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Abstract

Summary: SpliceAI is a widely used splicing prediction tool and its most common application relies on the
maximum delta score to assign variant impact on splicing. We developed the SpliceAI-10k calculator (SAI-10k-calc)
to extend use of this tool to predict: the splicing aberration type including pseudoexonization, intron retention,
partial exon deletion, and (multi)exon skipping using a 10 kb analysis window; the size of inserted or deleted
sequence; the effect on reading frame; and the altered amino acid sequence. SAI-10k-calc has 95% sensitivity and
96% specificity for predicting variants that impact splicing, computed from a control dataset of 1212 single-
nucleotide variants (SNVs) with curated splicing assay results. Notably, it has high performance (�84% accuracy) for
predicting pseudoexon and partial intron retention. The automated amino acid sequence prediction allows for
efficient identification of variants that are expected to result in mRNA nonsense-mediated decay or translation of
truncated proteins.

Availability and implementation: SAI-10k-calc is implemented in R (https://github.com/adavi4/SAI-10k-calc) and also
available as a Microsoft Excel spreadsheet. Users can adjust the default thresholds to suit their target performance
values.

1 Introduction

SpliceAI is a neural network that predicts splicing from a pre-
mRNA sequence (Jaganathan et al. 2019). Previous evaluations (Ha
et al. 2021; Moles-Fernández et al. 2021; Riepe et al. 2021;
Rowlands et al. 2021; Wai et al. 2020) have identified SpliceAI as
the best predictor of variants that impact splicing, here termed spli-
ceogenic variants. These studies assessed single-nucleotide variants
(SNVs) and small indels across multiple locations (i.e. splice site
motifs, deep intronic regions >20 bp from the acceptor and >6 bp
from the donor site, and exonic). They used the maximum delta
score (of the four possible output scores) that passed the respective
study-designated thresholds to predict variant spliceogenicity, but
did not assess the splicing aberration type. SpliceAI sensitivity for
detecting spliceogenic intronic variants >50 bp from exons was ori-
ginally reported to be 41% using a 0.5 maximum delta score thresh-
old (Jaganathan et al. 2019), but an improved sensitivity of 94%
was observed for variants >20 bp from exons by lowering the

threshold to 0.05 (Moles-Fernández et al. 2021). Paired donor–ac-

ceptor splice site scores were observed for validated pseudoexoniza-
tion events (Moles-Fernández et al. 2021). Moreover, manual
checking of donor–acceptor splice site pairing was incorporated into

a scheme to prioritize likely spliceogenic deep intronic variants
(Qian et al. 2021).

We developed the SpliceAI-10k calculator (SAI-10k-calc) to sys-
tematically predict different SNV-associated splicing aberrations,
altered transcript sizes, and consequent amino acid sequences, with

a focus on accurate prediction of aberration sizes due to deep intron-
ic variation.

2 Methods

SAI-10k-calc was designed to predict specific types of splicing aber-
rations, namely: pseudoexonization, partial intron retention, partial

exon deletion, (multi)exon skipping, and whole intron retention.
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Its features were derived from the application of all four raw delta
scores and their corresponding delta positions generated by the
SpliceAI tool (Jaganathan et al. 2019) using the maximum distance
of 64999 bp flanking the variant of interest. SAI-10k-calc can
process SpliceAI scores resulting from SNVs at any exonic or intron-
ic position, but not scores resulting from indels due to the complex-
ity of distance interpretations for such variants. The decision
flowchart is shown in Supplementary File S1.

We established default thresholds for SpliceAI delta scores
(0.02–0.2 for exon skipping or whole intron retention and
0.02–0.05 for pseudoexon gain) and the gained exon size range of
25–500 bp based on two training sets derived from published splic-
ing data: (i) SNVs in BRCA1, BRCA2, MLH1, MSH2, MSH6, and
PMS2 from Shamsani et al. (2019); and (ii) deep intronic SNVs in
various Mendelian disease genes from Moles-Fernández et al.
(2021) (Supplementary Table S1). The 0.2 upper threshold for exon
skipping is based on the lower limit set by SpliceAI developers
(Jaganathan et al. 2019). For deep intronic variants, the 0.05 upper
threshold for pseudoexon gain is also supported by previous findings
(Moles-Fernández et al. 2021). The 25–500 bp exon size range
encompasses the optimal size for efficient splicing that is between
50 and 250 bp (Movassat et al. 2019) and is expected to capture
most gained pseudoexons.

3 Usage and features

The R code (https://www.R-project.org/) version of SAI-10k-calc
requires two input files: a SpliceAI output VCF file and a tab-
separated file with gene names and RefSeq transcript IDs (to match
transcripts used in SpliceAI calculations). SAI-10k-calc was devel-
oped using human genome reference GRCh37, but is compatible
with GRCh38.

The SAI-10k-calc output is a tab-separated file with summary of
splicing predictions indicating the type of aberration, possible com-
binations of aberrations (e.g. one SNV resulting in both exon skip-
ping and partial intron retention), the exact size of inserted and/or
deleted sequences, and the effect on reading frame and translation
(Fig. 1). The latter is critical to predict the pathogenicity of the splic-
ing alteration, and to design and interpret laboratory validation
experiments. Amino acid sequence predictions could also be useful
for additional applications, for example cancer neoantigen predic-
tions (Yarchoan et al. 2017).

