarly, the insertion structure variation (pos:A-
ACTG) in Figure 2b is converted to (pos+1:T-C, pos+2:A-T,
pos+3:G-G). But the snpREF in insertion is the sequence
from pos+1 to pos+len in the reference genome. The
duplication variation in the vcf format file is represented
as pos:A-ATAG as shown in Figure 2c, but the actual
variation is pos:ATAG-ATAGTAG, and the duplication
fragment is TAG. Therefore, the snpREF in the duplication
variation is the sequence from pos+len+1 to pos+2*len
in the reference genome. So the mutation in Figure 2c
can be transformed into (pos+len+1:A-T, pos+len+2:C-A,
pos+len+3:T-G).

The transform of structural variation is to fully con-
sider the impact of each base site on the function of
the genome after the structural variation occurs. SVScore
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Table 2. Annotation features description based on SNP variant sites

Database Field Data type Aggregation method

CADD [8] CADD13_RawScore float avg
CADD13_PHRED float avg

dbNSFP [33] SIFT_pred [34] char min
SIFT4G_pred [11] char min
Polyphen2_HDIV_pred [35] char max
Polyphen2_HVAR_pred [35] char max
VEST4_score [36] float avg
MVP_score [37] float avg
MPC_score [38] float avg
DANN_score [39] float avg
GenoCanyon_score [40] float avg
integrated_fitCons_score [41] float avg
GM12878_fitCons_score [41] float avg
H1-hESC_fitCons_score [41] float avg
HUVEC_fitCons_score [41] float avg
LINSIGHT [42] float avg
GERP++_NR [43] float avg
GERP++_RS [43] float avg
phyloP100way_vertebrate [44] float avg
phyloP30way_mammalian [44] float avg
phyloP17way_primate [44] float avg
phastCons100way_vertebrate [45] float avg
phastCons30way_mammalian [45] float avg
phastCons17way_primate [45] float avg

M-CAP [10] MCAP13 float avg
REVEL [9] REVEL float avg

only considers the CADD scores of the left and right
breakpoints of structural variation as features.

Features construction
Different feature values indicate different biological
meanings. For example, the main features are the
influence of SNPs on protein sequence and function
calculated by multiple algorithms, as well as the feature
scores of gene function loss and the feature scores of
histone signals. The data types of these characteristics
are not uniform. Roughly speaking, the feature values
constructed for each structural mutation event can
be divided into three types: annotation information
based on single base, annotation information based
on gene function and annotation information based
on variation region. For different feature data, we use
different construction methods. All feature calculations
are based on the hg19 reference genome.

The calculation method based on the annotation fea-
ture of the SNP base site is to convert the structural
variation event into multiple consecutive SNP events,
and then calculate the average value or the maximum
or minimum values of the multiple SNP events. The
scores of these original single-base site mutations come
from CADD v1.3 [8], dbNSFP v4.1a [33], M-CAP v1.3 [10]
and REVEL [9] databases, respectively. For the descrip-
tion of the field values used in this paper in these four
databases, see Table 2.

We introduced two fields in the CADD database as
two feature values, namely raw and PHRED fields. The
raw field is the C-score obtained by the combined SVM

score. The higher the C-score value, the more harmful the
impact of this single-base substitution. The PHRED field is
the C-score scale, which ranks all possible substitutions
(8.6 billion) variants relative to the human genome. For
a structural variation, we calculate the average raw and
PHRED values of multiple SNPs separately.

The dbNSFP v4.1a contains scores or discrete values
calculated by 51 prediction algorithms for functional
prediction and annotation of possible non-synonymous
SNP events in the human genome. We selected 22 of
the scores used to calculate part of the feature value of
each structural variation, including 14 functional pre-
diction scores (including SIFT, SIFT4G, Polyphen2_HDIV,
Polyphen2_HVAR, VEST, MVP, MPC, DANN, GenoCanyon,
four fitCons and LINSIGHT) and eight conservation
scores (including GERP_NR, GERP_RS, three phyloP100way
scores and three phastCons100way scores). Among the
scores of functional prediction, SIFT (Sort Intolerated
From Tolerated) and SIFT4G (SIFT for Genomes) are the
predicted impact scores of an amino acid substitution
on protein function, and their values are D (Deleterious,
value � 0.05) and T (Tolerated, value > 0.05). After
a structural variation undergoes variation transform,
if the value of one or more mutation sites is D, the
feature value of the SIFT (or SIFT4G) of this structural
variation is D, that is, take the smaller value of D and
T (D < T). The calculation methods of Polyphen2_HDIV
(Polymorphism phenotyping v2 based on HumDiv [46])
and Polyphen2_HVAR (Polyphen2 based on HumVar [46])
are similar to those of SIFT. The difference is that the
higher the score of PolyPhen2, the more harmful it is.
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Table 3. Gene-based annotation features

Gene data Field Description Data type

LoFtool LoFtool_percentile Gene loss-of-function score percentiles float
GDI GDI Gene damage index float

