
Robson P. Bonidia received the M.Sc. degree in bioinformatics from the Federal University of Technology - Paraná (UTFPR), Brazil. He is currently pursuing the
Ph.D. degree in computer science and computational mathematics with the University of São Paulo - USP. His main research topics are in computational biology
and pattern recognition, feature extraction and selection, meta- heuristics, and sports data mining.
Anderson P. Avila Santos received M.Sc. degree in Computer Science from the University of Londrina - Paraná (UEL), Brazil. He is currently pursuing the Ph.D.
degree in computer science and computational mathematics with the University of São Paulo-USP. His main research topics are in computational biology and
pattern recognition, data mining, machine learning, evolutionary algorithms, bioinformatics.
Breno L. S. de Almeida is a Computer Science undergraduate student at the Institute of Mathematics and Computer Sciences - University of São Paulo (USP),
where also pursued Certificate Programs in Data Science and Data Engineering. His main research interests are in Machine Learning, Feature Extraction, and
Computational Biology.
Peter F. Stadler received a PhD in Chemistry from U. Vienna in 1990, where he then worked as Assistant and Associate Professor for Theoretical Chemistry. Since
2002 he is Full Professor for Bioinformatics at U. Leipzig. He is External Professor at the Santa Fe Institute, External Scientific Member of the Max Planck Society,
Corresponding Member Abroad of the Austrian Academy of Sciences, and Honorary Professor of the Universidad Nacional de Colombia.
Ulisses N. da Rocha received a PhD in Microbial Ecology from the University of Groningen (The Netherlands) in 2010. In 2017, he joined the Department of
Environmental Microbiology at the Helmholtz Centre for Environmental Research - UFZ (Leipzig, Germany) as a junior group leader. In 2021, he became a senior
scientist at the UFZ. Further, he leads the Microbial Data Science group at the UFZ since 2017 where he works at the intersection of Microbial Ecology,
Bioinformatics, and Computational Biology.
Danilo S. Sanches received the Ph.D. degree in electrical engineering from the University of Sao Paulo, in 2013. He is currently an Associate Professor with the
Computer Science Department, Federal University of Technology - Paraná (UTFPR), Brazil. His research includes data mining, machine learning, evolutionary
algorithms, bioinformatics, and pattern recognition approaches.
André C.P.L.F. de Carvalho is a full professor at the Department of Computer Science, University of São Paulo. He is the Vice Dean of the Mathematics and
Computer Science Institute of the University of São Paulo, ICMC-USP, Vice Director of the Center for Mathematical Sciences Applied to Industry, USP, and Vice
President of the Brazilian Computer Society, SBC. His research interests are in machine learning, data mining, and data science.
Received: March 2, 2022. Revised: May 6, 2022. Accepted: May 9, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23(4), 1–13

https://doi.org/10.1093/bib/bbac218
Advance access publication date: 27 June 2022

Problem Solving Protocol

BioAutoML: automated feature engineering
and metalearning to predict noncoding RNAs
in bacteria
Robson P. Bonidia, Anderson P. Avila Santos, Breno L. S. de Almeida, Peter F. Stadler, Ulisses N. da Rocha, Danilo S. Sanches and

André C.P.L.F. de Carvalho

Corresponding authors: Ulisses N. da Rocha, E-mail: ulisses.rocha@ufz.de; Robson P. Bonidia, E-mail: rpbonidia@gmail.com; bonidia@usp.br

Abstract

Recent technological advances have led to an exponential expansion of biological sequence data and extraction of meaningful
information through Machine Learning (ML) algorithms. This knowledge has improved the understanding of mechanisms related to
several fatal diseases, e.g. Cancer and coronavirus disease 2019, helping to develop innovative solutions, such as CRISPR-based gene
editing, coronavirus vaccine and precision medicine. These advances benefit our society and economy, directly impacting people’s
lives in various areas, such as health care, drug discovery, forensic analysis and food processing. Nevertheless, ML-based approaches to
biological data require representative, quantitative and informative features. Many ML algorithms can handle only numerical data, and
therefore sequences need to be translated into a numerical feature vector. This process, known as feature extraction, is a fundamental
step for developing high-quality ML-based models in bioinformatics, by allowing the feature engineering stage, with design and
selection of suitable features. Feature engineering, ML algorithm selection and hyperparameter tuning are often manual and time-
consuming processes, requiring extensive domain knowledge. To deal with this problem, we present a new package: BioAutoML.
BioAutoML automatically runs an end-to-end ML pipeline, extracting numerical and informative features from biological sequence
databases, using the MathFeature package, and automating the feature selection, ML algorithm(s) recommendation and tuning of the
selected algorithm(s) hyperparameters, using Automated ML (AutoML). BioAutoML has two components, divided into four modules:
(1) automated feature engineering (feature extraction and selection modules) and (2) Metalearning (algorithm recommendation and
hyper-parameter tuning modules). We experimentally evaluate BioAutoML in two different scenarios: (i) prediction of the three main
classes of noncoding RNAs (ncRNAs) and (ii) prediction of the eight categories of ncRNAs in bacteria, including housekeeping and
regulatory types. To assess BioAutoML predictive performance, it is experimentally compared with two other AutoML tools (RECIPE and
TPOT). According to the experimental results, BioAutoML can accelerate new studies, reducing the cost of feature engineering process-
ing and either keeping or improving predictive performance. BioAutoML is freely available at https://github.com/Bonidia/BioAutoML.

Background
Considering advances in sequencing, an increasing
number of biological sequences have been generated

[1, 2]. With the expansion in volume and complexity
of biological data, machine learning (ML) algorithms
have been successfully applied to their analysis [3–5].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://github.com/Bonidia/BioAutoML

2 | Bonidia et al.

ML algorithms can extract new and useful knowledge
from biological data [6], allowing complex analyses,
speeding up new findings and reducing research costs [7].
These advances bring important social and economical
benefits, such as improving diagnosis, treatment and the
design of new medications [7–9], e.g. coronavirus disease
2019 [8, 10], cancer diagnosis [11] and CRISPR/Cas9-based
gene-editing technology [12, 13].

Moreover, with the advancement of next-generation
sequencing technologies and multi-omics analysis [14],
studies have focused on discovering and characterizing
small noncoding RNAs (sRNAs) in bacteria and archaea,
expanding the understanding of gene regulation and
elucidating new biological mechanisms [15]. Moreover,
Noncoding RNAs (ncRNAs) have distinct classes with
specific functions, depending on their spatial struc-
ture, sequence composition and length [16]. Regarding
genome annotation, the identification of protein-coding
and non-protein-coding sequences is the first and
most crucial step [17]. In addition, sRNAs control gene
expression in prokaryotes, regulating processes, e.g.
stress responses, nutrient acquisition, virulence and
biofilm formation [18]. According to [19], there is a
large number of regulatory ncRNAs, highlighting their
potential links to bacterial pathogenesis.

Nevertheless, one of the main difficulties for applying
ML algorithms to ncRNAs and other sequences is the cat-
egorical and unstructured nature of biological sequence
data. A frequent alternative to deal with this problem
is to apply, in a feature engineering process, feature
extraction techniques (e.g. DNA sequences: A, C, T, G), to
transform biological sequences into numerical data (e.g.
GC content and k-mers) with a structured format. Fea-
ture extraction techniques based on various aspects have
been proposed to extract numbers from these sequences,
including physicochemical, biological and mathematical
features [6, 9]. No matter the aspect, the features must
capture the relevant information present in the biological
sequence, as the predictive performance of the model
induced by an ML algorithm strongly depends on the
representativeness of the input feature vector [20]. A
common approach to increase the representativeness of
the features is to select, among the extracted features,
the subset that leads to the best predictive performance
of a model induced by an ML algorithm. This approach,
known as feature selection using wrappers, is also a part
of the feature engineering process.

