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Abstract

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific
markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we
defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal
tissues and explored CS-associated phenotypes by integrating multiplatform data from ∼20 000 patients and ∼212 000 single-
cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly
predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor
heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we
identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in
72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights
into CS roles in cancer- and senescence-related biomarker discovery.
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Introduction
Cancer is considered as an aging disease and remains the
leading cause of death in the aged population [1]. Cel-
lular senescence (CS), defined as the irreversible arrest
of the cell cycle, is a critical component of the four
layers of aging and cancer hallmarks [2, 3]. Senescent

cells have been observed in the murine and human
tumor microenvironments [4]. Currently, accumulating
evidence has linked the senescent microenvironment
with cancer progression and metastasis, whereas con-
flicting conclusions have been made across various can-
cer types [5–10]. One characteristic of senescent cells is
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the increased secretion of proinflammatory chemokines,
which is termed as the senescence-associated secretory
phenotype (SASP) [11]. SASP has been reported to accel-
erate tumor growth by facilitating immune evasion, but
it can also protect against tumor development by stim-
ulating the immune response in different contexts [11,
12]. Thus, it is of particular interest to investigate the
roles of CS in diverse cancer types, which would improve
the tailoring of senescence-targeted therapy in specific
tumors [13].

Defining CS levels remains a critical unanswered
question due to the absence of universal and specific
CS markers [14]. The detections of senescent cells
mainly rely on immunohistochemistry (IHC) staining
for multiple biomarkers, such as senescence-associated
β-galactosidase activity (SA-β-Gal), p16INKA and p21, to
limit the false-positive rate observed [14, 15]. However,
current experimental approaches do not usually sup-
port simultaneous staining in certain conditions [16].
Additionally, growing interest has focused on recognizing
common senescent characteristics by combining several
transcriptional profiles of senescent cells [17–19], but
the accurate quantifications of senescence levels in
cancer patients remain poorly characterized. Thus, the
development of a computational method to quantify CS
levels in patients is urgently needed.

It is still challenging to translate senescence-related
mechanisms to clinical outcomes, as pioneering studies
have mainly focused on single cancer types or nonhu-
man models [20–22]. The severe toxicities and limited
immunotherapy responses make the prior recognition of
responders a critical need [23]. Furthermore, targeting
the senescence process has been proposed as a promising
treatment for preventing cancer and age-related dis-
eases [13, 24, 25]. Therefore, identifying senescence genes
with significant clinical relevance would provide poten-
tial biomarkers for prognostic prediction and therapeutic
targets.

Here, we defined a computational metric of senes-
cence levels and identified the senescence landscape
across 33 cancer types and 29 tissues. Our multiplatform
analyses revealed the cancer-specific associations of
senescence levels with genomic variations and immune
molecular features. Deciphering ∼212 000 single-cell
profiles revealed that CS levels maintained intratumor
heterogeneity and were associated with activated
immune features in prostate cancer cells. Importantly,
CS scores predicted immunotherapy responses and
prolonged patient survival in multiple cohorts. Finally,
three prognosis-related genes from CS signature were
identified by machine learning algorithms in prostate
cancer and were further validated in four independent
cohorts and by IHC in our in-house cohort of 72 PRAD
specimens. The senescence quantification and related
analyses are available on an interactive online website,
Tumor Cellular Senescence Estimation Resource (TCSER,
http://tcser.bmicc.org). Overall, our integrated analyses
provide a valuable framework for a better understanding

of the context-dependent regulation of CS in cancers,
shedding light on the senescence-related biomarker
discoveries and therapeutic targets.

Results
Delineate senescence landscape at the
pan-cancer level
Due to the lack of specific CS markers, we defined
CS scores by combining multiple CS-related genes
to quantify senescence levels. We hypothesized that
the higher the CS levels are, the more dramatic the
differences between the activities of genes positively
related to CS and the activities of genes negatively related
to CS. Thus, we established the CS score in three steps. We
first collected previously curated gene sets of replicative
cell senescence that were derived from 164 distinct cell
lines (totally 1259 genes) [18], then implemented the
Gene Set Variation Analysis (GSVA) [26] algorithm to
separately infer the activities of positive- and negative
CS-correlated genes in individual samples and finally
defined CS scores as the differences between these two
activities (Figure 1A).

We then utilized complementary methods to assess
the reliability of CS scores in representing senescence
status. First, by pre-ranked gene set enrichment, posi-
tively CS-correlated genes were enriched in the p53 path-
ways, TNF-α pathway and interferon-gamma response
pathway (Supplementary Figure S1A available online at
https://academic.oup.com/bib), which is consistent with
the enhanced inflammation and p53 activity observed
during the senescence process [27]. The negative side
of the CS signature was enriched in the pathways of
deoxyribonucleic acid (DNA) repair, G2M checkpoint, Myc
checkpoint and E2F targets (Supplementary Figure S1A
available online at https://academic.oup.com/bib), which
is consistent with the cessation of cell division during
CS [28]. Consistently, CS scores exhibited negative
correlations with the expression of oncogenic signatures,
including Myc- and E2F-regulated genes, and positive
correlations with tumor suppressor signatures, including
RB-regulated genes (Figure 1B). These results were
also in agreement with current notions that CS can
be triggered by the abnormal activation of tumor
suppressors and oncogenes [15]. Next, we tested whether
the CS score could measure senescence levels in a
similar way as widely used senescence markers (p21
and p16INK4A) in experiments. As anticipated, we found
that CS genes had significant correlations with p21 and
p16INK4A proteins compared with other non-CS genes
(Supplementary Figure S1B and C available online at
https://academic.oup.com/bib). Furthermore, we found
that CS scores were able to distinguish known prolifera-
tive cells and senescent cells in 15 independent datasets
(including 128 cell line samples, Supplementary Table S1
available online at https://academic.oup.com/bib) and
had higher areas under the curve (AUCs) than p21
and p16 (Supplementary Figure S1D and E available
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Figure 1. Comprehensive quantification of senescence levels in cancers and tissues. (A) Overall methodology. Workflow for integrative analysis of the
CS landscape across cancers using multi-omic data. (B) Heatmaps showing correlations between the CS score and GSVA scores of oncogenic processes
across 33 TCGA cancer types. (C) Average CS scores in individual cancer types. Tissue types, cancer types and average CS scores are shown from the inner
circle to the outer circle. (D) Average CS scores across normal tissues in the GTEx dataset. (E) Lower CS scores in primary tumors (orange) in comparison
to adjacent normal solid tissues (gray). The Wilcoxon test P-values are stated. NES, normalized enrichment score; ∗∗∗∗ indicates P < 0.0001; ∗ indicates
P < 0.05.

online at https://academic.oup.com/bib). CS scores also
showed closer associations with molecular features
of three main CS hallmarks [14, 15] than p21 and

p16 (Supplementary Figure S1F available online at
https://academic.oup.com/bib). Briefly, these results
revealed that CS scores were significantly associated
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with main CS features and showed better performance
than the single CS marker (p21 or p16).