GDI-Phred Phred-scaled gene damage index scores float
All disease-causing genes Damage prediction for all disease-causing genes char
All Mendelian disease-causing genes Damage prediction for all Mendelian disease-causing genes char
Mendelian AD disease-causing genes Damage prediction for Mendelian autosomal dominant (AD)

disease-causing genes
char

Mendelian AR disease-causing genes Damage prediction for Mendelian autosomal recessive (AR)
disease-causing genes

char

All PID disease-causing genes Damage prediction for all primary immunodeficiency (PID)
disease-causing genes

char

PID AD disease-causing genes Damage prediction for PID AD disease-causing genes char
PID AR disease-causing genes Damage prediction for PID AR disease-causing genes char
All cancer disease-causing genes Damage prediction for all cancer disease-causing genes char
Cancer recessive disease-causing genes Damage prediction for cancer recessive disease-causing genes char
Cancer dominant disease-causing genes Damage prediction for cancer dominant disease-causing genes char

RVIS-ESV RVIS_ExAC_0.05% The Residual Variation Intolerance Score (RVIS) based on the Exome
Aggregation Consortium (ExAC) database with 0.05% Minor Allele
Frequency (MAF) from any population

float

%RVIS_ExAC_0.05% RVIS percentile values that reflect the relative rank of the gene float

Its value has three discrete values, namely D (Probably
damaging, value �0.957), P (Possibly damaging, 0.453
� value � 0.956) and B (Benign, value � 0.452). The
aggregation method for the two features of Polyphen2 is
to take the maximum value, where the maximum value
refers to the maximum value of D, P and B (D > P > B).
The aggregation method for other functional scores and
conservation scores is to take the average of all amino
acid substitutions.

Both M-CAP (Mendelian Clinically Applicable
Pathogenicity) and REVEL integrate previous pathogenic-
ity scores and use machine learning models to predict the
pathogenicity scores of rare missense SNP variants. The
integration method of these two features is similar to the
previous one.

If a feature in Table 2 is absent during integration,
for the CADD features, we use the average of the three
possible amino acid substitutions at the left end of the
structural variation (pos position) to fill in. For the fea-
tures in SIFT and Polyphen2, we use T and B instead of
blanks. For the absence of other features, we treat it as 0.

The second type of annotation features is based on
gene function, including gene Loss of function (Lof score),
gene damage index (GDI) and genetic intolerance of
genes to functional mutations (RVIS-ESV). The features
information about the gene is shown in Table 3.

First, we need to locate which gene(s) an exon structural
variation occurs, and secondly, we use these scores of
the current gene as the feature values of the structural
variation event. We use a novel gene intolerance ranking
system (LoFtool) proposed by Fadista et al. [47] to con-
struct the feature of gene function loss score (named this
feature after Lof_score). If a structural variation occurs in
a gene, the smaller the Lof_score of this gene, the less
tolerance the variation has to the loss of gene function.
The other is the GDI data set [48], which defines the

mutation damage accumulated by each human gene
encoding protein in the general population at the gene
level, including the score of the GDI and the general
damage prediction of different disease types. These
disease types include all, Mendelian AD (autosomal
dominant) and AR (autosomal recessive), all primary
immunodeficiency (PID), PID AD and AR, all cancer,
cancer recessive and dominant. The predictive values of
disease-related gene damage include Low, Medium and
High. The third gene level data are RVIS (The Residual
Variation Intolerance Score), and the version used in
this paper is RVIS based on the Exome Aggregation
Consortium (ExAC) database with 0.05% Minor Allele
Frequency (MAF) from any population. The score of
intolerance is based on the neutral variation found in
the gene to assess whether the gene has more or less
functional genetic variation than expected. For each
gene, the intolerance score and tolerance percentile are
included.

Inspired by SVFX [23], we added more annota-
tion features (21 in total) to each mutation event,
such as functional genomics data, annotation metrics
data and conservation score, see Table 4. Functional
genomics data such as the histone marker signal
of the H1 human embryonic stem cell line (E003)
(including H3K4me1, H3K4me3, H3K9me3, H3K27ac,
H3K27me3 and H3K36me3), DNase hypersensitive sites
(DHSs) signal, fractional methylation and whole genome
methylation data obtained from the Roadmap Epige-
nomics project [49] and replication timing data and
CCCTC-binding factor (CTCF) data obtained from ENCODE
project [50]. Annotate measurement data such as
protein coding domains (CDS), promoters, 5’UTR and
3’UTR definitions, splice sites, heterochromatin regions,
topologically associated domains (TADs) obtained from
ENCODE and IHEC [51]. Conservative feature scores
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Table 4. Annotation features based on transcriptomics

Annotation
type

Data Description Data format

Functional
genomics

E003-H3K4me1 The mark of monomethylation at the fourth lysine residue of histone H3
protein is usually associated with gene enhancers

BigWig

E003-H3K4me3 It is a marker that indicates the trimethylation of the fourth lysine
residue of histone H3 protein and is often involved in the regulation of
gene expression

BigWig

E003-H3K9me3 Indicates the trimethylation mark at the ninth lysine residue of histone
H3 protein, usually related to heterochromatin