The feature engineering process often requires exten-
sive domain knowledge, performed manually by a
human expert, and is one of the most time-consuming
steps in the ML pipeline [20]. Furthermore, according to
[21], ncRNAs are divided into categories based on their
cellular functionality and their sequential, thermody-
namic and structural properties, assuming that their
sequence can provide robust discriminative features.
However, the same sequences can act as more than one
type of ncRNAs, e.g. mature micro RNA (miRNA) can also
be transfer RNA (tRNA) fragments. Consequently, most

computational approaches can predict only the presence
of ncRNAs. Even those designed to classify more than one
type (class) of ncRNAs do not work well with more than
three types [21, 22].

These limitations motivated the development of a
novel open-source software package, called BioAutoML,
that can extract features based on different aspects,
and automate the feature selection, algorithm(s) rec-
ommendation and algorithm(s) tuning steps for multi-
class classification of biological data. BioAutoML is an
end-to-end Automated Machine Learning (AutoML) tool
for experiments using biological sequences; BioAutoML
is able to deal with different categories of ncRNA in
bacteria, such as small RNA (sRNA), tRNA, ribosomal RNA
(rRNA), precursor-microRNA (pre-miRNA), miRNA, small
nucleolar RNA (snoRNA), small nuclear RNA (snRNA)
and transfer-messenger RNA (tmRNA) [21, 23]. According
to [24, 25], AutoML has a proposal similar to the
area of hyper-heuristics, automatically recommending
pipelines, algorithms or hyper-parameters for specific
tasks, reducing dependence on user knowledge. These
tasks can include different ways of preprocessing or fea-
ture engineering, as well as algorithms and optimization
of its parameters (hyper-parameter tuning) [24–26]. In
this study, BioAutoML calls the MathFeature package [27,
28] to extract feature descriptors representing relevant
numerical information from ncRNA sequences (Feature
Extraction module). After receiving the feature values,
BioAutoML, automatically recommends, using Bayesian
Optimization [29], the best pair of selected features and
predictive model.

To select the features (Feature Selection module),
BioAutoML follows the wrapper approach, using a
predictive model to assess how good a feature set is.
The feature extraction and feature selection model are
part of the Feature Engineering process. To recommend
the best model, BioAutoML recommends the best
number of predictive models, and the ML algorithm
to be used for the induction of each model (Algorithm
Recommendation module). These two tasks are carried
simultaneously, whereby one feeds information to the
other in the Bayesian optimization process, until the
predictive performance obtained by the pair is not
further improved. It is important to point out that the
predictive model used in the wrapper and induced by
the recommended algorithm can be an ensemble of
predictive models.

This occurs when the Algorithm recommendation
model recommends more than one ML algorithm. In this
case, each recommended algorithm induces a predictive
model, and the induced models are combined in an
ensemble. As an ensemble of predictive models is, by
itself, a predictive model, for the sake of simplicity,
we will name the ensemble also a predictive model.
Having finished the Feature Engineering module and
the Algorithm Recommendation module, BioAutoML
goes to the fourth module, which uses AutoML to fine
tune the hyper-parameters of the recommended ML

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

BioAutoML | 3

algorithms [24–26], aiming to improve the predictive
performance of the model (Tuning and Combination
module). If the predictive model is an ensemble, the
algorithm that induces each model in the ensemble has
its hyper-parameters tuned. Afterwards, the predictive
models induced by the tuned algorithms are combined
in the ensemble.

To make the role clearer of each module in the whole
process, the part of the pipeline with the Feature Extrac-
tion module and the Feature Selection module, as they
mainly work at the feature level, is named here Feature
Engineering. The other part of the pipeline, with the
Algorithm Recommendation module and the Tuning
and Combination module, as their work at the ML level,
is called henceforth Metalearning. Thus, BioAutoML cre-
ates an automated pipeline working at the data feature
and algorithm level. In this research, we have inves-
tigated several insights to support our hypothesis, as
follows:

• Hypothesis: Automated feature engineering and
metalearning provides an efficient mechanism
to extract features based on different aspects,
and automates the feature selection, algorithm(s)
recommendation and tuning steps, and hence, a
high-quality prediction of categories of ncRNAs in
bacteria.

The approach will help us to answer our Research
Question (RQ), and consequently be used to confirm or
deny the hypothesis, described as follows:

• RQ: Is it possible to predict different categories of bac-
terial ncRNAs using automated feature engineering
and metalearning pipelines?

Finally, to support our hypothesis and research ques-
tion, we have validated BioAutoML into three different
case studies using seven bacterial phyla.

Feature engineering
According to Chou’s five-step rule [3, 30], numerically
representing biological sequences with an efficient and
adequate mathematical expression is one of the most
relevant steps to establish an effective statistical predic-
tor for a biological system. In ML, biological sequences
must be represented by a fixed number of features (e.g.
binary, categorical or continuous), transforming origi-
nally unstructured data into a structured format. Feature
extraction or feature encoding is a key step in the con-
struction of high-quality ML-based models, determining
the effectiveness of trained models in bioinformatics
applications, such as biological sequence classification
[5, 31, 32]. Nevertheless, the feature engineering process
is a time-intensive step and requires domain knowl-
edge of experts [20, 33, 34], which is a complex exercise
[34]. Therefore, to develop our proposal and answer our
research question, we define the automated feature engi-
neering task formally explained as follows:

• Given a set of sequence data, D, divided into train
(Dtrain) and test (Dtest), a set of feature descriptors, Fd,
where Fd = [fd1, fd2, . . . , fdn], our aim is to select the
best numerical representation, that is, the feature
vector (Vf), combining different feature descriptors
in the training set (Dtrain), using an objective function
that considers the most important feature descriptor
(Ifd) to evaluate the best Vf .

Metalearning
One of the main difficulties in applying ML algorithms to
a new dataset is selecting the most adequate algorithm
for this dataset. Each ML algorithm has an inductive
bias, which can be defined by the way it searches for
a robust model, e.g. starting with simple models and
gradually increasing the complexity of the models, until
a robust model is found, and the format adopted to rep-
resent the models, e.g. a model represented by a decision
tree. Although it can be seen as a limitation, the bias is
necessary for learning to occur. As a consequence, each
algorithm fits better datasets with particular conforma-
tions. Thus, there is no champion ML algorithm that
performs better than all the others in every situation,
but each ML algorithm performs better than the others
on some datasets, which are not known beforehand [35].
A good alternative to select the best ML algorithm for a
new dataset is to use previous knowledge regarding the
performance of a set of algorithms in previous learning
experiences. This is the idea behind a particular approach
for metalearning, defined in [36] as learning to learn.
According to the authors, metelarning is a research area
that investigates how to recommend the most suitable
algorithm, or set of algorithms, for a new task. In this
study, we use metalearning to do the following:

• Given a set of selected features, recommend the ML
algorithm(s) able to induce the best predictive model,
which can be a set of algorithms, each one inducing a
model, and combine these models into an ensemble
(Pml), recommending the best algorithm. Ensemble
methods can boost the performance of simple classi-
fiers (e.g. using multiple prediction models for solving
the same problem) and has proven its effectiveness in
bioinformatics [37–39].

