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Abstract

Motivation: Human gut microbiota plays a vital role in maintaining body health. The dysbiosis of gut microbiota is
associated with a variety of diseases. It is critical to uncover the associations between gut microbiota and disease
states as well as other intrinsic or environmental factors. However, inferring alterations of individual microbial taxa
based on relative abundance data likely leads to false associations and conflicting discoveries in different studies.
Moreover, the effects of underlying factors and microbe–microbe interactions could lead to the alteration of larger
sets of taxa. It might be more robust to investigate gut microbiota using groups of related taxa instead of the com-
position of individual taxa.

Results: We proposed a novel method to identify underlying microbial modules, i.e. groups of taxa with similar
abundance patterns affected by a common latent factor, from longitudinal gut microbiota and applied it to inflamma-
tory bowel disease (IBD). The identified modules demonstrated closer intragroup relationships, indicating potential
microbe–microbe interactions and influences of underlying factors. Associations between the modules and several
clinical factors were investigated, especially disease states. The IBD-associated modules performed better in stratify-
ing the subjects compared with the relative abundance of individual taxa. The modules were further validated in ex-
ternal cohorts, demonstrating the efficacy of the proposed method in identifying general and robust microbial mod-
ules. The study reveals the benefit of considering the ecological effects in gut microbiota analysis and the great
promise of linking clinical factors with underlying microbial modules.

Availability and implementation: https://github.com/rwang-z/microbial_module.git.

1 Introduction

The human gut harbors more than 100 trillion microorganisms,
composing the most complex and abundant ecosystem, referred to
as human gut microbiota (Turnbaugh et al. 2007; Belizário and
Napolitano 2015). Microorganisms play a vital role in maintaining
body health by helping to digest foods, producing indispensable
metabolites and hormones, training the immune system, protecting
against colonization of pathogens, participating in drug metabolism,
and contributing to more significant systemic effects on mental
health through the “gut-brain axis” (Foster and Neufeld 2013;
Vázquez-Baeza et al. 2018). It is reported that a collection of

bacterial species is shared by healthy adults (Lozupone et al. 2012),
and the composition of healthy individuals is relatively stable in the
absence of interventions (Halfvarson et al. 2017). Shifting away of
the gut microbiota from its healthy state, which is called dysbiosis,
is associated with diverse diseases, e.g. obesity (Lozupone et al.
2012), cardiovascular diseases (Jie et al. 2017; Liu et al. 2020), can-
cers (Gopalakrishnan et al. 2018), major depression (Cheung et al.
2019), inflammatory bowel disease (IBD; Durack and Lynch 2019),
etc. Dysbiosis includes the alterations in both taxonomic compos-
ition, e.g. elevated or decreased relative abundance of particular
taxa and changed diversity of the whole microbial community
(Belizário and Napolitano 2015; Gilbert et al. 2016), and temporal
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dynamics, where the variation of gut microbiota over time in some
conditions are discovered more pronounced compared with the
healthy controls (Halfvarson et al. 2017, Schirmer et al. 2018,
Lloyd-Price et al. 2019; Zhou et al. 2019).

Associations between gut microbiota and various diseases have
been identified by numerous metagenome-wide association studies
(Gilbert et al. 2016; Halfvarson et al. 2017; Franzosa et al. 2019;
Zhou et al. 2019; Dan et al. 2020). However, most of these studies
focus on linking individual microbial taxa with disease states, and
there are some limitations. Firstly, the measured gut microbiota is
generally in the form of compositional data, represented as the rela-
tive abundance of each taxon in the whole community, where the
captured abundance of a taxon depends on that of the others. It
would be flawed to infer the expansion or depletion of a single
taxon based on the relative abundance since the growth/loss of a
taxon could actually be the decrease/rise of the others, which might
lead to false associations and conflicting discoveries in different
studies (Gilbert et al. 2016; Duvallet et al. 2017; Wirbel et al. 2019;
Nearing et al. 2022). Secondly, instead of alterations of a few taxa,
gut microbial changes in some conditions involve a larger set of taxa
or a broad restructuring of the community, especially IBD, where
the investigation of groups of related taxa is crucial (Duvallet et al.
2017; Gilbert et al. 2018; Durack and Lynch 2019). In addition, the
gut microbiota is a complex ecology where the metabolic interac-
tions and resource competitions amongst the microorganisms are es-
sential for community stability and host health (Wegener et al.
2011). Changes in the abundance of a taxon may also shape that of
the others, resulting in correlated abundance over time and co-
occurrence in different communities. Therefore, it might be more ro-
bust to investigate the alterations of human gut microbiota using mi-
crobial groups of related taxa compared with individual taxa
(Lozupone et al. 2012; Cheng et al. 2019).