BigWig

E003-H3K27ac Indicates a marker for acetylation of the 27th lysine residue at the
N-terminal of histone H3 protein and it is associated with higher
activation of transcription

BigWig

E003-H3K27me3 It is a label indicating that lysine 27 on histone H3 protein is
trimethylated. This trimethylation is related to the down-regulation of
nearby genes through the formation of heterochromatin regions

BigWig

E003-H3K36me3 Indicates the trimethylation mark at the 36th lysine residue of histone
H3 protein, usually related to the genomic body

BigWig

DHSs signal DNase hypersensitive sites BigWig
Fractional methylation Fractional methylation calls at CpG BigWig
Whole genome methylation Single CpG site resolution whole-genome DNA methylation map

generated by whole-genome shotgun bisulfite sequencing (WGBS)
BigWig

Replication timing Refers to the order in which DNA fragments are copied along the length
of a chromosome

BigWig

CTCF CCCTC-binding factor, a transcription factor encoded by the CTCF gene
in humans

BigWig

Annotate
metrics

CDS Protein coding domains bed

Promoters A DNA sequence to which a protein binds, and a single RNA can be
transcribed from the downstream DNA

bed

5’UTR The 5’ untranslated region bed
3’UTR The 3’ untranslated region bed
Splice sites Recognizable sequence and linker site of intron and exon junction

boundary in RNA precursor
bed

Heterochromatin regions Refers to regions of chromatin that are condensed and transcriptionally
inactive during the interphase

bed

TADs Topologically associated domains bed
Conservative
scores

Ultra-conserved regions Refers to a nucleotide fragment in a DNA molecule or an amino acid
fragment in a protein thatremains basically unchanged during evolution

bed

Sensitive regions Sensitive regions across the genome, contrary to the meaning of
ultra-conserved regions

bed

phyloP100way Conservation scoring by phyloP (phylogenetic p-values) for multiple
alignments of 99 vertebrate genomes to the human genome

BigWig

such as the annotation of ultra-conserved and sensitive
regions of the whole genome, and the scores of 100 cross-
species PhyloP.

For each feature of functional genomics and phy-
loP100way in Table 4, we first calculate the corresponding
feature value of a structural variation left and right
breakpoint. If the variation site does not match the
relevant region, then the feature is represented by 0,
otherwise we use the weighted average of this feature
in the variation interval as the value of this feature.
For other features (bed format), we use the overlap of
the region where the variation occurs with the given
region as the value of the feature, that is, calculate the
percentage of a certain region that the variation occupies.

In this paper, we use the functional genomics data of
the H1 cells to construct some features. For constructing
tissue-specific features data, it can be adjusted according
to the description in the Roadmap. For details, please
refer to https://egg2.wustl.edu/roadmap.

We also take the subtype of variation as its features.
After annotating the variation data through ANNOVAR
[28], we obtain the subtypes of the variation, which
mainly include frameshift, noframeshift, startloss, stoploss,
stopgain variations and other types.

On the one hand, for the feature annotations of the
three structural variants of deletion, insertion, and dupli-
cation, due to the differences in SNP conversion, we
carried out features construction for them separately. On
the other hand, when constructing features of a certain
type of structural variation, since there is no correlation
between the variation events, we execute the construc-
tion process in a multi-process parallel manner to speed
up the generation of the features matrix.

Data post-processing
After calculating all the features of each structural vari-
ation, there are still some problems, such as the data for-
mat is not uniform, the positive and negative samples are
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not balanced, etc. Therefore, we need to further process it
to make the prediction of the pathogenicity of the variant
more accurate.

First, we performed One-Hot encoding [52] on the fea-
tures of the character type, so that the feature value
of the character type is converted to a numeric value
of 0 or 1. Specifically, for the character-type features,
taking the variation subtype as an example, we use all
the values of the original variation subtype of a structural
variation event as the features of each variation. If the
variation belongs to the frameshift type, the correspond-
ing frameshift feature is 1, and the rest are 0.

Second, we can see from Table 1 that there is a big
difference in the number of pathogenic and benign sam-
ples, and the data of benign variants are far less than
that of pathogenic ones. If such unbalanced data are
used to train a machine learning model, it will result in
too little feature information provided by the category
of benign variants, and the prediction will be biased
toward pathogenic variants, which will greatly reduce the
generalization ability of the model. In this paper, we use
an oversampling method called Borderline SMOTE [53] to
sample the benign variant data, so that the data of benign
variants and pathogenic variants reach a balance, which
makes the prediction model better fit each feature of the
two types of variation data.

Third, the features of each structural variation have a
large difference in the numerical interval. If the sample
is directly used for training, it may cause many iterations
to converge, or it may not converge. Therefore, after
the above two steps are processed, we normalize each
feature element of each variant in the sample to the
interval [0,1] with the �2-norm of the sample.