Related works
After a carrying out systematic literature review, we
found 14 related studies proposing packages that use
feature engineering (feature extraction and selection)
and ML algorithms for biological sequence classification:
PseAAC [40], propy [41], PseKNC-General [42], SPiCE
[43], Pse-in-One [3], repDNA [44], Rcpi [45], BioSeq-
Analysis [46], PyFeat [31], iLearn [5], iLearnPlus [6],
BioSeq-BLM [47], autoBioSeqpy [48] and AutoGenome
[49]. For each package, we checked if it uses AutoML for
feature engineering, ML algorithms and, when they use
these algorithms, tune their hyper-parameters. Table 1
summarizes our findings.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

4 | Bonidia et al.

Table 1. Use of AutoML for feature engineering,
recommendation of ML algorithm and hyper-parameter tuning

Study Feature
Engineering

ML
algorithm

Tuning

PseAAC − −
propy − − −
PseKNC-General − − −
SPiCE − − −
Pse-in-One − − −
repDNA − − −
Rcpi − − −
BioSeq-Analysis − −
PyFeat − − −
iLearn − V V
iLearnPlus − V V
BioSeq-BLM − − −
autoBioSeqpy − V V
AutoGenome − V V
BioAutoML V V V

The most similar packages to BioAutoML are iLearn,
iLearnPlus, autoBioSeqpy and AutoGenome, which apply
AutoML to recommend ML algorithms, but they do not
use automated feature engineering. The most similar
package to our proposal, iLearn, requires an initial
configuration file (choosing descriptors and classifiers),
which needs domain knowledge from a human expert.
Even in its most sophisticated version, iLearnPlus, a file
needs to be inserted with the extracted features, instead
of automatic feature engineering. The autoBioSeqpy
and AutoGenome packages focus on recommending
the best deep learning architecture. Thus, to the best
of our knowledge, BioAutoML automates the longest
pipeline for biological sequence analysis, encompassing
feature engineering, ML algorithm recommendation and
hyper-parameter tuning. Furthermore, BioAutoML is a
user-friendly tool for non-experts.

Looking at more general applications of AutoML, we
can cite RECIPE [24] and TPOT [50]. Tree-based Pipeline
Optimization Tool (TPOT) is an AutoML tool that opti-
mizes ML pipelines using genetic programming. REsilient
ClassifIcation Pipeline Evolution (RECIPE) is an AutoML
framework with grammar-based genetic programming.
One of the most notable methods of RECIPE is how it
uses grammar to organize the knowledge acquired from
the literature [24]. RECIPE can also be an alternative to
TPOT, as TPOT can create ML pipelines that are arbitrary,
failing to solve a classification problem, therefore leading
to a waste of computational resources [24]. The major
difference compared with BioAutoML is the lack of a fea-
ture extraction module for biological sequences. These
two packages are for any application domain, requiring a
previously selected feature vector.

Prediction techniques of ncRNAs in bacteria
Many ML-based techniques have been proposed to
identify ncRNAs in bacteria [51–56]. In [55], the authors
compare the predictive performance of different tech-
niques for RNAs classes, such as tRNAs, rRNAs and
mRNAs. For such, they use normalized minimum free

energy of folding, motif frequency and several RNA-
folding parameters, such as base-pairing propensity,
Shannon entropy and base-pair distance. The model
induced by the Random Forest algorithm presented
89.5% of predictive accuracy. Another related study
[51] constructed ML models to discriminate bona fide
sRNAs applying five ML algorithms to random genomic
sequences from five bacterial species. Seven features
were used, including secondary structure. In [53] the
support vector machine (SVM) algorithm was applied
to a Non-Coding DNA (ncDNA) benchmark dataset,
collected from Saccharomyces cerevisiae. SVM was also
used in [57] to identify sRNAs in bacteria, particularly
Salmonella Typhimurium LT2, Escherichia coli (E. coli) K-
12 and Salmonella Typhi (S. Typhi). Some features are
combined to achieve better results with accuracy of
81.25% and 88.82% for E. coli K-12 and S. Typhi Ty2. Unlike
BioAutoML, these approaches did not apply an end-to-
end ML pipeline.

BioAutoML package
BioAutoML is a user-friendly multi-class and binary
classification package that allows the use of automated
feature engineering and metalearning, as illustrated by
Figure 1. Its use does not require specialized human
assistance. BioAutoML only needs a training dataset of
biological sequences (FASTA files) to perform an end-
to-end ML experiment, from the feature engineering to
generating of the predictive model induced by tuned ML
algorithms. Nevertheless, the modules implemented in
the BioAutoML package can be run independently, i.e.
users can just generate the best numerical representa-
tion and send it to another ML model generation package,
or they can use features extracted from other packages
to generate a predictive model. For such, BioAutoML has
two components with two modules each: (1) automated
feature engineering (feature extraction and selection)
and (2) Metalearning (algorithm recommendation and
hyperparameters tuning). In the next sections, we briefly
describe each component and module.

Feature extraction
This module, which is the first feature engineering
stage, extracts feature descriptors using the MathFeature
package [28], e.g. Mathematical descriptors (Fourier,
Shannon, Tsallis, among others) and Conventional
descriptors [Nucleic Acid Composition (NAC), dinu-
cleotide composition (DNC), trinucleotide composition
(TNC), ORF Features, Xmer k-Spaced Ymer composition
frequency (kGap), Fickett score, among others]. As a
result, more than 15 feature extraction techniques can
numerically represent information found in biological
sequences.

BioAutoML - selection and recommendation
The second module carries out automated feature engi-
neering, selecting the best feature vector and ML algo-
rithm to induce predictive models, which can be an

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

BioAutoML | 5

Figure 1. Components implemented in the BioAutoML package: (1) Automated Feature Engineering (feature extraction and selection) and (2)
Metalearning (algorithm recommendation and hyper-parameters tuning).

Figure 2. Illustration of how BioAutoML works: selection and recommendation module.

ensemble of predictive models, as shown in Figure 2. For
such, it uses the Bayesian optimization technique [29].
We use this technique because there is a large number of
alternatives for the types and number of feature descrip-
tors, characterizing an NP-hard problem. This module
receives the following as input:

1) All feature descriptors extracted by the first module;
2) An objective function, e.g. in our case, balanced

accuracy for binary problems and F1-score
(weighted) for multi-class problems;

3) ML algorithms (CatBoost [58], AdaBoost [59], Ran-
dom Forest [60] and LightGBM [61]). These classifiers
are responsible for analyzing the potential of the
selected features. These algorithms are used for the
wrapper-based feature selection, using different fea-
ture subsets as input. We chose these ML algorithms
because they have good predictive performance and
induce interpretable predictive models, allowing the
understanding of the internal decision-making pro-
cess [62]. The algorithms are widely adopted in the
bioinformatics literature [37–39].