Next, we applied our approach to systematically
profile senescence levels in ∼10 000 samples across
33 cancer types in The Cancer Genome Atlas (TCGA)
database (Supplementary Table S2 available online at
https://academic.oup.com/bib). Tissue-specific senes-
cence levels across cancer types were revealed (Figure 1C).
Generally, cancer cells originating from urinary systems,
glands and soft tissues (PRAD, KIRC, ACC and SKCM)
exhibited relatively higher CS scores. In contrast, tumors
originating from reproductive organs [TGCT, CESC, breast
invasive carcinoma (BRCA) and OV] had lower CS scores.
Moreover, we investigated the senescence levels in
>9000 samples from the Genotype-Tissue Expression
(GTEx) database and observed similar tissue-preferential
distributions (Figure 1D). The consistent tendency of
CS distribution suggests that tissue type might be
an essential determinant contributing to senescence
degrees of cancers. Additionally, primary tumors had
lower CS scores but greater variations than adjacent
normal samples (Figure 1E), implying that tumor growth
is a process of escaping from CS [29, 30]. Moreover, the age
at diagnosis of patients had slightly positive correlations
with senescence levels of the tumor microenvironment
at the pan-cancer level (coefficient = 0.136 and P-
value=1.48e−04), but showed closer associations in
BRCA, lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD) (Supplementary Figure S1G
available online at https://academic.oup.com/bib). These
carcinomas mainly arise from epithelial tissues, and
the significant associations observed may explain the
accumulation of age-dependent senescent cells in
epithelial cancers [31]. Altogether, these results suggest
that our approach could robustly quantify senescence
levels and systematically delineate the CS landscape
across 33 cancer types and 29 tissues.

Senescence level is associated with cancer
type-specific genomic variations
Increased genomic instability is a common hallmark of
cancer and aging [32]; however, how genomic alterations
vary with senescence in multiple cancers remains to
be illustrated. To gain insights into it, we explored the
associations of senescence levels with copy number
variations (CNVs) and single nucleotide variants (SNVs).
For CNVs, we calculated the CNV score, which is the
sum of the focal, arm and chromosome levels from
GISTIC2.0 [33]. By adjusting for sex, race, cancer type
and age at diagnosis in the multiple linear regression, we
observed a significant negative correlation between the
CS score and the CNV score (Supplementary Figure S2A,
available online at https://academic.oup.com/bib, coef-
ficient = −0.81 and P-value <2e−16). Further cancer-
specific analyses revealed significant correlations in
20 of 33 cancer types, particularly PRAD, LIHC and
LUAD (Figure 2A). We also verified the associations using
aneuploidy score (Supplementary Figure S2B available

online at https://academic.oup.com/bib), which is an
experimental method to measure the total number of
altered chromosome arms [34]. Next, we assessed the
associations of arm-level CNV gains and losses with
CS scores in cancer types with sufficient samples (at
least 100 samples). In general, more arm-level gains
were markedly correlated with CS scores across cancer
types than arm-level losses (Figure 2B and C). Meanwhile,
significant arm-level alterations were relatively accu-
mulated in certain chromosome arms, such as marked
correlations of 8p and 8q with lower CS levels in PRAD
patients (Figure 2B and C). Deletions of 8p and gains of
8q are important phenotypes of higher-grade prostate
cancer [35], suggesting that low senescence levels might
link to more aggressive phenotypes.

For SNVs, we used a similar multiple linear regression
model and found that the CS score was correlated
with lower total mutation numbers (Supplementary
Figure S2C, available online at https://academic.oup.
com/bib, coefficient = −0.18, P < 2e−16). Additional inves-
tigations revealed significant correlations in 15 of
33 cancer types, including PRAD, BRCA and LUAD
(Figure 2D). As PRAD also exhibited relatively higher CS
levels (Figure 1C), we further selected this cancer type
to analyze the differences in mutational events in PRAD
patients between the low-CS and high-CS groups (divided
by the median CS score). Microsatellite instability (MSI)
is a molecular characteristic in hypermutated tumors
due to a defect in mismatch repair genes [36]. Higher MSI
scores were also present in the low-CS group of PRAD
patients (Supplementary Figure S2D available online at
https://academic.oup.com/bib). In general, the low-CS
groups maintained more alterations per sample in PRAD
(Supplementary Figure S2E and F available online at
https://academic.oup.com/bib). Specifically, we found
that missense SNVs mainly accounted for overall muta-
tion events, especially C>T mutations. Aiming to identify
the discrepancy in driver mutations between the high-
and low-CS groups, we examined the top mutated onco-
genic genes in individual groups, respectively (Figure 2E
and F). TP53 and SPOP mutations were more frequent in
the low-CS group of PRAD patients, which was also con-
firmed by experimental measurement of TP53 and SPOP
mutations [37] (Supplementary Figure S2G available
online at https://academic.oup.com/bib). Additionally,
CTNNB1 mutations uniquely occurred in low-CS PRAD
patients (Supplementary Figure S2H available online
at https://academic.oup.com/bib). These mutations
are implicated in the malignant transformation of
prostate cancers [38], indicating the more malignant
characteristics of low-CS patients. Consistently, we also
found significant correlations of CS levels with DNA
repair deficiency and tumor stemness indices in PRAD
(Figure 2G).

Overall, negative correlations of CS scores with CNVs
and SNVs reveal that genomic alterations occur more
frequently in less-senescent and highly aggressive
cancer cells than senescent cells, indicating more
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Figure 2. Associations between senescence levels and genomic variations at the pan-cancer level. (A) Associations between CS scores and CNV scores
across TCGA cancer types (dots). Spearman correlations and significance [−log10(Benjamini–Hochberg-adjusted P-values)] are shown on the x-axis
and y-axis. Labeled are significant CS-related cancers (significance > 2), and colored are those with significance >10. (B and C) Dot plots showing the
associations between CS scores and arm-level CNV gains (B) and CNV losses (C). Circle size indicates significance [−log10(Benjamini–Hochberg-adjusted
P-values)], and the circle color denotes coefficients in multiple logistic regression. (D) Associations between CS scores and mutation loads across TCGA
cancer types (dots). (E and F) Heatmap showing the top mutation events for individual TCGA PRAD patients in the high-CS (E) and low-CS groups (F),
respectively. Bar plots in the top panel represent the CS scores of individual patients. Statistical graph of mutation events for each gene is shown in the
left panel. Colors are variant classifications. (G) Comparative analysis of different PRAD subtypes. Cochran–Mantel–Haenszel test P-values are stated.
PRAD patients were classified into five equal subtypes (G1–G5, from the 20% to 80% quantile) based on the range of RNAss, DNAss, HRD and HRD-LOH,
respectively.
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intensive genomic variations during the tumorigenesis
process than during senescence.