In addition to disease states, the gut microbiota is influenced by
a variety of host-intrinsic, microbial, and environmental factors,
including genetics, age, medication use, diet, lifestyle, body mass
index, etc. (Gilbert et al. 2018; Schmidt et al. 2018). It is critical to
uncover the associations of not only disease states but also other
clinical factors with the gut microbiota in both taxonomic compos-
ition and temporal dynamics to understand the inherent mechanisms
and to develop potential interventions for preventive or therapeutic
purposes (Gilbert et al. 2018). However, commonly examined clin-
ical factors only explain a tiny proportion of the interindividual di-
versity, leaving many underlying factors uncovered (Lloyd-Price
et al. 2019). Taking all these considerations into account, we reason
that multiple underlying factors collectively determine the taxonom-
ic composition and temporal dynamics of gut microbiota through
both direct regulations and indirect influences via ecological mi-
crobe–microbe interactions. The taxa affected by the same factor
would have similar underlying abundance patterns and are thereby
defined as a microbial module. The composition and dynamics of
gut microbiota are observed outcomes of the underlying patterns.

In this study, we proposed a novel method to identify the under-
lying microbial modules, i.e. groups of taxa with similar abundance
patterns affected by a common latent factor, from human longitu-
dinal gut microbiota based on tensor factorization, which is a
method that enables uncovering the underlying structure and latent
factors from noisy data (Kolda and Bader 2009, Papalexakis et al.
2016). Specifically, the longitudinal data at the species level was
modeled as a third-order tensor, and the compositional relative
abundance was factorized into the contributions of microbial mod-
ules. On account of that the gut microbial composition of a subject
should change smoothly over time, we modelled correlated activities
of the microbial modules at neighbor time points (visits) in the
method. As identified from longitudinal data, the modules reflected
both the compositional and dynamic characteristics of the gut
microbiota. We applied the method to IBD, a group of intestinal dis-
orders characterized by chronic inflammation of the gastrointestinal
tract and imbalances between microbes and immune systems
(Schirmer et al. 2018; Lloyd-Price et al. 2019). The microbial mod-
ules identified from the cohort comprised of IBD patients and con-
trols were further analyzed in terms of interindividual variation,

intramodule taxa relationships, and associations with clinical fac-
tors, especially disease states, and were validated in external
cohorts.