To represent the search space (for selecting feature
descriptors and recommending ML algorithms), we use
a partially binary input vector, e.g. [1, 0, 1, 0, 0, 1, [2]],
when the last position can be a value from the set 0, 1,
2, 3, representing each of the four ML algorithms. In the
other position, value 0 means that the feature descriptor
was not selected for the subset to be evaluated, and
value 1 that was selected. Next, using Bayesian opti-
mization (Hyperopt library - Tree of Parzen Estimators
[63]), BioAutoML selects a quasi-optimal feature vector,
regarding the predictive performance of the model used
in the wrapper. We chose Bayesian optimization based on
studies in the literature [29, 64, 65], which demonstrate
that it saves time and improves performance, present-
ing benefits over random search [66]. As can be seen
in Figure 2, BioAutoML generates combinations of fea-
tures and ML algorithm(s) until it finds the best pair
(selected feature set, recommended ML algorithm) to
send to the fourth module, hyper-parameter tuning. We
adopted as stopping criterion for the optimization when
the predictive performance reaches a plateau or after

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

6 | Bonidia et al.

assessing 50 pairs (this number can be changed by the
user). Let us remember that this module can recommend
one ML algorithm or a set of ML algorithms (when an
ensemble model induced by ML algorithms is recom-
mended).

ML algorithm(s) hyper-parameter tuning
The last module is tuning, where users can generate
a predictive model using the recommendation of the
feature vector and ML algorithms (among those whose
implementation is available at BioAutoML). These
algorithms will use the feature vector to induce a
set of classification models, whose output will be
combined using an ensemble-based approach. The
quality of the classification models will be affected by
the hyper-parameter values used for the recommended
ML algorithms. In this work, Bayesian optimization
is used to tune their hyper-parameters. For such, we
separate part of the training set. The hyper-parameters
tuned for each algorithm are defined by their official
documentation, e.g. Random Forest (n_estimators,
max_features, criterion, max_depth, min_samples_split,
min_samples_leaf and bootstrap). The optimization
stops when the predictive performance reaches a plateau
or after assessing 100 possible sets of values. In addition,
this module generates important performance analysis
files as outputs, e.g. best features, performance results,
trained model and feature importance, among others.

Experimental results
The main purpose of this article was to provide a user-
friendly and open-access package that allows automated
feature engineering and metalearning for the analysis of
biological sequences. To assess the relevance of the pro-
posed package, we evaluate its predictive performance in
three case studies, described in the following sections:
(1) Case Study I - Genomic Pipeline, (2) Case Study II -
Pipeline with Annotated Bacterial Sequences and (3) Case
Study III - BioAutoML versus other proposed packages for
automated experiments.

Case study I—genomic pipeline
We designed an experiment to classify ncRNA families
in bacteria, using three known types of bacterial RNA:
sRNA, tRNA and rRNA. These RNAs are often consid-
ered and studied to analyze ncRNA sequences, e.g. (1)
tRNAs and rRNA can contaminate sRNA samples isolated
from cytoplasmic total RNA extracts [67], and (2) sRNAs
in bacteria, key actors in transcriptional and posttran-
scriptional regulation [55], emphasizing the importance
of accurate prediction of these sequences. To further
demonstrate the usefulness of our package, we generated
our dataset using a standard bioinformatics pipeline, as
shown in Figure 3, extracting sequences from genomes
and then applying ML algorithms to predictive models.
Our aim is to demonstrate that non-experts can easily
connect their pipeline to BioAutoML.

Table 2. Number of sequences from E. coli K-12 used for training
and testing

RNA type Samples Training Testing

sRNA 166 133 33
tRNA 50 40 10
rRNA 40 32 8

Table 3. Results: E. coli K-12—case study I

Precision Recall F1-Score

sRNA 1.00 0.97 0.98
tRNA 1.00 1.00 1.00
rRNA 0.89 1.00 0.94
Macro Average 0.96 0.99 0.98
Weighted Average 0.98 0.98 0.98

To collect the RNAs from genomes, we used the Infer-
nal application [68]. First, in our genomic pipeline, we
accessed the Rfam Public MySQL Database obtaining a
list of families for each RNA type [69], using the Rfam
database in its 14.7 version. Next, with the lists and the
complete Rfam Covariance Model (CM), we generated
three CM files using cmfetch, i.e. one for each RNA type.
We use cmsearch considering the gathering cutoff (GA)
selected by the Rfam curators to extract the sequences
for the RNA types [70], given the CM files and a genome.
Once the sequences are extracted, they are passed as
input to BioAutoML. Thereby, we selected Escherichia coli
K-12 genome for an initial experiment with the genomic
pipeline. In Table 2, we show the sequences generated for
training and testing (Hold-out 80% training and 20% test).

BioAutoML returned a combination of three feature
descriptors that considered to better numerically repre-
sent this dataset, kGap, Fourier and Tsallis entropy. After
automated feature engineering, our package selects a
feature vector and recommended an ML algorithm to be
finely tuned. The final results are shown in Table 3 and
Figure 4-A. As our problem is multi-class, we report the
main results using precision (Macro and Weighted), recall
(Macro and Weighted), F1-score (Macro and Weighted)
and confusion matrix [71].

BioAutoML was performed between 0.96 and 0.98
(macro and weighted average) in this initial experiment,
showing a robust numerical representation for the input
genome. Next, we used the recommended algorithm
to induce a predictive model to classify new unknown
sequences. To test the potential of our package, we
did a more complex experiment using bacterial phyla,
as shown in Table 4. We analyzed the generalization
potential for the classification of new bacterial genomes
as new organisms will not be in the training set, e.g.
training with Chloracidobacterium and classifying a new
genome as Terriglobus roseus. Moreover, according to
[72], the different GC content skew patterns throughout
bacterial phylogenetic groups could change relevant
characteristics of the sequences’ primary structure used
for the generation of descriptors. The bacterial phyla

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

BioAutoML | 7

Figure 3. Case Study I - Genomic Pipeline.

Table 4. Number of sequences for bacterial phyla by RNA type

Phylum Bacteria sRNA tRNA rRNA Gram NCBI Taxonomy ID Used as

Acidobacteria Chloracidobacterium 21 50 7 Negative 2821542 Train
Terriglobus roseus 4 47 11 Negative 926566 Test

Actinobacteria Corynebacterium diphtheriae − 43 14 Positive 1450520 Train
Mycobacterium tuberculosis 11 45 8 Positive 83332 Test

Bacteroidota Flavobacterium sediminis − 41 19 Negative 2201181 Train
Mucilaginibacter gossypii − 46 20 Negative 551996 Test

Cyanobacteria Oscillatoria acuminata 9 65 19 Negative 56110 Train
Prochlorococcus marinus 2 39 7 Negative 167539 Test

Firmicutes Staphylococcus aureus 84 35 31 Positive 93061 Train
Staphylococcus epidermidis 44 38 11 Positive 1282 Test

Proteobacteria Escherichia coli 166 50 40 Negative 83333 Train
Salmonella enterica 118 52 39 Negative 99287 Test

Verrucomicrobia Akkermansia glycaniphila − 44 7 Negative 1679444 Test
Luteolibacter ambystomatis 29 46 14 Negative 2824561 Train

Table 5. Results: Bacterial phyla—case study I

Precision Recall F1-Score

sRNA 0.97 0.97 0.97
tRNA 0.98 1.00 0.99
rRNA 0.99 0.95 0.97
Macro Average 0.98 0.97 0.98
Weighted Average 0.98 0.98 0.98

used for this experiment are shown in Table 4 and
Figure 4-B.

We randomly selected one type of bacteria from each
phylum for a fair split, as shown in Table 4. We used
seven bacteria for training and testing. The number of
sequences generated by RNA type is also presented.
The sequences were extracted using the same pipeline
exposed in Figure 3. The performance metrics can be
seen in Table 5.