Classification models
Through the above processing of structural variation
data, we can convert the problem of predicting the
pathogenicity of unknown structural variation into
a problem of binary classification based on prior
knowledge. We applied five machine learning models
to compare the prediction performance on this feature-
annotated structural mutation data set, namely SVM,
logistic regression (LR), decision tree (DT), K-nearest
neighbors (KNN) and gradient boosting decision tree
(GBDT). GBDT [54] is an iterative decision tree algorithm,
which consists of multiple decision trees, and the
conclusions of all trees are added up to output the final
result.

Results
Training and testing SVPath
Before training the model, we performed a de-redundancy
operation to eliminate data contamination. In order to
accurately assess the predictive performance of SVPath,
we used leave-four-chromosomes-out (for deletions and
duplications) and leave-eight-chromosomes-out (for

insertions) cross-validation methods. In each round
of training and verificating, we selected four (about
20%, for deletions and duplications) or eight (about
36%, for insertions, because there are fewer records of
insertion variations) chromosomes variations as the
test set, the rest as the training set. The variation on
the chromosomes reserved in this way can be regarded
as a completely independent blind test set, so as to
avoid the contamination of the train set and test set.
See the supplementary materials for the specific data
set division method. During the training process, we
adopted an oversampling strategy to balance the number
of pathogenic variants and benign variants in the train
set. All variations in the test set come from the ClinVar
and dbVar databases, not oversampling. The training sets
are used to train five machine learning models (SVM, LR,
DT, KNN and GBDT), and the test sets are used to assess
the prediction performance of the model. At the same
time, we also used two existing models for predicting
the pathogenicity of structural variants for comparisons,
namely SVFX [23] and SVScore [22] with mean operation.
In each comparison, the structural variation data used
by these two models are the same as that used by the
previous machine learning models.

Due to the unbalanced data of pathogenic variants
and benign variants, we use relevant indicators based
on confusion matrix to evaluate the performance of
pathogenicity prediction models, including accuracy
(Eq.1), precision (Eq.2), recall (Eq.3), specificity (Eq.4),
F1-score (Eq.5), G-mean (Eq.6), Matthews correlation
coefficient (MCC)(Eq.7). In the confusion matrix, we treat
pathogenic variants as positive cases and benign variants
as negative cases. TP represents the predicted result
and the actual value are both positive, FP represents
the predicted result is positive but the actual value is
negative, TN represents the result is negative and FN
represents the predicted result is negative but the actual
value is positive.

Accuracy = TP + TN
TP + FP + TN + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

Specificity = TN
TN + FP

(4)

F1 − score = 2 × Recall × Precision
Recall + Precision

(5)
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Table 5. Evaluation of several methods on the deletion, insertion and duplication variations

SV type Model(Method) Accuracy Precision Recall Specificity F1-score G-mean MCC

Deletion GBDT 0.979 0.987 0.969 0.987 0.978 0.978 0.956
SVM 0.806 0.882 0.777 0.874 0.803 0.811 0.651
Logistic Regression 0.732 0.669 0.911 0.522 0.767 0.689 0.473
Decision Tree 0.936 0.948 0.920 0.954 0.932 0.936 0.869
KNeighbors 0.816 0.910 0.705 0.936 0.793 0.812 0.640
SVScore 0.586 0.616 0.573 0.615 0.584 0.593 0.181
SVFX 0.806 0.829 0.780 0.838 0.802 0.808 0.602

Insertion GBDT 0.883 0.858 0.955 0.756 0.897 0.848 0.704
SVM 0.367 0.658 0.335 0.637 0.370 0.424 -0.019
Logistic Regression 0.542 0.675 0.612 0.342 0.602 0.429 -0.011
Decision Tree 0.713 0.823 0.743 0.679 0.767 0.708 0.351
KNeighbors 0.534 0.684 0.369 0.750 0.420 0.437 0.100
SVScore 0.511 0.711 0.574 0.440 0.605 0.500 0.018

Duplication GBDT 0.978 0.988 0.979 0.973 0.983 0.976 0.948
SVM 0.768 0.963 0.694 0.929 0.796 0.796 0.594
Logistic Regression 0.709 0.800 0.782 0.600 0.774 0.671 0.389
Decision Tree 0.948 0.975 0.949 0.952 0.961 0.950 0.877
KNeighbors 0.744 0.930 0.670 0.894 0.777 0.773 0.524
SVScore 0.632 0.764 0.660 0.576 0.705 0.616 0.220
SVFX 0.833 0.882 0.869 0.762 0.874 0.813 0.614

G − mean =
√

Recall × Specificity (6)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)

We used the average of the results obtained by cross-
validation as the metric when evaluating the perfor-
mance of each model. The results are shown in Table 5.
By comparison, we can see that in the five machine
learning models we used, GBDT has the best effect in
these seven indicators. First, even if the categories of
pathogenic and benign variants are not balanced, the
two indicators of GBDT used to evaluate the category
imbalanced data sets, G-mean and Matthews correlation
coefficient, both achieved high scores and were both
higher than other models. Second, even in the case of
a small number of samples (insertion variation), the
classification effect of GBDT is still considerable. Com-
pared with deletion and duplication, although the MCC
value of insertion is significantly lower, only 0.704, it still
shows great advantages compared with other models,
especially SVM and logistic regression. Therefore, based
on the above comprehensive analysis, we choose GBDT
machine learning algorithm to build our structural vari-
ant pathogenicity prediction model SVPath.