2 Materials and methods

2.1 Longitudinal gut microbiota data
The human longitudinal gut microbiota data that captured the taxo-
nomic composition of the gut microbial community at different time
points (visits) were collected. The discovery set of the study was col-
lected from the integrative Human Microbiome Project et al.
(2019), the second phase of the Human Microbiome Project (HMP;
Turnbaugh et al. 2007). Fecal samples were collected consecutively
from the IBD patients (n¼103) and healthy controls (n¼27) for
1 year (Fig. 1A) and sequenced by shotgun metagenomic sequencing.
The highest sampling frequency was every 2 weeks, resulting in
1638 samples with up to 24 samples for each subject. The taxonom-
ic profile, functional profile, and corresponding metadata were
downloaded from the Inflammatory Bowel Disease Multi’omics
Database (https://www.ibdmdb.org). Quality control of the data
was done by KneadData (https://huttenhower.sph.harvard.edu/
kneaddata/). The taxonomic and functional profiles were generated
using MetaPhlAn2 (Truong et al. 2015) and HUMAnN2 (Franzosa
et al. 2018), respectively. Subjects with less than 10 samples were
removed. As a result, 97 subjects were included for further analysis,
consisting of 25 controls and 72 IBD patients [47 Crohn’s disease
(CD) and 25 ulcerative colitis (UC)]. We focused on the species level
in this study (virus excluded) and explored the prevalent species.
The species with nonzero abundance in less than 10% of samples
were filtered out, leaving 123 species of interest. All samples from
the 96 subjects comprised the dataset “24-visit-set”, including 1079
IBD samples and 399 control samples. Since the number of samples
differed among the subjects with various sampling intervals, we gen-
erated a subset where 10 samples with roughly equal sampling inter-
vals were selected for each subject, resulting in 720 IBD samples and
250 control samples, which was labeled as the “10-visit-set”
(Fig. 1B–E and Table 1).

Three external validation cohorts were collected and named as
“Val_Hall” (Hall et al. 2017), “Val_Lewis” (Lewis et al. 2015), and
“Val_HHS” (Lloyd-Price et al. 2017), respectively. “Val_Hall” con-
sisted of both IBD and control subjects, whereas “Val_Lewis” and
“Val_HHS” included only IBD subjects and only healthy subjects,
respectively. The samples in “Val_Hall” were collected monthly
from 18 IBD (9 CD and 9 UC) patients and 12 controls, up to 12
samples for each subject and 235 samples in total (Supplementary
Fig. S1A–C), which were available at NCBI SRA under the
BioProject PRJNA385949. We selected the samples without using
antibiotics provided in Lewis et al. (2015; available at NCBI SRA,
accession number: SRP057027) to construct the validation set
“Val_Lewis”, resulting in 99 samples of 31 CD patients in total and
up to 4 samples for each subject. Although healthy control samples
were provided in Lewis et al. (2015) as well, they were one-visit
data rather than longitudinal data, so that they were not used in the
validation set. The samples of “Val_Hall” and “Val_Lewis” were
downloaded from NCBI SRA in the format of FASTQ files using the
SRA toolkit (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=
software) and then processed following the bioBakery workflow as
the discovery set (McIver et al. 2018). For “Val_HHS”, we down-
loaded the preprocessed taxonomic profile (generated by
MetaPhlAn2 after quality control using KneadData) from the
healthy human subjects (HHS) study (available at https://www.
hmpdacc.org/hmsmcp2/) of HMP (Lloyd-Price et al. 2017) and
excluded the subjects with less than three samples. The taxonomic
profiles of the three validation sets were filtered by the species of
interest in the discovery set, leaving 81, 79, and 123 species in
“Val_Hall”, “Val_Lewis”, and “Val_HHS”, respectively (Table 1).
The discovery and validation sets were preprocessed using the same
workflow.
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2.2 Identification of gut microbial modules
The longitudinal data of human gut microbiota was modeled as a
third-order tensor v 2 R

N�L�K, where N, L, and K were the num-
bers of subjects, taxa and visits (time points), respectively. The entry
vnlk represented the relative abundance of taxon l 2 1; . . . ;Lf g in the
sample collected from subject n 2 1; . . . ;Nf g at visit k 2 1; . . . ;Kf g.
The horizontal slice vn;:;: consisted of the samples collected from sub-
ject n at different time points. The “10-visit-set” including 10

samples for each subject constructed a complete tensor
v
� 2 R

97�123�10, where N ¼ 97, L ¼ 123, and K ¼ 10.
To identify the underlying microbial modules that collectively

contributed to the structure of the microbial community, the relative
abundance tensor v

�
was decomposed into three factor matrices in

terms of subjects (H 2 R
N�C), taxa (M 2 R

C�L), and visits
(T 2 R

K�C), respectively, which shared a common dimension of C
microbial modules (Fig. 1F). Each row of M represented a microbial