Our package recommended six feature descriptors
that best represent this new scenario: NAC, TNC, kGap,
Fourier and ORF. Two of these descriptors were in the
initial experiment (kGap and Fourier). Again, BioAutoML
showed good predictive results, between 0.97 and
0.98 (macro and weighted average). However, we were
classifying new bacterial sequences that were not in
training, indicating the package’s ability to recommend
robust feature descriptors for the input problem.

Case study II—pipeline with annotated bacterial
sequences
For this case, we extracted annotated bacterial sequences
from databases, standard pipeline in several studies [37,
48, 49]. We used eight classes for this analysis: pre-
miRNA, miRNA, snoRNA, snRNA, tmRNA, tRNA, rRNA
and mRNA. Compared with case study I, we worked with
specific types of sRNAs to study BioAutoML capacity for

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

8 | Bonidia et al.

Figure 4. Confusion matrix of the experiments. (A) Case Study I—E. Coli K-12. (B) Case Study I—Bacterial phyla. (C) Case Study II—Annotated Bacterial
Sequences.

dealing with more classes. In addition, we used mRNA
as a counterpoint by containing coding regions com-
pared with the ncRNAs. These classes can be separated
into regulatory, and housekeeping ncRNAs [73]. We also
demonstrate the performance metrics for the application
considering recurrent problems such as the classifica-
tion of pre-miRNA between miRNA [21, 74, 75], and the
prediction of miRNA by itself [76]. There are few studies
related to the prediction of miRNAs in bacteria [77] as the
number of these annotated sequences is still small [78].

We collected ncRNA sequences from RNAcentral, a
database of ncRNA sequences that provide a single
access point to at least 44 RNA resources in its last
version [23]. We accessed the RNAcentral Public Postgres
database running SQL queries to filter active cross-
reference sequences by type, limited to 1000 sequences,
and restricting them to bacterial organisms. With the
results from the queries, FASTA files for each class
were created. Considering how collecting from diverse
databases could bring some redundancy, we used CD-HIT
Est [79] to cluster the sequences, removing redundancy

at 95% similarity. The same preprocessing pipeline was
applied for mRNA, but we collected the sequences from
GenBank [80], filtering for bacterial organisms. In Table 6,
we show the numbers of examples collected from
RNAcentral and GenBank, the numbers after applying
CD-HIT Est with the preprocessing method used in
BioAutoML, and how many of these sequences are used
for training and testing (Hold-out 80% training and 20%
test). The results generated by BioAutoML are presented
in Table 7 and Figure 4-C.

Again, our package presented robust performance,
even for eight classes, ranging from 0.79 to 0.89 (macro
and weighted average). By analyzing each class
individually, we observed a better performance for rRNA
(F1-Score: 0.96), tRNA (F1-Score: 0.97), tmRNA (F1-Score:
0.97), pre-miRNA (F1-Score: 0.72) and mRNA (F1-Score:
0.97), but lower performance for miRNA, snoRNA and
snRNA (F1-Score: both around 0.60). However, multi-
class classification problems present more challenges
than binary classification problems, e.g. an imbalanced
dataset. Even so, BioAutoML recommended a good

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

BioAutoML | 9

Table 6. Number of sequences used for training and
testing—case study II

RNA type Samples Preprocessing Training Testing

pre-miRNA 327 253 203 50
miRNA 464 263 211 52
snoRNA 331 178 143 35
snRNA 176 113 91 22
tmRNA 1000 350 280 70
tRNA 1000 445 356 89
rRNA 1000 687 549 138
mRNA 1000 702 514 188

Table 7. Results generated by BioAutoML in the case study II

Precision Recall F1-Score

pre-miRNA 0.69 0.76 0.72
miRNA 0.63 0.58 0.60
snoRNA 0.60 0.60 0.60
snRNA 0.65 0.50 0.56
tmRNA 0.99 0.96 0.97
tRNA 0.95 0.99 0.97
rRNA 0.95 0.98 0.96
mRNA 0.98 0.97 0.97
Macro Average 0.80 0.79 0.80
Weighted Average 0.89 0.89 0.89

feature vector formed by the descriptors NAC, DNC, TNC,
kGAP, ORF feature, Fourier and Tsallis entropy.

Case study III—comparing BioAutoML with other
AutoML packages
In this last case study, we compared BioAutoML with
well-known AutoML packages used in different classi-
fication tasks [81, 82]. In our literature review, we did
not find any tool for biological sequence classification
with automatic feature engineering, characterizing the
innovative nature of BioAutoML. To allow the experimen-
tal comparison, we chose two packages using AutoML:
RECIPE [24] and TPOT [50]. The major difference com-
pared with BioAutoML is the lack of a feature extraction
module for biological sequences.

Similar to BioAutoML, they include feature selection,
algorithm recommendation and hyper-parameter tun-
ing. These two packages are for any application domain,
requiring a previously selected feature vector. For a fair
comparison, we used the same output from the feature
extraction module in the AutoML packages (all feature
descriptors), feature descriptors recommended by BioAu-
toML and datasets from the previous case studies. These
experiments assess whether BioAutoML can build pre-
dictive models with recommended feature vectors and
ML algorithms as robust as RECIPE and TPOT, which are
well known for the quality of their pipelines [81, 82].
The BioAutoML results shown in Table 8 are the aver-
age of 10 runs. All experiments, package configurations
(default parameters) and datasets can be consulted in
our repository (https://github.com/Bonidia/BioAutoML–
Case Studies). We performed the experiments using a
machine with Intel Core i3-9100F CPU (3.60GHz), 16GB
memory and running in Debian GNU/Linux 10.

As can be seen, we observed similar performance
between BioAutoML and other tools (TPOT and RECIPE)
in CS-I and CS-II, considering two different types of
experiments: (i) with all feature descriptors, and (ii) with
the vector recommended by BioAutoML. We also noted
the improvement prediction of TPOT when the input
was provided by vector recommended from BioAutoML
(gain of 2% and 1% for CS-I and CS-II, respectively).
Another interesting result is related to computational
time to generate an ML model when both TPOT and
RECIPE spent a huge computational effort (416.26 and
272.46 min, respectively in CS-II), while BioAutoML spent
85.02 min. BioAutoML also recommends the best vector
be extracted automatically. It is important to highlight
that both TPOT and RECIPE do not have any mechanism
to recommend the best vector to be automatically
extracted for biological sequences. Finally, the statistical
significance was applied in this case study (difference in
F1-Score (Weighted)), using Friedman’s test, indicating
that there is no statistical significance in performance
(P − value = 0.156, using α = 0.05), suggesting that our
proposal is as robust as known methods in the literature.

Discussion
We assessed BioAutoML in three case studies with ncRNA
sequences. We consider different ncRNA categories for
multi-class classification tasks using ncRNA bacteria
data. For case study I, we used Infernal, which builds
statistical models of RNA secondary structure and
sequence consensus called Covariance Models (CMs)
[68]. Infernal is still widely used for genome annotation,
especially for detecting ncRNA [83, 84]. However, one
of its limitations for creating CM is the need for a
secondary structure model for the RNA families. The
experimental results from this case study shows the
success of BioAutoML in using only primary structure
features to predict what we found with Infernal.