In addition, during each round of training and testing,
we saved the test set of each of the previous five machine
learning models to test the two existing pathogenicity
prediction models, SVScore and SVFX. The experimen-
tal results are shown in Table 5. It is obvious that by
introducing various annotation features, the indicators
in Table 5 of GBDT machine learning models are higher

than the ones of SVScore and SVFX. SVScore uses too
few features, only considers the calculation of CADD
scores, which causes under-fitting to a certain extent.
Structural variation is critical to protein synthesis and
function, and protein structure and function are closely
related to the occurrence of diseases and even cancer,
but SVFX does not consider the features of the impact of
structural variation on protein function. The lack of SVFX
prediction algorithm in the performance evaluation of
insertion type in Table 5 is because SVFX only predicts
the pathogenicity of deletion and duplication type struc-
tural variations. In short, in the two existing methods
and the five machine learning models we used, the GBDT
method is the best among the three structural varia-
tion types. Even in the case of unbalanced labels and a
small sample size, the Matthews correlation coefficients
of deletion, insertion and duplication variants obtained
by GBDT reached 0.956, 0.704, and 0.948, respectively.
The reason why GBDT can achieve such high scores
is because, first, we have introduced enough features
for each structural variation (of course not that more
features are better), then the model can learn more rele-
vant information. Second, the GBDT model is a boosting
method, which can promote a weak learner to a strong
learning algorithm, and build the model in a step-by-step
iterative manner.

Statistical significance
Taking SVPath and SVFX testing deletion variations as
examples, we performed McNemar test on the statis-
tical significance of the two models. Assume that the
number of SVFX classified correctly but SVPath classified
incorrectly is e01, and the number of SVPath classified
correctly but SVFX classified incorrectly is e10. Give a null
hypothesis: SVPath and SVFX classifiers have the same
performance in predicting the pathogenicity of deletion
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varitions. Then e01 = e10, the variables |e01 − e10| should
obey the normal distribution, and the mean value is 1,
the variance is e01+e10. So the variable

τ
χ2 = (|e01 − e10| − 1)2

e01 + e10
(8)

obeys the χ2 distribution with one degree of freedom.
Take the deletion variations on chromosomes 1, 7, 13,
19 as the test set, and the remaining deletions as the
training set (the two are mutually exclusive). The exper-
imental result is that the result of Eq.8 is 550.359. How-
ever, when the significance degree α = 0.05 is given, the
critical value of the χ2 test with one degree of freedom is
3.84, which is much smaller than the calculated result.
And the error rate (1-Accuracy) of SVPath is 0.016, and
that of SVFX is 0.213. And from Table 5, the average
error rate of SVPath is less than that of SVFX. Through
the above analysis, we can reject the null hypothesis
and conclude that SVPath is better than SVFX in pre-
dicting the pathogenicity of deletion structural variants.
Similarly, the statistical significance of SVScore is tested
on the same test set, and the value of Eq.8 is 1151.403,
the error rate is 0.402. It can be seen that our model
SVPath is significantly better than other existing meth-
ods in terms of statistical significance. Please refer to the
supplementary materials for the McNemar test results of
each round of cross-validation.

Features contribution
In order to evaluate the method we put forward in
Section 2.3 to transform structural variants into multiple
consecutive SNP events, and the impact of these three
types of features on the pathogenicity prediction of
structural variants, based on the GBDT model, we
separately train and test the three types of structural
variations with the features in Tables 2, 3 and 4. The
previous indicators are also used as the evaluation
standard, and the experimental results are shown in
Table 6. We can see that when the number of samples is
large enough (deletion and duplication type variations),
the effect of this feature construction method based
on variations transforming is better than the other two
types of features. Our variations transforming method
takes into account the features value of the nucleic
acid substitution in each variation site in the structural
variations.

In addition, we explored the contribution of all the
features we constructed to the pathogenicity prediction
model. Figure 3 shows the top 25 features that contribute
to the pathogenicity model (Measured in deletion type
variation). We can see that the variation subtype is the
most important feature, as well as Methylation signal,
LINSIGHT (Protein function score) and so on. For exam-
ple, the subtype value stopgain, this type of variation will
cause the chromosome to introduce a stop codon when
encoding a protein, which will cause the encoding of the

Figure 3. Top 25 relatively important features.

protein to terminate prematurely or the protein cannot
be translated. On the contrary, stoploss may cause the loss
of a stop codon, which will cause the final protein to be
longer than the original protein, thereby affecting normal
cell activities.