Cancer-specific immune characteristics are
shown in the senescent microenvironment
Tumor immunity is a critical dominator in driving tumor
growth and patient prognosis [39]. To investigate the
impact of senescence on tumor immunity, we applied the
Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) algo-
rithm [40] to evaluate the immune scores (the proportion
of immune cells), stromal score (the proportion of
stromal cells) and ESTIMATE score (the proportion of
nontumor components) across all TCGA cancer types.
We observed significant associations of the CS score
with the three scores by adjusting for cancer type in
multiple linear regression (Supplementary Figure S3A
available online at https://academic.oup.com/bib). For
the immune score, significant positive correlations were
observed in 24 out of 33 cancer types, including PRAD
and SKCM (Supplementary Figure S3B available online
at https://academic.oup.com/bib). Senescent cells are
characterized by the release of a plethora of SASP
factors to contribute to tumor immunity [41]. We then
evaluated the associations of senescence levels with
SASP-related cytokines (Figure 3A). Higher proportions
of cytokines significantly correlated with CS were shown
in total SASP factors than in all immune-related genes
across most cancer types, such as PRAD, SKCM and
LUSC. This analysis suggests that SASP-induced immune
infiltrations may also occur in senescent cancers. To
test this hypothesis, we implemented the CIBERSORT
algorithm [42] to deconvolute the compositions of 22
immune cells in tumor samples. As supposed, the
infiltration abundances of total immune cells were
significantly related to CS scores in most cancer types
(25 out of 32 cancer types), while the infiltrations of
specific immune cells varied in a cancer-specific pattern
(Figure 3B). For instance, tumor growth-promoting
macrophages (M2-like) are negatively related to the CS
score in PRAD, but not all cancer types. This result implies
an immunostimulatory microenvironment in senescent
tumors of PRAD patients.

Moreover, we identified immune molecular character-
izations associated with CS scores. First, we recognized
key CS-related interaction pairs of immune checkpoints,
such as PD1 and its ligands (PD-L1 and PD-L2), as well
as CTLA and its ligands (CD80 and CD86). High CS
groups showed enhanced expression of PD-L1 transcripts
and proteins in PRAD and SKCM (Figure 3C). Positive
correlations with other immune checkpoint genes
(PD1, PD-L2, CD80 and CD86) were also prominent
in PRAD and SKCM (Supplementary Figure S3C avail-
able online at https://academic.oup.com/bib). Immune
cytolytic activity (CYT) score, defined as the mean of
granzyme A (GZMA) and perforin (PRF1) transcripts, is
a valuable index for assessing T-cell cytotoxicity and
is also a biomarker for predicting immune responses

[43, 44]. Next, we observed that senescent tumors
maintained higher CYT in approximately half of the
TCGA cancer types (Supplementary Figure S3D avail-
able online at https://academic.oup.com/bib). Finally,
integrating PD-L1 protein expression and the CYT
score revealed that CS scores were positively correlated
with both in seven cancer types (Figure 3D), such
as PRAD, SKCM and GBM. We suspected that such
tumors would be more susceptible to immunotherapy
in the relatively senescent microenvironment due
to elevated PD-L1 expression and sufficient cytolytic
T-cells.

To validate associations of the CS score with immune
infiltration levels and immune molecular features, we
performed IHC staining against p21 (a widely used
senescence marker), CD45 (a common antigen expressed
in all leukocytes) and PD-L1 in 72 PRAD patients.
We obtained markedly positive correlations of p21
expression with PD-L1 and CD45 (Figure 3E and F).
Collectively, our results revealed the cancer-specific
connections of senescence levels with immune features
and identified PRAD and SKCM that might exhibit
higher susceptibility to immunotherapy in a relatively
senescent microenvironment.

Single-cell analyses reveal senescence
heterogeneity and associated immune signaling
To examine whether CS levels are heterogeneous
in the tumor microenvironment, we used 10 single-
cell datasets with a total of 97 440 cells from 107
patients (GSE141445, GSE143423, GSE146771, GSE102130,
GSE131928-10X, GSE131928-Smartseq2, GSE117570,
GSE143423, GSE118828 and GSE72056). Applying the
standard pipeline in MAESTRO [45], we identified cell
clusters and mapped them into main cell lineages (Meth-
ods and materials). Interestingly, we obtained a consis-
tent distribution of CS levels across cell types in different
datasets (Figure 4A, Supplementary Figure S4A–F avail-
able online at https://academic.oup.com/bib). The most
prominent senescence levels were exhibited in stromal
cells (fibroblasts and endothelial cells) in keeping with
the significant correlations of CS scores and stromal
scores (Supplementary Figure S3A available online at
https://academic.oup.com/bib). In contrast, malignant
cells showed relatively lower degrees of senescence.
Among immune cells, myeloid cells had relatively higher
CS scores than T-cells.

To dissect the impact of intratumor CS heterogeneity
on the tumor microenvironment, we further analyzed
33 100 single cells from PRAD patients (GSE141445) [46].
Consistently, we observed intercellular heterogeneity
of CS scores in the prostate cancer microenvironment
(Figure 4B and C). Pathway enrichment of differentially
expressed genes (DEGs) in cancer cells between the high-
CS and low-CS groups revealed the significant enrich-
ment of immune-related pathways in senescent cancer
cells, including antigen presentation, immunoregulatory
interactions and interferon-α/β signaling (Figure 4D). In
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Figure 3. Cancer type-specific associations of senescence levels with tumor immunity. (A) Proportions of genes significantly correlated with the CS score
in SASP genes and all immune genes. Cancer types are ordered by increasing proportions of CS score-correlated genes in SASP genes. (B) Spearman
correlations (color) between CS scores and the absolute abundance of 22 immune cell types estimated by CIBERSORT for individual TCGA cancer types.
Columns are ordered by increased correlations of the CS score with total cell infiltration. (C) Boxplots comparing the differences in PD-L1 expression
between the low- and high-CS groups for individual TCGA cancer types at the transcriptional level (upper panel) and protein level (bottom panel). (D)
Significance of the Spearman correlations of CS scores with immune CYT (x-axis) and PD-L1 protein expression (y-axis) at the pan-cancer level. Colored
cancer types are these with P-value < 0.01 and absolute Spearman correlation >0.1 in either direction (blue, significant in PD-L1 protein expression;
yellow, significant in CYT; red, significant in both; gray, nonsignificant in both). The gray-dashed lines represent the P-value equals 0.01. (E) Representative
graph of IHC staining of p21, CD45 and PD-L1 proteins in 72 PRAD patients. (F) Scatter plots showing the correlations of p21 expression with CD45 (left
panel) and PD-L1 (right panel) in the IHC assay. Spearman correlations and the corresponding P-values are labeled. ∗∗∗∗ indicates P < 0.0001, ∗∗∗ indicates
P < 0.001, ∗∗ indicates P < 0.01 and ∗ indicates P < 0.05.

particular, high-CS cancer cells presented more human
leukocyte antigens (HLAs) (B2M, HLA-B and HLA-C)
(Figure 4E), which suggests that senescent cancer cells
could facilitate recognition and clearance by immune
cells by presenting more self-antigens on the cell surface
[47]. This result also implies the potential intracellular
mechanisms of senescence-related regulation in cancer
cells.