For case study II, we considered eight classes, including
miRNAs. Although some studies in the literature con-
sider that prokaryotes do not have true miRNA as in
eukaryotes [85, 86], recently, many similarities between
the noncoding sequences were observed, indicating
miRNA-like mechanisms in prokaryotes, which resulted
in the annotated sequences used in our study [86,
87]. Prokaryotic miRNAs can also accumulate in the
nucleolus as pre-miRNAs, and mature miRNAs [87],
emphasizing the challenge for an accurate classification
in these two classes. Other classes used, such as snoRNA
[88] and snRNA [89], are also relatively rare in prokaryote
organisms. Nevertheless, it is relevant to discover more
of these noncoding sequences in bacteria with the
advancements in RNA sequencing technology and ML-
based algorithms.

Finally, in case study III, we observed the robust
predictive performance of BioAutoML when compared
with AutoML tools found in the literature, mainly due to
the quality of their pipelines [81, 82]. The experimental

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

https://github.com/Bonidia/BioAutoML

10 | Bonidia et al.

Table 8. Case study III—BioAutoML versus other AutoML packages

Dataset Version Precision
(Weighted)

Recall
(Weighted)

F1-Score
(Weighted)

Time (min)

CS-I-phyla BioAutoML 0.97 0.97 0.97 16.34
Recommended Feature Descriptors RECIPE 0.97 0.97 0.97 32.48
Recommended Feature Descriptors TPOT 0.99 0.99 0.99 72.41
All Feature Descriptors RECIPE 0.96 0.96 0.96 30.46
All Feature Descriptors TPOT 0.98 0.98 0.98 46.39

CS-II BioAutoML 0.88 0.88 0.88 85.02
Recommended Feature Descriptors RECIPE 0.87 0.61 0.68 272.46
Recommended Feature Descriptors TPOT 0.89 0.89 0.89 416.28
All Feature Descriptors RECIPE 0.77 0.36 0.38 151.12
All Feature Descriptors TPOT 0.90 0.89 0.89 338.55

results indicated the efficiency of the feature extraction
module, which can extract features based on different
aspects, automated feature selection, algorithm(s)
recommendation and tuning steps. Together, they
predicted the categories of ncRNAs in bacteria with high
predictive accuracy, even when the number of classes
was increased.

Conclusion
In this article, we propose and experimentally evalu-
ate a new package, BioAutoML, to classify biological
sequences. BioAutoML uses AutoML to select the best
feature vector from a set of descriptors extracted by
the MathFeature package, to recommend the best
ML algorithms, and tune the hyper-parameters of the
recommended algorithm. For such, it initially performs
automated feature engineering and metalearning for
noncoding sequences in bacteria, which has the potential
to accelerate new studies in bioinformatics. We develop
a package that does not require specialized human
assistance, supporting research on challenging problems
in biological sequence analysis. Our findings support our
hypothesis, showing the benefits of using automated
feature engineering and metalearning. Although in this
study, BioAutoML is applied only to ncRNA sequences
in bacteria, it can be used in other DNA/RNA sequence
scenarios. We focused exclusively on bacteria, due to the
biotechnological potential existing in the investigated
strains. Nevertheless, the first module of BioAutoML is
an important task for providing feature descriptors for
different types of sequences (nucleotides or proteins,
i.e. prediction of structural features along the primary
sequence of amino acids). We also used our previous
framework, MathFeature, to extract features for BioAu-
toML. BioAutoML can be used for binary and multi-
class classification problems, allowing its integration
with many existing packages. Finally, in future work,
we intend to expand the BioAutoML to proteins and
add new feature extraction packages, e.g. iLearn, BioSeq-
Analysis and BioSeq-BLM, testing other feature selection
methods such as combining Bayesian Optimization and
Lipschitz Optimization, Genetic Algorithm and Genetic
programming.

Key Points

• The first study to propose an automated feature engi-
neering and metalearning pipeline for ncRNA sequences
in bacteria;

• BioAutoML can be used in multi-class and binary prob-
lems;

• BioAutoML can be employed in other DNA/RNA
sequences scenarios;

• BioAutoML can accelerate new bioinformatics stud-
ies, reducing the feature engineering time-consuming
stage and improving the design and performance of ML
pipelines;

• BioAutoML reduces requirement of human expert assis-
tance.

Availability of data and materials
BioAutoML, documentation and datasets are available
in the Github repository: https://github.com/Bonidia/
BioAutoML.

Acknowledgments
The authors would like to thank USP, CAPES, Google
(LARA - 2021), CNPq, and FAPESP for the financial support
for this research.

Funding
This project was supported by the Coordenacâo de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Finance Code 001, Google (LARA - 2021), Universidade
de São Paulo (USP) and São Paulo Research Foundation
(FAPESP) - grants #2013/07375-0, #2021/08561-8.

References

1. Hashemi FSG, Ismail MR, Yusop MR, et al. Intelligent mining of
large-scale bio-data: Bioinformatics applications. Biotechnology &
Biotechnological Equipment 2018;32(1):10–29.

2. Lou H, Schwartz M, Bruck J, et al. Evolution of k-mer frequencies
and entropy in duplication and substitution mutation systems.
IEEE Transactions on Information Theory 2020;66:3171–3186..

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

https://github.com/Bonidia/BioAutoML
https://github.com/Bonidia/BioAutoML

BioAutoML | 11

3. Liu B, Liu F, Wang X, et al. Pse-in-One: a web server for generating
various modes of pseudo components of DNA, RNA, and protein
sequences. Nucleic Acids Res 05 2015;43(W1):W65–71.

4. Greener JG, Kandathil SM, Moffat L, et al. A guide to machine
learning for biologists. Nat Rev Mol Cell Biol 2021;1–16.

5. Chen Z, Zhao P, Li F, et al. iLearn: an integrated platform and
meta-learner for feature engineering, machine-learning analy-
sis and modeling of DNA, RNA and protein sequence data. Brief
Bioinform 04 2019;21(3):1047–57.

6. Chen Z, Zhao P, Li C, et al. iLearnPlus: a comprehensive and auto-
mated machine-learning platform for nucleic acid and protein
sequence analysis, prediction and visualization. Nucleic Acids Res
02 2021;gkab122.

7. Sharma M, et al. Emerging trends of bioinformatics in health
informatics. In: Computational Intelligence in Healthcare. Springer,
2021, 343–67.

8. Cannataro M, Harrison A. Bioinformatics helping to mitigate the
impact of COVID-19- Editorial. Brief Bioinform 03 2021;22(2):613–
5.

9. Ghannam RB, Techtmann SM. Machine learning applications in
microbial ecology, human microbiome studies, and environmen-
tal monitoring. Comput Struct Biotechnol J 2021.

10. Randhawa GS, Soltysiak MPM, Roz, et al. Machine learning using
intrinsic genomic signatures for rapid classification of novel
pathogens: Covid-19 case study. Plos one 2020;15(4):e0232391.

11. Maros ME, Capper D, Jones DTW, et al. (eds). Machine learning
workflows to estimate class probabilities for precision cancer
diagnostics on dna methylation microarray data. Nat Protoc
2020;1–34.

12. Li VR, Zhang Z, Troyanskaya OG. CROTON: an automated and
variant-aware deep learning framework for predicting CRISPR/-
Cas9 editing outcomes. Bioinformatics 07 2021;37:i342–8.

13. Mitrofanov A, Alkhnbashi OS, Shmakov SA, et al. CRISPRiden-
tify: identification of CRISPR arrays using machine learning
approach. Nucleic Acids Res 12 2020;49(4):e20–0.