SVPath performance on independent data sets
In the above experiment, some benign variations
in the training set are obtained through Borderline
SMOTE oversampling, one possible shortcoming of this
oversampling technique is that it cannot overcome the
data distribution problem of some features, and it is easy
to cause the problem of distribution marginalization.
Therefore, we tested the performance of SVPath in two
separate variations databases, DECIPHER (DatabasE of
genomiC varIation and Phenotype in Humans using
Ensembl Resources) v11.6 [31] and gnomAD (Genome
Aggregation Database) v2.1.1 [55]. These two databases
provide clinical pathogenicity explanations for part of
the variants data (online version). The variations in
DECIPHER are based on GRCh38, so we first converted the
coordinates of the structural variations using the Remap
tool provided by NCBI. We only selected a part of the
three types of structural variants that are pathogenic and
benign in DECIPHER. Most of the variations in gnomAD
comes from ClinVar, so we manually searched and
sorted out some of the pathogenic and benign deletions,
insertions and duplications that occur in the exons
from gnomAD that are not in ClinVar. The numbers of
deletions, insertions and duplications are 934, 356 and
512 in gnomAD, and 628, 152 and 451 in DECIPHER,
respectively.

We used all the variants in Table 1 to train the
pathogenicity prediction models of these three structural
variants. Then use the pre-trained models to test on
these two independent data sets. The test results are
shown in Table 7. It is obvious from Table 7 that SVPath
still performs outstandingly on the two independent
test sets. The Matthews correlation coefficients of
deletions and duplications variations are still maintained
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Table 6. The performance of different types of features based on GBDT model

SV type Features Accuracy Precision Recall Specificity F1-score G-mean MCC

Deletion Table 2 0.913 0.937 0.880 0.945 0.907 0.912 0.819
Table 3 0.738 0.832 0.533 0.914 0.641 0.684 0.464
Table 4 0.967 0.976 0.954 0.978 0.965 0.965 0.929

Insertion Table 2 0.589 0.819 0.560 0.735 0.640 0.636 0.251
Table 3 0.264 0.470 0.076 0.769 0.112 0.226 -0.199
Table 4 0.747 0.892 0.671 0.805 0.754 0.722 0.460

Duplication Table 2 0.911 0.961 0.902 0.922 0.930 0.911 0.796
Table 3 0.632 0.854 0.514 0.850 0.627 0.648 0.346
Table 4 0.962 0.979 0.962 0.961 0.970 0.961 0.910

Table 7. The performance on gnomAD and DECIPHER databases

Databases SV type Accuracy Precision Recall Specificity F1-score G-mean MCC

gnomAD Deletion 0.971 0.958 0.988 0.953 0.972 0.970 0.942
Insertion 0.860 0.969 0.808 0.953 0.881 0.877 0.731
Duplication 0.955 0.933 0.985 0.922 0.958 0.953 0.911

DECIPHER Deletion 0.955 0.975 0.955 0.955 0.965 0.955 0.904
Insertion 0.934 0.976 0.946 0.870 0.961 0.907 0.764
Duplication 0.953 0.937 0.967 0.941 0.952 0.954 0.907

above 0.9. Due to less insertion variation, the results of
insertion variation are difficult to measure. However,
compared to the test set reserved in ClinVar and dbVar,
the prediction performance of SVPath on the new data
set has declined. One of the main reasons is that, in
order to achieve a balance between positive and negative
samples when training SVPath, some benign variant data
are obtained by Borderline SMOTE oversampling based
on the existing variation features. The oversampling
method divides the benign samples into safe samples,
boundary samples and noise samples, and performs
nearest neighbor interpolation on the boundary samples.
Although the uneven distribution of benign sample data
is considered, the difference between boundary samples
is not considered. Therefore, the fitting degree of the
characteristic data distribution of the benign variation is
not good, so that the model cannot better learn the data
distribution characteristics of such samples. Of course,
a better solution is also our strategy for continuous
improvement in future work, which is to mine more and
experimentally proven benign structural variations data
to train SVPath to achieve better prediction performance
of the models.

Predicting unknown pathogenicity of SV in
ClinVar
In the ClinVar variant database, there are still a large
number of structural variants of unknown pathogenicity.
Based on the pathogenicity prediction performance of
SVPath verified by the above experiments, here, we
use the pre-trained SVPath to predict the pathogenicity
of three types of structural variants of unknown
pathogenicity. First, we filter out deletion, insertion
and duplication structural variants from ClinVar that

are of uncertain significance, likely benign, and likely
pathogenic. Firstly, we use the ANNOVAR variation
annotation tool to annotate the selected variation data
and filter out the variations that occur on the exons.
Secondly, we used the pre-trained SVPath to predict
the pathogenicity of these variants of unknown clinical
significance. The prediction results are shown in Table 8.
See the supplementary materials for the pathogenicity
prediction results of each variant whose pathogenicity is
unknown.

We investigated the structural variants that were
originally labeled as likely benign and that SVPath pre-
dicted to be pathogenic in ClinVar. We found that most
of these structural variants that were predicted to be
pathogenic were related to certain clinical phenotypes.
For example, a deletion variation on chromosome 1,
coordinate 55512243 (chr1:55512243 CTT>C) is related
to Familiar hypercholesterolemia [56]; the variation of
chr3:137484347 from TA to T is related to Anophthalmia-
microphthalmia syndrome [57]. Although it cannot be
determined from clinical experiments that these struc-
tural variants are directly related to specific diseases,
our SVPath structural variant pathogenicity prediction
model can provide a strong evidence for the correlation
between these variants and diseases. SVPath can be
used as a reference in clinical experiments exploring the
relationship between structural variation and disease.