Figure 1 Overview of the study. (A) Fecal samples were collected consecutively from IBD patients and healthy controls for 1 year. (B) Number of healthy controls and IBD

patients included in the study. (C) Number of control and IBD samples in the “10-visit-set” and “24-visit-set”. (D) Number of samples collected from each subject. E. Pie chart

of the distribution of samples collected from healthy controls and IBD patients in the “10-visit-set” and “24-visit-set” additionally. The samples in the “10-visit-set” are also

included in the “24-visit-set”. (F) Illustration of microbial module identification and downstream analysis in this study. The longitudinal data are represented as a third-order

tensor and factorized into three factor matrices, which are further used for module analysis, subject stratification, and module member detection, respectively. PERMANOVA,

permutational multivariate analysis of variance.

Table 1. Summary of the datasets used in the study.

Dataset 24-visit set 10-visit set Val_Hall Val_Lewis Val_HHS

Data source iHMP Hall et al. (2017) Lewis et al. (2015) HMP HHS

Taxa (species) 123 81 79 123

IBD subjects 72 18 31 0

Control subjects 25 12 0 54

Samples of each subject � 24 10 � 12 � 4 3

IBD samples 1079 720 162 99 0

Control samples 399 250 73 0 162

Completeness Incomplete Complete Incomplete Incomplete Complete

Constructed tensor v^ v
�

v0

Factorization result 24-visit (uncorrelated) 10-visit (uncorrelated) Val_Hall-res

(uncorrelated)10-visit correlated

Gut microbial modules 3
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module where Mcl indicated the activity of microbial taxon l in
module c. The factor matrices H and T represented the activities of
the microbial modules in the subjects and visits, respectively. Hnc

indicated the contribution of module c to the gut microbiota of sub-
ject n. T:c indicated the trend of module c over time. Specifically, the
problem was modeled as Bayesian tensor factorization (Fig. 2A):

P v
~
� ���hÞ ¼

Y
nlk

N v~nlkj
X

c
HncMclTkc; knk

�1
� �

; (1)

knk � Gamma u; vð Þ; (2)

where c 2 1; . . . ;Cf g, C was the number of underlying microbial
modules and C � Cmax. Cmax was the predefined maximum number
of microbial modules. h ¼ H; M; T; . . .f g was the set of all varia-
bles in the model. k 2 R

N�K represented the precision where the
same term knk was shared by the taxa for visit t of subject n, model-
ing the noise in the data.

It has been discovered in previous studies that sparsity on the fac-
tor matrices could induce clustering to produce coherent groups
(Papalexakis et al. 2012). In order to identify sparse microbial mod-
ules and to group taxa with similar abundance patterns together, we
imposed the spike-and-slab prior (Do et al. 2006; Titsias and

Lázaro-Gredilla 2011; Hore et al. 2016) on the factor matrix M for
sparse structure (Supplementary Methods):

Mcl � pclN Mclj0;bc
�1

� �
þ 1� pclð Þd0 Mclð Þ; (3)

where pcl was the mixing weight between the Gaussian and the point
mass, bc was the precision of the Gaussian distribution and d0ð�Þ
denoted the Dirac delta function centered at zero. For efficient infer-
ence of the model, it was reparameterized as follows (Titsias and
Lázaro-Gredilla 2011):

Mcl ¼ xclscl; (4)

xcl � N xclj0;bc
�1

� �
; (5)

scl � Bernoulli scljpclð Þ; (6)

pcl ¼ ucl/cl: (7)

Additionally, given a limit of the number of modules Cmax, the
spike-and-slab prior could also automatically determine the model
complexity C � Cmax, i.e. the number of modules underlying the
data, by generating C nonzero vectors in each factor matrix.