We also provide a lightweight Microsoft Excel spreadsheet
(Supplementary File S2, processing up to 1000 SNVs) that predicts
the types and sizes of aberrations. In this version, users need to pro-
vide the raw scores generated by either SpliceAI Lookup (https://spli
ceailookup.broadinstitute.org/) or SpliceAI run from the command
line. However, the predicted aberration sizes for partial intron reten-
tions or partial exon deletions for this lightweight version are less
accurate than the R code implemented version. Specifically, the R
code uses native splice site positions derived from the given RefSeq
transcript, whereas the lightweight version uses the SpliceAI-
predicted acceptor and donor site positions. For example, the Excel
version incorrectly predicted NM_007294.4(BRCA1):c.4868C>G
to result in a 125-bp partial exon deletion, while the R code gave the
correct size of 119 bp.

We note that, due to SpliceAI limitations, the calculator cannot
be designed to predict three specific combinations of aberrant tran-
scripts: (i) exon skipping and multi-exon skipping; (ii) exon skipping
and whole intron retention; and (iii) partial exon deletion and par-
tial intron retention. Multi-exon skipping and whole intron reten-
tion can only be predicted if the positions of donor and acceptor
losses are within the analysis window, i.e. <4999 bp from the
variant.

4 Performance

Using our training set data, SAI-10k-calc (R code version) has an
overall sensitivity of 95% (441/464 confirmed spliceogenic SNVs)
and specificity of 96% (715/748 non-spliceogenic SNVs) using our

thresholds. Furthermore, SAI-10k-calc demonstrates high accuracy
for prediction of pseudoexonization (85%), partial intron retention
(84%), and exon skipping (81%), highlighting its applicability for
prioritization of variants through clinical or research sequencing. R
code output data from the training set variants are shown in

Figure 1 Types of splicing aberrations predicted by the SpliceAI-10k calculator. Six

SNVs that were experimentally confirmed to alter splicing are correctly predicted by

SAI-10k-calc (A–F). Of these, two represent correct prediction of combinations of

splicing aberration types (D, E). Amino acid sequence predictions include three

amino acids preceding the first variant amino acid, followed by the modified se-

quence inside square brackets. In-frame deletions that do not introduce any missense

amino acid change (example in panel E) are indicated by blank square brackets

flanked by three wild type amino acids preceding and following the deleted se-

quence. In all cases, deleted amino acids are not shown
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Supplementary Table S2. General splicing prediction results and per-
formance values are summarized in Supplementary Tables S3 and
S4. Splicing aberration predictions (type and size) are detailed in
Supplementary Tables S5–S8.

Author notes

The authors wish it to be known that Daffodil M. Canson and
Aimee L. Davidson contributed equally as first authors. Olga
Kondrashova and Amanda B. Spurdle shared chief supervision and
last authorship.

Acknowledgements

Emma Tudini and Vaishnavi Nathan of the QIMR Berghofer Molecular

Cancer Epidemiology Laboratory updated the BRCA1 and BRCA2 splicing

table that partly provided curated splicing data for training set 1.

Author contributions

Daffodil M. Canson (Conceptualization-Lead, Data curation-Lead,
Formal analysis-Lead, Methodology-Lead, Visualization-Lead,
Writing—original draft-Lead, Writing—review & editing-Equal),
Aimee L. Davidson (Conceptualization-Supporting, Formal analysis-
Lead, Methodology-Lead, Software-Lead, Writing—original draft-
Lead, Writing—review & editing-Equal), Miguel de la Hoya (Formal
analysis-Supporting, Methodology-Supporting, Writing—review &
editing-Equal), Michael T. Parsons (Data curation-Supporting, Formal
analysis-Supporting, Writing—review & editing-Equal), Dylan M.
Glubb (Supervision-Supporting, Writing—review & editing-Equal),
Olga Kondrashova (Conceptualization-Supporting, Formal analysis-
Supporting, Methodology-Lead, Software-Lead, Supervision-Lead,
Writing—review & editing-Equal), and Amanda B. Spurdle (Funding
acquisition-Lead, Supervision-Lead, Writing—review & editing-
Equal).

Supplementary data

Supplementary data is available at Bioinformatics online.

Funding

D.M.C. was supported by QIMR Berghofer Ailsa Zinns PhD Scholarship,

QIMR Berghofer HDC Top Up Scholarship, and The University of

Queensland Research Training Tuition Fee Offset. The work of A.L.D. was

supported in part by National Institutes of Health grant R01 CA264971.

M.d.l.H. is supported by a grant from the Spanish Ministry of Science and

Innovation, Plan Nacional de IþDþI 2013–2016, ISCIII [PI20/00110] co-

funded by FEDER from Regional Development European Funds (European

Union). O.K. is supported by a National Health and Medical Research

Council Emerging Leader 1 Investigator Grant [APP2008631]. A.B.S. is sup-

ported by National Health and Medical Research Council Investigator Fellowship

funding [APP1177524].

Conflict of interest: None declared.

Data availability

The data underlying this article are available in its Supplementary
Material.

References

Ha C, Kim J-W, Jang J-H. Performance evaluation of SpliceAI for the predic-

tion of splicing of NF1 variants. Genes 2021;12:1308.

Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF et al. Predicting

splicing from primary sequence with deep learning. Cell 2019;176:

535–48.e24.
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