Running time
First, due to the large number of feature annotation
files, and the larger files based on single nucleic acid
replacement such as CADD, we have to divide these
files into multiple chunks according to the chromosome
number and fixed step size (1Mb) to reduce the running
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Table 8. Prediction of pathogenicity of variants of unknown clinical importance in ClinVar

Type Clinical significance number of variation SVPath prediction

DEL Uncertain significance 6484 5396P+1088B
Likely benign 394 249P+145B
Likely pathogenic 6442 6014P+428B

INS Uncertain significance 532 224P+308B
Likely benign 66 16P+50B
Likely pathogenic 362 279P+83B

DUP Uncertain significance 2708 2081P+627B
Likely benign 160 111P+49B
Likely pathogenic 2352 2263P+89B

Where, P stands for disease-causing and B stands for benign.

time of features annotations. Second, since each struc-
tural mutation event is uncorrelated, we use a multi-
process-based parallel approach to annotate multiple
variation events at the same time. The total running
time of SVPath depends on two aspects, namely the total
number of variations and the length of the variations. We
roughly merged the variations in Table 1 several times (a
total of 60 765 deletions, 33 450 insertions and 17 600
duplications) to increase the number of variations, and
the SV length distribution of the merged variants is
shown in . The running time of the three variant anno-
tations is shown in Figure 4a. If the variation length is
evenly distributed, the speedup of parallel acceleration
is ideal, such as insertion variation. However, there are
more large-scale variations in deletions and duplications,
and these variations determine the final running time.

Discussion
Although there have been many studies in the past to
try to reveal the relationship between variants and dis-
eases or phenotypes in a computational manner, most
of the tools are based on the scores of the impact on
protein function caused by single nucleic acid substitu-
tions. There are few attempts to quantify or qualitatively
explain the pathogenicity of unbalanced variants such
as deletions, insertions and duplications. Therefore, in
this paper, we propose SVPath, a pathogenicity prediction
model based on machine learning algorithms for struc-
tural variations of deletions, insertions and duplications
that occur in exons.

When constructing the features required by the
machine learning model, we collected information about
the biological features caused by the mutation from
multiple angles. These features can generally be divided
into three categories, namely (1) The correlation score
based on the replacement of a single nucleic acid, mainly
about the impact score of the SNP on the structure and
function of the protein, etc.; (2) Feature scores based
on the gene level, mainly gene function loss score and
GDI, etc.; (3) Based on the features of transcriptomics,
it mainly includes the overlap ratio of histone marker
signals and variations with specific regions of genes.
After constructing features for the deletion, insertion

and duplication structural variation events on each exon
in the ClinVar clinical variation database, a part was
selected to train a GBDT machine learning model, and a
reserved test set was used to verify the SVPath prediction
model. In addition, we used two independent variation
databases, DECIPHER and gnomAD, to further verify the
performance of SVPath. The experimental results show
that SVPath achieves quite excellent prediction effects
whether it is on the test set or on two independent
datasets.

Data contamination issues due to use of scores from
other methods are less likely. The work in this paper
focuses on the pathogenicity prediction of SVs, while the
scores in Table 2 are all based on SNPs and the scores in
Table 3 are based on genes. Table 4 is based on transcrip-
tomic features and defined regions of chromosomes, so
the dataset we used is completely independent of those
used by other methods. In addition, the score of one of the
other methods is only a feature of a structural variant,
and the pathogenicity of the structural variant predicted
in this paper is determined by all the features.

In order to speed up the process of feature annotation,
we optimized it from two aspects. First of all, because
any two structural mutation events are unrelated, we
adopt a multi-process level parallel approach to shorten
the overall time, such as using four processes to perform
feature annotations for four structural mutations at the
same time. Secondly, SVPath involves many annotation
features and requires reading a large number of files. The
largest file is the CADD score (323GB), which contains
the scores of 8.6 billion possible nucleic acid substitu-
tions. Therefore, we split the four larger files (CADD,
dbNSFP, MCAP and REVEL) according to chromosome
numbers to shorten the time to read the files. For the
values of the features SIFT, SIFT4G, Polyphen2_HDIV and
Polyphen2_HVAR, we follow the value method in the
dbNSFP database, that is, the discretized value, rather
than the original continuity value. On the one hand, the
conversion from continuous to discrete is in dbNSFP. Its
purpose is to make these features monotonous in the
same direction. Higher scores may mean higher destruc-
tiveness. If a non-synonymous single-nucleotide vari-
ant (nsSNV) has multiple scores, dbNSFP uses the most
harmful one. On the other hand, if these four databases
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Figure 4. Variations length distribution and running time. Because we
split large files, when using multi-process parallelism, feature annota-
tions with small structural variations hardly affect the total running time.
Since the annotation of long variation events and small-length variations
may be carried out at the same time, although the variations within 50bp
in Figure 4b accounts for half, the final time-consuming is determined by
the large-scale variations (500kb∼5Mb). Figure 4b shows the running time
and speedup when using different numbers of processes. Assuming that
the running time of a single process is Ts, the running time of multiple
processes is Tp, and the number of processes is p, the speedup when using
p processes is Ts/Tp.