14. Turner AW, Wong D, Khan MD, et al. Multi-Omics Approaches
to Study Long Non-coding RNA Function in Atherosclerosis.
Frontiers in Cardiovascular Medicine feb 2019;6(9).

15. Shira Stav, Ruben M. Atilho, Gayan Mirihana Arachchilage, Gia-
hoa Nguyen, Gadareth Higgs, and Ronald R. Breaker. Genome-
wide discovery of structured noncoding RNAs in bacteria. BMC
Microbiol, 19(1):1–18, mar 2019.

16. Costa MCSF, de Araújo Oliveira JV, Silva WMC, et al. Machine
learning studies of non-coding rnas based on artificially
constructed training data. In: BIOINFORMATICS, 2021,
176–83.

17. Stefan Washietl, Sven Findeiß, Stephan A. Müller, Stefan
Kalkhof, Martin Von Bergen, Ivo L. Hofacker, Peter F. Stadler,
and Nick Goldman. RNAcode: robust discrimination of coding
and noncoding regions in comparative sequence data. RNA,
17(4):578–94, apr 2011.

18. Dar D, Sorek R. Bacterial noncoding RNAs excised from within
protein-coding transcripts. MBio sep 2018;9(5).

19. Waqas Ahmed, Ke Zheng, and Zheng Fei Liu. Small non-coding
RNAs: New insights in modulation of host immune response by
intracellular bacterial pathogens. Front Immunol, 7(OCT):431, oct
2016.

20. Waring J, Lindvall C, Umeton R. Automated machine learning:
Review of the state-of-the-art and opportunities for healthcare.
Artif Intell Med 2020;104:101822.

21. Stavridis M, Korfiati A, Sakellaropoulos G, et al. Non-coding rna
sequences identification and classification using a multi-class

and multi-label ensemble technique. In: IFIP International Confer-
ence on Artificial Intelligence Applications and Innovations. Springer,
2018, 179–88.

22. Chen C-C, Qian X, Yoon B-J. RNAdetect: efficient computa-
tional detection of novel non-coding RNAs. Bioinformatics 08
2018;35(7):1133–41.

23. RNAcentral Consortium. RNAcentral 2021: secondary struc-
ture integration, improved sequence search and new member
databases. Nucleic Acids Res 10 2020;49(D1):D212–20.

24. de Sá AGC, Walter José GS, Pinto LO, et al. Recipe: a
grammar-based framework for automatically evolving classifi-
cation pipelines. In: European Conference on Genetic Programming.
Springer, 2017, 246–61.

25. He X, Zhao K, Chu X. Automl: A survey of the state-of-the-art.
Knowledge-Based Systems 2021;212:106622.

26. Santos A, Castelo S, Felix C, et al. (eds). Visus: An interactive
system for automatic machine learning model building and
curation. In: Proceedings of the Workshop on Human-In-the-Loop Data
Analytics, 2019, 1–7.

27. Robson Parmezan Bonidia. Feature extraction approaches for
biological sequences: A comparative study of mathematical
features. https://github.com/Bonidia/FeatureExtraction_
BiologicalSequences, 2020.

28. Bonidia RP, Domingues DS, Sanches DS, et al. Mathfea-
ture: feature extraction package for dna, rna and protein
sequences based on mathematical descriptors. Brief Bioinform
2022;23(1):bbab434.

29. Frazier PI. A tutorial on bayesian optimizationarXiv preprint
arXiv:1807.02811. 2018.

30. Chou K-C. Some remarks on protein attribute prediction
and pseudo amino acid composition. J Theor Biol 2011;273(1):
236–47.

31. Muhammod R, Ahmed S, Farid DM, et al. PyFeat: a Python-
based effective feature generation tool for DNA, RNA and protein
sequences. Bioinformatics 03 2019;35(19):3831–3.

32. Khatun MS, Hasan MM, Shoombuatong W, et al. Proin-fuse:
improved and robust prediction of proinflammatory peptides by
fusing of multiple feature representations. J Comput Aided Mol
Des 2020;34(12):1229–36.

33. Khurana U, Turaga D, Samulowitz H, et al. Cognito: Automated
feature engineering for supervised learning. In: 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 2016,
1304–7.

34. Chen X, Lin Q, Luo C, et al. (eds). Neural feature search: A neural
architecture for automated feature engineering. In: 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 2019, 71–80.

35. Wolpert DH, Macready WG. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation
1997;1(1):67–82.

36. Brazdil PB, van Rijn JN, Soares C, et al. Metalearning: Applications
to Automated Machine Learning and Data Mining. Leiden University,
Institute of Advanced Computer Science, 2022.

37. Liu Y, Zhaomin Y, Cheng Chen Y, et al. Prediction of protein
crotonylation sites through lightgbm classifier based on smote
and elastic net. Anal Biochem 2020;609:113903.

38. Hancock J, Khoshgoftaar TM. Catboost for big data: an interdis-
ciplinary review. Research Square 2020.

39. He S, Dou L, Li X, et al. Review of bioinformatics in azheimer’s
disease research. Comput Biol Med 2022;143:105269.

40. Shen H-B, Chou K-C. Pseaac: A flexible web server for generating
various kinds of protein pseudo amino acid composition. Anal
Biochem 2008;373(2):386–8.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

https://github.com/Bonidia/FeatureExtraction_BiologicalSequences
https://github.com/Bonidia/FeatureExtraction_BiologicalSequences

12 | Bonidia et al.

41. Cao D-S, Xu Q-S, Liang Y-Z. propy: a tool to generate var-
ious modes of Chou’s PseAAC. Bioinformatics 02 2013;29(7):
960–2.

42. Chen W, Zhang X, Brooker J, et al. PseKNC-General: a
cross-platform package for generating various modes of
pseudo nucleotide compositions. Bioinformatics 09 2014;31(1):
119–20.

43. van den Berg BA, Reinders MJT, Roubos JA, et al. Spice: a web-
based tool for sequence-based protein classification and explo-
ration. BMC bioinformatics 2014;15(1):93.

44. Bin Liu, Fule Liu, Longyun Fang, Xiaolong Wang, and Kuo-Chen
Chou. repDNA: a Python package to generate various modes
of feature vectors for DNA sequences by incorporating user-
defined physicochemical properties and sequence-order effects.
Bioinformatics, 31(8):1307–9, 12 2014.

45. Chiu T-P, Comoglio F, Zhou T, et al. DNAshapeR: an R/Biocon-
ductor package for DNA shape prediction and feature encoding.
Bioinformatics 12 2015;32(8):1211–3.

46. Liu B. Bioseq-analysis: a platform for dna, rna and protein
sequence analysis based on machine learning approaches. Brief
Bioinform 2017;20(4):1280–94.

47. Li H-L, Pang Y-H, Liu B. Bioseq-blm: a platform for analyzing dna,
rna and protein sequences based on biological language models.
Nucleic Acids Res 2021;49(22):e129–9.

48. Jing R, Li Y, Xue L, et al. autobioseqpy: a deep learning tool
for the classification of biological sequences. J Chem Inf Model
2020;60(8):3755–64.

49. Liu D, Chi X, He W, et al. Autogenome: an automl tool for genomic
research. Artificial Intelligence in the Life Sciences 2021;1:100017.

50. Le TT, Weixuan F, Moore JH. Scaling tree-based automated
machine learning to biomedical big data with a feature set
selector. Bioinformatics 2020;36(1):250–6.