Senescent cells can impact local tumor immunity
by changing paracrine communications [27]. Having
explored the intracellular changes in senescent cancer
cells, we next focused on cell–cell interactions using
CellPhoneDB [48]. We found that cancer cells in the
high-CS and low-CS groups preferentially communicated
with different neighboring cells (Figure 4F). Low-CS
cancer cells showed higher numbers of interaction
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Figure 4. Senescence heterogeneity and associated immune characteristics in tumor microenvironments. (A) Heatmaps showing the average CS scores
of different cell types (stromal cells, myeloid cells, malignant cells and T-cells) in 10 single-cell datasets, which are labeled as the cancer type with
accession numbers in the GEO database. (B and C) The t-distributed stochastic neighbor embedding visualization shows seven main cell types in single-
cell prostate cancer data (GSE141445), colored by cell type (B) and the CS score (C). (D) Bar plots showing the top 10 enriched Reactome pathway terms
of DEGs in malignant luminal cells between the high-CS (pink) and low-CS groups (green). (E) Dot plots showing the expression of selected DEGs in
malignant cells between the high-CS and low-CS groups. The dot color corresponds to the average expression, and the dot size indicates the percent
expressed. (F) Bubble chart showing significant ligand–receptor interactions between high-CS/low-CS malignant luminal cells (luminal_H/luminal_L)
and neighboring cells. Ligands and receptors are shown on the x-axis; ligand-expressed cells and receptor-expressed cells are shown on the y-axis. The
color denotes the average expression levels of ligands and receptors in interacting cells, and the bubble size indicates the significance of the interactions
(permutation test in CellPhoneDB).

pairs with endothelial cells, including CXCL1_ACKR1
and JAG1_NOTCH3. These pairs are known to promote
tumor growth, invasion and metastasis [49–51]. In

contrast, high-CS cancer cells showed a unique pattern
of interaction pairs for T-cell recruitment and activation
(CXCL12_CXCR3, CXCL12_CXCR4 and PLA2G2A_a4b1)
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and fewer interactions with T-cell suppressors (MIF-
TNFRSF14) [52]. In summary, frequent immunostimu-
latory communication between senescent cancer cells
and immune cells suggests the possible intercellular
regulation of CS in boosting the tumor immunity of PRAD
patients.

Senescence level is a potential predictor of
immunotherapy response
The immune alterations in the senescence context
inspired us to ask whether CS scores have the potential
to predict immunotherapy. As malignant cells are major
cell types in tumor biopsy [53], we first examined
the posttreatment changes of CS score in malignant
cells from paired pre- and posttreated patients (totally
63 032 single cells in GSE123813 and GSE117988).
In the same patient, the CS scores of malignant
cells from nonresponders significantly decreased after
treatment, but the posttreatment CS scores signifi-
cantly increased in ICB responders (Figure 5A–D). Next,
we further explored more datasets (115 853 single
cells in total) with unpaired ICB-treated patients by
adjusting different patients as covariates in the linear
model. Consistently, we observed the coefficients of
CS score are positive in posttreated responders and
negative in posttreated nonresponders across five
single-cell ribonucleic acid (RNA)-sequencing (RNA-seq)
datasets (Supplementary Figure S5A available online
at https://academic.oup.com/bib). The opposite post-
treatment changes in CS levels between nonresponders
and responders indicate the potential of CS scores in
predicting ICB responses.

To gain insights into the possible mechanisms under-
lying the opposite changes in CS levels observed above,
we calculated the correlations between the CS score
and the activities of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways in the basal cell carcinoma
(BCC) cohort. Interestingly, we discovered distinctive sets
of CS-related pathways and genes between responders
and nonresponders (Supplementary Figure S5B and
C available online at https://academic.oup.com/bib).
Senescent cells from responders were associated with
more immune-mediated signaling and genes, including
NFATC1-activating cytotoxic T lymphocytes [54]. In
contrast, senescent cells from nonresponders were
linked to tumorigenesis-related signaling and molecules,
such as BIRC3, which plays a prosurvival role in
cancer cells [55], and TNFAIP3, which contributes to
malignant phenotypes [56]. Further investigations are
needed to explain the potential mechanisms that
modulate CS-associated differences in response to ICB
therapy.

Furthermore, we investigated the predictive power
of CS scores in larger samples (542 patients in 8 ICB-
treated cohorts) [44, 57–63]. CS scores exhibited the
predictive significance for the ICB response rate, with
a mean AUC of approximately 0.68 (Figure 5E). Fur-
thermore, we applied the Tumor Immune Dysfunction

and Exclusion (TIDE) tool, a creative computational
method of predicting ICB responses [64], to evaluate
the predictive efficiency of the TIDE score in multiple
ICB cohorts and observed that the CS score exhibited
higher AUCs than the TIDE score in the melanoma
and kidney cancer cohorts (Figure 5F), which was in
line with the CS-related immune molecular alterations
in these cancer types (Figure 3D). Collectively, these
results indicate that CS levels are associated with
different biological behaviors between responders and
nonresponders and have the potential to predict ICB
responses.

Senescence level predicts active immune
response and better prognosis in prostate cancer
As significant associations of CS scores with immune
features were observed above, we next hypothesize
these associations could make CS scores prognostic
predictors. Using the Cox proportional hazards model
by adjusting for age, sex, race and cancer type as
covariates, we observed that higher CS scores were
generally related to decreased hazards for both overall
survival (OS) and progression-free survival (PFS) in the
TCGA [hazard ratio (HR) = 0.92 for OS; HR = 0.83 for
PFS] (Supplementary Figure S6A and B available online
at https://academic.oup.com/bib). Further analyses of
individual cancer types revealed that high senescence
levels were associated with prolonged survival in PRAD
(Figure 6A and B). As abundant immune infiltration in
tumors has been considered a routine prognostic factor
[65], this result is in line with the positive correlation
of the CS score with the total cell infiltration in PRAD
(Figure 3B).