(files) are used separately, it will greatly increase the
running time of SVPath in constructing features.

In addition, the histone marker signal and methy-
lation signal characteristics in our pre-trained model
are based on human H1 embryonic stem cells (E003);
germline mutations and somatic mutations have dif-
ferent causes, genetics, functions and occurrence peri-
ods, so theoretically pre-trained models are only suitable
for the pathogenicity prediction of germline mutations.
Because there are not enough data that clearly indi-
cate the structural variation of germline mutations and
somatic mutations with clinical pathogenicity labels, it
is difficult to distinguish the pathogenicity predictions
of germline mutations and somatic mutations. For the
prediction of the pathogenicity of somatic mutations, if

there are enough data on somatic mutations with known
pathogenicity, such as Muscle Satellite Cultured Cells
(E052), Lung (E096), Liver (E066), Ovary (E097), etc., we can
use these tissue-specific histone and methylation signals
to replace the H1 embryonic cell data we used to train
each somatic mutation pathogenicity prediction model.

In future work, first, we will dig out more data
about the pathogenicity and benignity of the inversion
structural variation, so as to improve the data fitting
ability of the model. Second, regarding the pathogenicity
prediction of inverted structural variants, because the
current mainstream databases on clinical variants (Clin-
Var, gnomAD and DECIPHER, etc.) do not have enough
data about inversion variants, we intend to manually sort
out the clinical importance data of inverted variants from
related clinical literature to realize the pathogenicity
prediction of inverted variants in the next work.

Conclusions
Genome variation is one of the causes of most diseases,
and it is also an important factor affecting phenotypic
diversity. However, most of the existing tools and algo-
rithms try to reveal the causal relationship between SNPs
and diseases, and there are few related algorithms to
explore the pathogenicity of structural variations. There-
fore, in this paper, we propose the SVPath to predict
the pathogenicity of deletion, insertion and duplication
structural variations that occur in exons. First, in order
to make the most of the relevant information of each
variation site, we convert each structural variation into
multiple consecutive SNP events, thereby introducing
SNP-based feature information, such as the effect of
SNP on protein structure and function. Second, we have
introduced gene-level feature data for each structural
variation, such as loss of function and GDI. Third, we also
introduced related features based on transcriptomics,
such as histone signal, the overlap ratio of variation and
genomic element definitions, etc. Finally, based on the
clinical structural variation data in the ClinVar database,
we employed a GBDT machine learning method to train
a structural variation pathogenicity prediction model
SVPath. Experimental results show that our SVPath has
achieved excellent predictive performance no matter on
the reserved test set or on two independent data sets.
On the test sets, after cross-validating, we get the aver-
age scores of Matthews correlation coefficients for dele-
tions, insertions, and duplications structural variations
of 0.956, 0.704 and 0.948, respectively.

Key Points

• This paper proposes SVPath which is based on a machine
learning model to predict the pathogenicity of deletions,
insertions and duplications structural variations that
occur in exons with higher performance.

• SVPath constructs the annotation features of each struc-
tural mutation event from multiple perspectives.

• Designed and implemented a method to convert struc-
tural variation into multiple consecutive SNP events,
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thereby introducing relevant features based on single
nucleic acid substitution.

• Experimental results prove that SVPath achieved more
accurate prediction and generalization capabilities. On
independent data sets, SVPath’s predictive ability is still
excellent.

Supplementary data
Supplementary data are available at Briefings in
Bioinformatics

Data availability
SVPath is implemented in Python, and the source
code can be downloaded from https://github.com/
pengsl-lab/SVPath. The clinical variation data of Clin-
Var can be obtained at https://www.ncbi.nlm.nih.
gov/clinvar, dbVar data are available at https://ftp.
ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_
assembly/GRCh37/vcf/. The gnomAD is at https://
gnomad.broadinstitute.org. The DECIPHER is available
at https://www.deciphergenomics.org.

The features data used to annotate variations are as
follows:

• The CADD annotation information is obtained from
https://cadd.gs.washington.edu.

• The dbNSFP database containing various feature
values is at https://sites.google.com/site/jpopgen/
dbNSFP.

• The Mendelian clinically applicable pathogenicity
(M-CAP) score is obtained from http://bejerano.
stanford.edu/mcap.

• The REVEL pathogenicity score is obtained from
https://sites.google.com/site/revelgenomics.

• The GDI gene damage index data can be obtained
from https://lab.rockefeller.edu/casanova/GDI.

• The RVIS genetic intolerance data is downloaded
from http://genic-intolerance.org

• The functional genomics data are downloaded
from the ENCODE Roadmap (https://egg2.wustl.edu/
roadmap).

• The genomic element definitions data can be down-
loaded from http://pcawg.gersteinlab.org.
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