51. Eppenhof EJJ, Peña-Castillo L. Prioritizing bona fide bacterial
small rnas with machine learning classifiers. PeerJ 2019;7:e6304.

52. de Almeida BLS, Queiroz AP, Santos APA, et al. Feature impor-
tance analysis of non-coding dna/rna sequences based on
machine learning approaches. In: Brazilian Symposium on Bioin-
formatics. Springer, 2021, 81–92.

53. He W, Ying J, Zeng X, et al. Sc-ncdnapred: a sequence-based
predictor for identifying non-coding dna in saccharomyces cere-
visiae. Front Microbiol 2018;9:2174.

54. Xie J, Zhang L, Xiao M. A review of artificial intelligence applica-
tions in bacterial genomics. In: 2020 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). IEEE, 2020, 1870–6.

55. Barik A, Das S. A comparative study of sequence-and structure-
based features of small rnas and other rnas of bacteria. RNA Biol
2018;15(1):95–103.

56. Bar A, Argaman L, Altuvia Y, et al. Prediction of novel bacterial
small rnas from ril-seq rna–rna interaction data. Front Microbiol
2021;12.

57. Barman RK, Mukhopadhyay A, Das S. An improved method for
identification of small non-coding rnas in bacteria using support
vector machine. Sci Rep 2017;7(1):1–8.

58. Prokhorenkova L, Gusev G, Vorobev A, et al. Catboost: unbiased
boosting with categorical features. In: Advances in neural informa-
tion processing systems, 2018, 6638–48.

59. Schapire RE. Explaining adaboost. In: Empirical inference. Springer,
2013, 37–52.

60. Liaw A, Wiener M. Classification and regression by randomfor-
est. R news 2002;2(3):18–22.

61. Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient
boosting decision tree. Advances in neural information processing
systems 2017;30.

62. Bonidia RP, Machida JS, Negri TC, et al. A novel decomposing
model with evolutionary algorithms for feature selection in long
non-coding rnas. IEEE Access 2020;8:181683–97.

63. Bergstra J, Yamins D, Cox DD. Hyperopt: A python library
for optimizing the hyperparameters of machine learning algo-
rithms. In: Proceedings of the 12th Python in science conference, Vol.
13. Citeseer, 2013, 20.

64. Helen Victoria A, Maragatham G. Automatic tuning of hyper-
parameters using bayesian optimization. Evolving Systems
2021;12(1):217–23.

65. Elsayad AM, Nassef AM, Al-Dhaifallah M. Bayesian optimiza-
tion of multiclass svm for efficient diagnosis of erythemato-
squamous diseases. Biomedical Signal Processing and Control
2022;71:103223.

66. Turner R, Eriksson D, McCourt M, et al. (eds). Bayesian opti-
mization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization
challenge 2020. In: NeurIPS 2020 Competition and Demonstration
Track. PMLR, 2021, 3–26.

67. Kwang SNG, Loong and Santosh K Mishra. Unique folding of
precursor micrornas: quantitative evidence and implications for
de novo identification. RNA 2007;13(2):170–87.

68. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster rna homology
searches. Bioinformatics 2013;29(22):2933–5.

69. Kalvari I, Nawrocki EP, Ontiveros-Palacios N, et al. Rfam 14:
expanded coverage of metagenomic, viral and microrna fami-
lies. Nucleic Acids Res 2021;49(D1):D192–200.

70. Ioanna Kalvari, Eric P Nawrocki, Joanna Argasinska, Natalia
Quinones-Olvera, Robert D Finn, Alex Bateman, and Anton I
Petrov. Non-coding rna analysis using the rfam database. Current
protocols in bioinformatics, 62(1):e51, 2018.

71. Grandini M, Bagli E, Visani G. Metrics for multi-class classifica-
tion: an overviewarXiv preprint arXiv:2008.05756. 2020.

72. Jennifer L, Salzberg SL. Skewit: The skew index test for large-
scale gc skew analysis of bacterial genomes. PLoS Comput Biol
2020;16(12):e1008439.

73. Zhang P, Wenyi W, Chen Q, et al. Non-coding rnas and their
integrated networks. J Integr Bioinform 2019;16(3).

74. Tasdelen A, Sen B. A hybrid cnn-lstm model for pre-mirna
classification. Sci Rep 2021;11(1):1–9.

75. Xiangzheng F, Zhu W, Cai L, et al. Improved pre-mirnas identifi-
cation through mutual information of pre-mirna sequences and
structures. Front Genet 2019;10:119.

76. Wang D, Zhang Y, Zhao Y. Lightgbm: an effective mirna classi-
fication method in breast cancer patients. In: Proceedings of the
2017 International Conference on Computational Biology and Bioinfor-
matics, 2017, 7–11.

77. Dang THY, Tyagi S, D’Cunha G, et al. Computational prediction
of micrornas in marine bacteria of the genus thalassospira. PloS
one 2019;14(3):e0212996.

78. Cardin S-E, Borchert GM. Viral micrornas, host micrornas regu-
lating viruses, and bacterial microrna-like rnas. Bioinformatics in
MicroRNA Research 2017;39–56.

79. Li W, Godzik A. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics
2006;22(13):1658–9.

80. Sayers EW, Cavanaugh M, Clark K, et al. Genbank. Nucleic Acids
Res 2019;47(D1):D94–9.

81. Balaji A, Allen A. Benchmarking automatic machine learning
frameworksarXiv preprint arXiv:1808.06492. 2018.

82. Zöller M-A, Huber MF. Benchmark and survey of automated
machine learning frameworks. Journal of artificial intelligence
research 2021;70:409–72.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

BioAutoML | 13

83. Li J-Y, Li W-X, Wang A-T, et al. Mitoflex: an efficient,
high-performance toolkit for animal mitogenome assem-
bly, annotation and visualization. Bioinformatics 2021;37(18):
3001–3.

84. Chan PP, Lin BY, Mak AJ, et al. trnascan-se 2.0: improved detec-
tion and functional classification of transfer rna genes. Nucleic
Acids Res 2021;49(16):9077–96.

85. David P. Clark, Nanette J. Pazdernik, and Michelle R. McGe-
hee. Chapter 19 - noncoding rna. In David P. Clark, Nanette J.
Pazdernik, and Michelle R. McGehee, editors, Molecular Biology
(Third Edition), pages 604–21. Academic Cell, third edition edition,
2019.

86. Watkins D, Arya DP. Regulatory roles of small rnas in prokary-
otes: Parallels and contrast with eukaryotic mirna. Non-coding
RNA Investig 2019;3:28.

87. Soltani-Fard E, Taghvimi S, Kichi ZA, et al. Insights into the
function of regulatory rnas in bacteria and archaea. International
Journal of Translational Medicine 2021;1(3):403–23.

88. Streit D, Shanmugam T, Garbelyanski A, et al. The existence and
localization of nuclear snornas in arabidopsis thaliana revisited.
Plan Theory 2020;9(8):1016.

89. Lindsay MA, Griffiths-Jones S, Valadkhan S, et al. Role of small
nuclear rnas in eukaryotic gene expression. Essays Biochem
2013;54:79–90.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac218/6618238 by guest on 24 April 2024

	 BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria
	 Background
	 Feature engineering
	 Metalearning
	 Related works
	 BioAutoML package
	 Experimental results
	 Discussion
	 Conclusion
	 Key Points
	 Availability of data and materials
	 Acknowledgments
	 Funding