We then selected PRAD to examine the impact
of senescence levels on clinical indices. Lower CS
scores were observed in patients with higher Glea-
son scores, T stages and N stages (Figure 6C and D,
Supplementary Figure S6C available online at https://
academic.oup.com/bib), indicating that senescent tumors
maintain fewer malignant properties. To further confirm
this finding and test the robustness of CS score-based
groups, we extracted the expression of all genes in
the CS signature and performed consensus clustering
to divide PRAD patients into two groups (Figure 6E,
Supplementary Figure S6D and E available online at
https://academic.oup.com/bib). The unsupervised
method revealed two clusters (Cluster 1 and Cluster
2), and patients in Cluster 2 exhibited better survival
(Figure 6F). As anticipated, patients in Cluster 2 were
mainly from the high-CS group and maintained more
inflammatory immune phenotypes (Immune C3) than
immunosuppressive phenotypes (Immune C1 and C4)
(Figure 6G). Additionally, hierarchical clustering of all
immune pathways in the KEGG database also displayed
a similar grouping as the consensus clustering-based
classification (Figure 6H), indicating overall immune
activation in the senescent tumor microenvironment.
Altogether, our analyses indicate the potential prognostic
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Figure 5. Associations of senescence levels with immunotherapy responses. (A and B) Uniform manifold approximation and projection plot showing
main cell types in single-cell datasets of BCC patients (A, GSE123813) and MCC patients (B, GSE117988) receiving immunotherapy treatment, colored by
cell types. (C and D) Violin plot showing posttreated changes of CS scores in malignant cells from responders and nonresponders of immunotherapy
(C, BCC patients; D, MCC patients). The Wilcoxon test was used for P-value calculations. (E) receiver operating characteristic (ROC) curves of the CS
score in distinguishing responders and nonresponders to immunotherapy in eight different cohorts (color). AUCs were calculated by ROC analysis and
are labeled in the bottom right. (F) Bar plots showing the AUCs of the TIDE score (brown) and CS score (orange) for predicting the immunotherapy
responses of patients in multiple cohorts. The TIDE score was calculated using the TIDE tool. The red-dashed line represents the AUC equals 0.5.
∗∗∗∗ indicates P < 0.0001, ∗∗∗ indicates P < 0.001, ∗∗ indicates P < 0.01 and ∗ indicates P < 0.05. CAF, cancer-associated fibroblast; NK cell, natural killer cell;
DC, dendritic cell.
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Figure 6. Identifying the clinical relevance of senescence levels. (A) Cox proportional hazards model analysis of the CS score for PFS (top) and OS (bottom).
The circle size denotes the Benjamini–Hochberg-adjusted −log10 P-value, and the color denotes the beta coefficient of the CS score. A beta value < 0
indicates a trend toward a high CS score with better survival. (B) Kaplan–Meier curves of PFS for the high and low groups stratified by the median CS
score in TCGA PRAD. Time is measured in months, and the log-rank test P-value is reported. The numbers of patients at risk are shown over time in the
bottom panel. (C and D) Box plots showing the CS score across Gleason scores (C) and T stages (D) of PRAD patients in the TCGA. Kruskal–Wallis test
P-values are stated. (E) Consensus clustering identified two distinct clusters based on the CS signature in transcriptome data of PRAD patients (k = 2).
(F) Kaplan–Meier curves of PFS for PRAD patient clusters (Cluster 1 and Cluster 2) identified from the consensus clustering results. Time is measured
in months, and the log-rank test P-value is reported. (G) Sankey diagrams illustrating the associations between patients grouped by CS scores, patient
clusters and TCGA immune subtypes. (H) Hierarchical clustering of GSEA scores for all immune-related pathways in the KEGG database, annotated by
patient cluster in the color bar.
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value of the CS score in recognizing PRAD patients with
better survival and active immune responses.

Construct and validate senescence predictor in
prostate cancer
To facilitate clinical applications of the CS signature
for prognosis, we employed three machine learning-
based algorithms to select critical features from all CS
genes (Figure 7A, Methods and materials). We collected
5 PRAD cohorts with 1159 patients and applied the
TCGA PRAD cohort as a training dataset and others
as independent validation datasets [66–69]. Ten, 3 and
21 significant genes were identified by least absolute
shrinkage and selection operator (LASSO), random
forest and boruta (RFB) and extreme gradient boosting
(XGBoost), respectively. The three common genes [sperm-
associated antigen 5 (SPAG5), transforming acidic coiled-
coil protein-3 (TACC3), trophinin-associated protein
(TROAP)] of the three algorithms were selected to
construct multiple Cox regressions. We defined the
CS predictor as follows: CS predictor = −0.00358 ×
(expression of SPAG5) − 0.0367 × (expression of TACC3)
− 0.0697 × (expression of TROAP). As expected, the
CS predictor showed significant associations with the
CS score in both TCGA data and four independent
cohorts (Supplementary Figure S7F available online
at https://academic.oup.com/bib). Then, we classified
the patients into high and low groups according to
the median value of the CS predictor. Patients with
lower CS predictors suffered from significantly worse
prognosis with faster disease progression in all five
cohorts (Figure 7B–F) (log-rank P-value < 0.05). In
addition, we estimated the predictive power of the CS
predictor in each cohort. The CS predictor displayed
excellent performance for 1-year-, 3-year- and 5-year
progressions, with an average AUC of approximately
0.7 in the TCGA training dataset and the four testing
datasets (Supplementary Figure S7A–E available online
at https://academic.oup.com/bib). Consistently, worse
tumor grades showed lower CS predictors in TCGA PRAD
patients (Figure 7G), which was further evidenced by the
expression of the three genes among different tumor
stages (Supplementary Figure S7G available online at
https://academic.oup.com/bib).

Aiming to validate the predictive value of the CS
predictor, we enrolled 72 PRAD patients and performed
IHC staining against SPAG5, TACC3 and TROAP (Figure 7H
and I). Based on the quantitative results, we calculated
the CS predictors of individual patients and found
that they were markedly correlated with lower tumor
grades and Gleason scores (Figure 7J and K). Correlations
were also observed for the three genes, respectively
(Supplementary Figure S7H and I available online at
https://academic.oup.com/bib). Altogether, these results
illustrate CS predictor is significantly correlated with the
clinical outcomes of PRAD patients in diverse cohorts,
indicating that the three hub genes from the CS signature
could be potential prognostic biomarkers in PRAD.

Discussion
CS is an essential cellular process in both aging and
cancer, while comprehensive assessments of the senes-
cent landscape and associated features at pan-cancer
level remain unexplored. Additionally, CS functionality
as either a tumor suppressor or a tumor stimulator
remains under intense debate [27]. To gain insights
into this, we established a computational approach for
CS quantification and revealed the connections of CS
with genomic features, immune phenotypes and clinical
outcomes in individual cancer types. Identifying cancer-
specific associations with CS could lead to the rational
choice of senescence-targeted therapy in specific cancer
types. Additionally, three CS genes significantly predicted
patient survival in various cohorts, suggesting their
potential as prognostic biomarkers. Thus, based on
the computational metrics of CS levels, our findings
provide a framework for better understanding CS-
related modulations in the tumor microenvironment
and could guide further experiments and biomarker
identification.

To the best of our knowledge, we are the first to pro-
vide a comprehensive evaluation of senescence levels at
the pan-cancer level by integrating multiple senescence-
related genes and proposing a metric (CS score) of tumor
senescence. This multiparametric metric leverages the
common features of senescent cells across a spectrum
of diverse cell types, overcoming the shortage of lack-
ing CS-specific makers and providing the same criteria
for comparing senescence levels across cancer types. In
addition, this transcriptome-level measurement can be
applied at a single-cell level, which may help to eval-
uate CS levels in these cells lacking detectable senes-
cence markers by experiments. Using this approach, we
observed the CS score was higher in the adjacent normal
samples and was decreased with clinical parameters of
aggressive phenotypes. These negative associations with
tumor aggressiveness suggest the premalignant features
of senescent tumor cells, which is in line with the greater
presence of senescent cells in premalignant tumors than
in malignant tumors [4]. In addition, we discovered tis-
sue type-related distributions of CS scores across TCGA
cancer types and consistent intercellular heterogeneity
of senescence levels across diverse single-cell datasets,
suggesting the critical contribution of tissue types and
cell origins to the CS score.

With our approach, we were able to provide insights
into CS functions in tumor immunity. First, we revealed
the relationships between senescence levels and immune
features in individual cancer types, deepening our
understanding of the exact roles of CS in context-
dependent mediation [70]. Second, CS scores showed
positive correlations with total cell infiltration levels and
PD-L1 expression in particular cancer types, including
melanoma and prostate cancer. These prominent
associations may provide possible explanations for
age-dependent immune dysfunctions in these two
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Figure 7. Senescence genes are potential predictors of patient prognosis in prostate cancer. (A) Overall strategies for selecting three key genes in the
CS signature to predict the PFS of PRAD patients in the TCGA. (B–F) Kaplan–Meier curves of PFS for patients with high and low CS predictor scores in
five published PRAD cohorts, including the testing dataset (TCGA) and four validation datasets (PRJCA001124, MSKCC cohort, Setlur et al.’s cohort and
GSE70769). Time is measured in months, and the log-rank test P-value is reported. The numbers of patients at risk are shown over time in the bottom
panel. (G) Boxplots showing the CS predictor scores among different T stages in TCGA PRAD, colored by T stage. The Kruskal–Wallis test was used for
P-value calculation. (H) Heatmap showing the quantitative results of the TACC3, SAPG5, TROAP proteins, and their corresponding CS predictor scores in
IHC assays of 72 PRAD patients. (I) Representative IHC graph of TACC3, SAPG5 and TROAP expression in three PRAD patients. Tumor grades and Gleason
scores are indicated in the bottom panel. (J) Boxplots comparing CS predictor scores among different tumor grades of PRAD patients. Kruskal–Wallis
test P-values are stated. (K) Correlations of Gleason scores with CS predictor scores in PRAD patients. Linear regression lines are drawn (red line) with
95% CIs (gray zone); Spearman correlation and corresponding P-values are stated.
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cancer types [71, 72]. Third, we observed that senescent
cancer cells from PRAD patients exhibited activated
immune properties, showing increased expression of
HLA genes and frequent communication with T-cells.
These results suggest potential mechanisms underlying
previous observations that immune surveillance of
senescent cells enhanced immune clearance and limited
tumor progression [70]. Further investigations based on
the assessment of CS levels would facilitate mechanistic
understanding at the systems level in more age-related
diseases.

Senescence-related genes have clinical implications
in patient prognosis and immunotherapy response. On
the one hand, we applied three machine learning-based
algorithms to identify three hub genes predicting the
survival of PRAD patients and validated these genes
in ∼660 patients as well as 72 PRAD patients by IHC.
Consistent with the negative correlations with patient
prognosis, the three genes played protumor roles in influ-
encing malignant behaviors in prostate cancers via var-
ious mechanisms [73–75], while the senescence-related
mechanisms in prostate cancers need further experi-
mental investigations. As the three-genes-based predic-
tor is more feasible to detect, CS predictor would have
promising clinical applications in prognosis predictions.
On the other hand, we observed the significant corre-
lations of the CS score with known predictors of ICB
therapy, including critical immune checkpoint proteins
(PD1, PDL1 and CTLA4), tumor mutation burden, tumor
aneuploidy and cytolytic immune infiltrates [43, 76–80].
Indeed, we found the predictive power of the CS score
in the ICB response in cancer types where CS scores
showed significant associations with immune molecular
features. Additionally, opposite alterations in CS scores
post-ICB treatment between responders and nonrespon-
ders at the single-cell level, together with significant
correlations of PD-L1 and p21 expression in the IHC
assay, further support the capabilities of the CS score
to predict ICB responses effectively. As discussed in our
review [81] and preclinical success in pancreas cancer
[82], additional studies focusing on the combination ther-
apy of senescence-related treatment with immunother-
apy would be a promising strategy to augment clinical
success in certain cancers.

There are several limitations in our study. First,
our GSVA-based strategy of defining senescence levels
depends on the compositions of gene signature. The gene
signature-independent methods are worthy of further
investigation to enhance the technical novelty. Second,
though GSVA is more stable than other algorithms
in evaluating gene set activity in UMI-based single-
cell RNA-seq datasets [83], the high dropout events
might affect the accuracy of the CS score in evaluating
senescence levels. Thus, some cautions should be
exerted when interpreting the CS score in less-qualified
single-cell RNA-seq datasets. Third, due to the limited
number of patients with immunotherapy treatment in
current studies, we observed only the associations of

CS scores with immune responses in several cohorts.
These relationships need to be further verified in
larger samples, and the practical applications of the CS
score in clinical cohorts also need more investigations.
Lastly, more experimental validations are needed to
comprehensively interpret CS scores, especially in data
with small sample sizes.

To facilitate senescence assessment, we made this
approach available as an interactive website TCSER
(http://tcser.bmicc.org), which allows users to evaluate
CS levels and recognize CS-associated immune cells and
molecules in user-customed and public transcriptome
data. In summary, based on computational metrics of
CS levels, our findings provide a framework for better
understanding of CS-related modulations in the tumor
microenvironment and would advance the development
of biomarker identification and personalized therapeutic
strategies in clinical oncology.

Methods and materials
Data and resources
Somatic mutation data (mutation annotation format),
RNA-seq data [transcripts per million (TPM)] and
associated clinical data for 33 cancer types (10 495
samples) (Supplementary Table S2 available online at
https://academic.oup.com/bib) were downloaded from
the TCGA database using the R package ‘TCGAbiolinks’
(version 2.14.1) [37]. Proteomic data in the TCGA
and the gene expression matrix and related infor-
mation in the GTEx database were collected from
UCSC Xena (http://xena.ucsc.edu/public/). Expression
profiles of immunotherapy cohorts were retrieved
through accession numbers (BLCA_EGAS #00001002556,
GC_PRJEB25780, NSCLC_GSE126044, SKCM_GSE115821,
Zhao2019_Glioblastoma, Miao2018_Kidney, Lauss2017_
Melanoma and Raize2017_Melanoma). Information from
four PRAD validation cohorts was downloaded from
PRJCA001124, MSKCC cohort, Setlur et al.’s cohort and
GSE70769 [66–69].

Single-cell RNA-seq data were collected from the
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), Single Cell Portal database
(https://singlecell.broadinstitute.org/single_cell) and
Tumor Immune Single-cell Hub database (http://tisch.
comp-genomics.org/home/) [84]. Single-cell RNA-seq
data of different cancers contain BRCA (GSE143423, 4375
cells), CRC (GSE146771, 5220 cells), GBM (GSE102130,
3057 cells), GBM (GSE131928-10X, 13 558 cells), GBM
(GSE131928-Smartseq2, 7930 cells), NSCLC (GSE117570,
11 453 cells), NSCLC (GSE143423, 12 193 cells), OV
(GSE118828, 1909 cells), SKCM (GSE72056, 4645 cells)
and PRAD (GSE141445, 33 100 cells). Single-cell RNA-
seq data of immunotherapy-treated cohorts contain
melanoma patients (GSE115978, 6173 cells), BCC patients
(GSE123813, 52 917 cells), Merkel cell carcinoma (MCC)
patients (GSE117988, 10 148 cells), triple negative
breast cancer patients (GSE136206, 27 532 cells) and
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leptomeningeal metastases patients (Prakadan et al.
[85]data, 18 103 cells).

The stemness score (RNAss and DNAss), homologous
recombination deficiency (HRD), homologous recom-
bination deficiency-loss of heterozygosity (HRD-LOH),
immune subtypes and leukocyte fractions of TCGA sam-
ples were downloaded from the UCSC Xena database.
Immune genes were defined as 1043 genes involved in all
immune pathways from the KEGG databases. SASP genes
were collected from the Reactome database (https://
reactome.org/). CYT score is the mean transcriptional
expression of GZMA and PRF1 [43].

CS score calculation
We collected previously curated gene sets of replicative
CS from the published literature [86]. The 1259 genes
within the CS signature were divided into 2 gene sets: 525
positive CS-related genes and 734 negative CS-related
genes. We used GSVA [26] to calculate the activities of
two gene sets in individual samples, respectively. The CS
scores were defined as the differences between positive
CS-related activities and negative CS-related activities.
The significance levels of CS scores were estimated from
the permutation test by randomly selecting gene sets
with the same gene number (1259 genes) as the CS sig-
nature for 100 times in one sample. Tumor samples were
divided into high-CS and low-CS groups based on median
CS scores. For single-cell RNA-seq datasets, we used the
same GSVA method as above by function enrichIt in
R package ‘escape’ to calculate the CS score for every
single cell.

Evaluating the robustness of the CS score
We validated the robustness of the CS score using four
complementary approaches. First, we performed pre-
ranked gene set enrichment analysis of the CS signature
in the hallmark gene sets of the Molecular Signatures
Database (MSigDB) by the R package ‘fgsea’. We also
obtained the GSVA scores of c6 oncogenic signatures
in MSigDB for all TCGA samples and then calculated
Spearman correlations between the CS scores and these
GSVA scores. Second, we evaluated Spearman correla-
tions of the transcriptional expression of CS genes and
non-CS genes with the protein expression of p16INK4A

and p21 across all TCGA samples. Third, we compared
predictive capability of CS scores, p21 and p16 expres-
sion in recognizing senescent cells in 128 cells from 15
independent datasets (Supplementary Table S1 available
online at https://academic.oup.com/bib). Binomial linear
models were built between the CS score and senescence
information by the function glm in R. The AUCs for indi-
vidual datasets were estimated using R package ‘pROC’.
P16 was not included in the analysis of induced senescent
cells due to missing values in most datasets. Finally, with
cancer type as the covariate, linear models were built
between molecular features of three main CS hallmarks
and CS score/p21 expression/p16 expression in TCGA
data. Three main CS hallmarks contain DNA damage,

cell-cycle arrest and SASP [14, 15]. DNA damage can
be reflected by HRD and total mutation load [87–89].
Stemness scores (DNAss and RNAss) represent the acti-
vated status of cell cycle. Core SASP genes (IL-1α/IL-6/IL-
8/IL-1β/CXCL1/CXCL2) were collected from experimental
protocol [90]. Leukocyte fractions were affected by SASP
factors in cancers [91].

Genomic variation analysis
CNVs were analyzed using GISTIC 2.0 [33] to identify
arm- and focal-level alterations in 25 TCGA cancer types
with >100 samples. Significant broad events were con-
sidered alterations occurring in >70% of one arm with
q values < 0.25. We defined CNV scores based on the
previous reports [92]. For focal-level events, the ratios
of log2 copy number were divided into the following
scores: 2 if log2 ratio ≥ 1, 1 if log2 ratio < 1 and ≥0.25, 0
if log2 ratio < 0.25 and ≥−0.25, −1 if log2 ratio < −0.25
and ≥−1 and −2 if log2 ratio < −1. The focal score of a
tumor was the sum of all focal-level scores in the tumor.
The arm- and chromosome-level scores were defined
by a similar procedure. Chromosome-level events were
considered events in which both arms had the same log2
ratio. The overall CNV score of a tumor was the sum of
focal-level, arm-level and chromosome-level CNV scores.
Linear mixed-effect models were applied to identify the
association between the CS score and CNV score, adjust-
ing for age, sex, race and cancer types as covariates in
the R package ‘lmer’. Arm-level gains and losses were
defined by log2-transformed copy-number ratios >0.25
and <−0.25, respectively. The associations between the
CS score and arm-level gains and losses were calculated
by a similar linear model as above.

For SNVs, the total numbers of mutation events in
TCGA were collected using function tcgaCompare in R
package ‘TCGABiolinks’. The associations between the CS
score and mutation load were analyzed by the similar
linear model as CNV. The mutation data of PRAD were
further analyzed and visualized in R package ‘maftools’
with default parameter settings.

Identifying CS-related immune characteristics at
the pan-cancer level
ESTIMATE algorithm was used to evaluate the levels of
stromal cells, immune cells and tumor purity (stromal
score, immune score and ESTIMATE score) [40], with
the gene expression matrix (TPM matrix) as input and
default settings. The coefficients between the CS score
and the three scores from ESTIMATE tool were calculated
by building linear mixed-effect models with cancer type
as a covariant in R package ‘lmer’. The absolute abun-
dances of 22 immune cell types in TCGA samples were
inferred by CIBERSORT (https://cibersort.stanford.edu/)
[42], with gene expression matrix (TPM matrix) and LM22
signature as inputs. Spearman correlations were calcu-
lated between the CS score and results from ESTIMATE
and CIBERSORT tools and were further visualized by R
package ‘corrplot’.
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Single-cell data analysis
The count matrix of PRAD single-cell data (GSE141445)
was imported into R package ‘Seurat’ (v4.0.4). Low-
quality cells were identified and filtered with the
following criteria: (1) nFeatures <200 or >5218 and (2)
the mitochondrial gene ratio >20%. A total of 33 100
high-quality cells were used for the following analyses.
According to the Seurat tutorial, we performed data
integration by R package ‘harmony’ and conducted data
normalization, cluster finding and visualization. Cell
clusters were manually annotated based on reported
markers [46]. Luminal cells with the top 5% and bottom
5% CS scores were assigned to the high-CS and low-
CS groups, respectively. The DEGs between the high-
CS and low-CS groups in luminal cells were identified
by function FindMarkers with default parameters.
Significant DEGs (adjusted P-value < 0.01 and average
fold-change > 1) were selected for pathway enrich-
ment in the Reactome database using the R package
‘ReactomePA’. CellPhoneDB (v1.1.0) was used for cell–
cell communication analysis with the count matrix as
the input. Significant interaction pairs were chosen with
P-value < 0.05.

Count matrices in other single-cell datasets were
preprocessed according to the standard pipeline in
MAESTRO [45]. The activities of all KEGG pathways in
GSE123813 dataset were evaluated by function enrichIt
in R package ‘escape’. The top and bottom 10 pathways
were selected based on Spearman correlations between
the CS score and pathway activities across all malignant
cells. To exclude the heterogeneity of individual patients
in five single-cell RNA-seq datasets from immunother-
apy cohorts, the coefficients of posttreatment CS scores
were identified by fitting the linear mixed model with
different patients as covariates.

Evaluating the predictive value of the CS score
for immunotherapy response
Gene expression data and associated response informa-
tion of 542 patients with immunotherapy treatment
were collected from eight cohorts. Binomial linear
models were built between the CS score and response
information by the function glm in R. The AUCs for
individual cohorts were estimated using R package
‘pROC’. We also applied the TIDE tool (http://tide.dfci.
harvard.edu/) [64] to calculate the TIDE score and used
the same method to calculate AUCs of TIDE score.

Survival analysis
To identify CS-related survival across 33 TCGA cancer
types, Cox proportional hazards regression models of OS
and PFS were constructed by setting CS scores and age at
diagnosis as time-dependent variables and cancer types,
sex as well as race as strata. HR [95% confidence interval
(CI)] and P-values were visualized by function ggforest.
The survival differences between the two groups were
estimated by Kaplan–Meier survival curves. Significant
differences were determined using the log-rank test, and

P-value < 0.05 was considered as statistically significant.
Survival analyses were conducted using the R packages
‘survival’ and ‘survminer’.

Analysis of CS signature-based classifications in
PRAD
Two patient clusters were identified in TCGA PRAD
patients using the unsupervised consensus clustering
algorithm in R package ‘ConsensusClusterPlus’ [93]
with 1000 iterations to obtain stable classifications.
The optimal clustering number was determined by
the relative change in the area under the CDF curve.
The relationships among different classifications were
displayed by the Sankey plots in R package ‘ggalluvial’.

Construction of CS predictor for PRAD
CS predictor was established based on 5 PRAD cohorts
(1159 patients), including TCGA PRAD as the training
dataset and another 4 cohorts as validation datasets
(PRJCA001124, MSKCC cohort, Setlur et al.’s cohort
and GSE70769) [66–69]. Key prognosis-related genes
in the CS signature were selected by three machine
learning algorithms, including LASSO, RFB and XGBoost.
We fit the Cox regression with LASSO regularization
and 3-fold cross-validation and selected 10 significant
genes. RFB was implemented by functions Boruta and
TentativeRoughFix in R package ‘Boruta’, and three
genes were selected. XGBoost algorithms calculate
the importance of each feature in the construction
of the boosted decision trees. Twenty-one significant
genes were identified by this method in R package
‘xgboost’. Finally, we obtained three common genes
(SPAG5, TACC3 and TROAP) to construct multiple Cox
regression models. CS predictor was defined as follows:
CS predictor = −0.00358∗(expression of SPAG5) − 0.0367∗

(expression of TACC3) − 0.0697∗(expression of TROAP).
Samples were then classified into high and low groups
according to the median value of CS predictors.

IHC staining
Tissue microarray containing 72 PRAD tumor tissues was
purchased from Shanghai Superbiotek Pharmaceutical
Technology Co, Ltd (Shanghai, China). All specimens
had corresponding clinical information, including age,
sex, pathological grade and Gleason score. Paraffin-
embedded tissue sections were fully dewaxed in xylene
and then rehydrated in a series of ethanol gradients
(100% and 95%). After heating for 10 min at 95–98◦C in
sodium citrate buffer for antigen retrieval, the sections
were incubated with primary antibodies at 4◦C overnight.
Primary antibodies, including anti-PD-L1 (rabbit mon-
oclonal EPR19759, 1:250, ab213524, Abcam), anti-CD45
(rabbit monoclonal EP322Y, 1:250, ab40763, Abcam),
anti-p21 (rabbit monoclonal EPR362, 1:100, ab109520,
Abcam), anti-TACC3 (rabbit monoclonal EPR7756, 1:100,
ab134154, Abcam), anti-SPAG5 (rabbit polyclonal, 1:50,
#A07062-2, BOSTER) and anti-TROAP (rabbit polyclonal,
1:100, 13634-1-AP, Proteintech) antibodies, were used.
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Secondary antibodies were biotinylated labeled anti-
rabbit antibodies [Ready-to-use SBC-POD (rabbit IgG),
#SA1022, BOSTER]. A professional pathologist evaluated
the staining intensities and expression percentages of
these proteins on slides. The staining intensity was
scored as 0, 1, 2 and 3 for non-expression, low expres-
sion, mid-expression and high expression, respectively.
The final staining score of a slide was calculated by
multiplying the expressed percentage and the intensity
score.

Website construction
The TCSER website was developed using R Shiny (https://
shiny.rstudio.com). TCSER provides two main functions:
senescence estimation and senescence exploration. The
first function allows users to calculate CS score of indi-
vidual samples in uploaded gene expression files and
to identify CS-associated cell types and genes across all
uploaded samples. The latter function allows users to
interactively explore and visualize CS-related immune
features and clinical relevance in publicly available data,
including TCGA, immunotherapy cohorts and single-cell
datasets.

Statistical analysis
The Wilcoxon test was used to compare two groups
with non-normally distributed data, and Student’s t-
test was performed for normally distributed data. Two-
sided Kruskal–Wallis tests were used to compare more
than two groups with non-normally distributed data. The
Cochran–Mantel–Haenszel test was used for statistical
analysis comparing noncategorical values among more
than two groups. Correlation coefficients were assessed
by Spearman correlations. Statistical significance in sur-
vival analysis was determined by the log-rank test. Sig-
nificant P-values were denoted as follows: ns >0.05, ∗

<0.05, ∗∗ <0.01, ∗∗∗ <0.001 and ∗∗∗∗ <0.0001. The statistical
information for the experiments is detailed in the figure
legends. All statistical analyses were performed using R
(version 4.1.1).

Data availability
All data are incorporated into the article and its online
supplementary material. Data are also available on the
TCSER website (http://tcser.bmicc.org).
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Key Points

• CS score could be served as a computational metric of
senescence levels in 33 cancer types, 29 normal tissues
and ∼212 000 single-cell profiles.

• The cancer-specific associations of CS with immune fea-
tures would guide the rational choice of senescence-
related therapy and immunotherapy in certain cancer
types.

• CS score could be an independent prognostic factor in
prostate cancer, and three key CS genes have promising
clinical applications in prognosis predictions.
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