Figure 2 Decomposition results of the longitudinal gut microbiota data. (A) The Bayesian tensor factorization model of the proposed method (visit-correlated model). (B)

Classification performance (AUROC) of different numbers of top-ranking microbial modules of IBD identified from the results of “24_visit”, “10_visit”, and “10_visit-

correlated”, respectively. Dots indicate the performance of different random runs. Average values are demonstrated as grey diamonds. (C) Boxplot of the average AUROC of

each run under different settings. The best performing runs of “10_visit-correlated” are marked in the grey dashed rectangle. (D) Comparison of the best performing runs of

“10_visit-correlated” in terms of the classification performance and reconstruction error measured by the average AUROC using different numbers of top-ranking modules

and RMSE, respectively.
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In the longitudinal gut microbiota studies, multiple samples were
collected from the same subject at different visits. The repeated
measures of the same subject were expected to be correlated (Chen
and Li 2016). To model the correlations, we assumed that the activ-
ity of a microbial module c at time point k was dependent on that at
the previous time point k� 1:

Tkc � N Tk�1;c;Kc
�1

� �
; (8)

T1;c � N 0;Kc
�1

� �
; (9)

Kc � Gamma a; bð Þ; (10)

where c 2 1; . . . ;Cf g, k ¼ 2; . . . ;Kf g and Kc was the precision
shared by T:c. The activities of the microbial modules in the subjects
were assumed to be independent and follow the Gaussian distribu-
tion Hn: � N C 0; ICð Þ. The above model accounting for the correla-
tions between samples from the same subject was referred to as the
visit-correlated model in this article. The model was inferred using
Variational Bayes (Jordan et al. 1999). See Supplementary Methods
for the full Bayesian model, the update rules for the variables, and
more details of the method.

The members of a module were determined by the posterior in-
clusion probabilities (PIP), calculated as EQ sclð Þ, which indicated the
probability that a variable was included in the true model (Hore
et al. 2016). A taxon was determined to be a member of a module if
the corresponding PIP > 0:5. Distinct initializations of the variables
would lead to different factorization results. To find a better result
and to conduct a fair evaluation of the overall performance of the
model, 30 runs with random initializations were executed and com-
pared in two aspects: (i) the classification performance using the
top-ranking modules (see Classification of the subjects), and (ii) the
reconstruction error measured by the root mean square error
(RMSE) between the original tensor v

�
and the reconstructed tensor

v~0 ¼ H�M� T. In comparison to the visit-correlated model, we
also implemented a model that did not account for the correlations
between the samples collected from the same subject, referred to as
the visit-uncorrelated model (Supplementary Fig. S2 and
Supplementary Methods).

2.3 Analysis of microbial modules
The variations of taxonomic composition (intersample) and the mi-
crobial module activities (interindividual) explained by several clin-
ical factors were quantified via permutational multivariate analysis
of variance (PERMANOVA) using the adonis function in the R
package “Vegan” (Oksanen et al. 2020) following (Lloyd-Price
et al. 2019), including subject-level factors (constant across the sam-
ples of a subject) such as disease states, age, sex and race, and
sample-level factors (recording status of the subjects in the week of
sample collection) such as medication, antibiotics, immunosuppres-
sant, chemotherapy, diarrhea, and bowel surgery (Supplementary
Methods). The distances between the taxonomic composition of the
samples were measured by Bray–Curtis dissimilarity. The distances
between the microbial module activities of the subjects were meas-
ured by Euclidean distance.

The associations between the microbial modules and the clinical
factors were identified. For each factor, modules that demonstrated
significantly differential activities between distinct groups were
detected from the factor matrix of subjects (H) using Wilcoxon
rank-sum test with false discovery rate (FDR) � 0:25. The modules
associated with disease states (IBD-associated modules) were further
analyzed. To investigate the roles of the taxa in the IBD-associated
modules, IBD-associated microbial taxa were identified by (i) differ-
ential abundance (DA) analysis using Linear mixed-effects model
(LMM) (Lloyd-Price et al. 2019), (ii) collecting microbe-disease
associations from Human Microbe-Disease Association Database
(HMDAD; Ma et al. 2017) and (iii) collecting IBD-associated taxa
from other studies (Supplementary Methods). In addition, the top
abundant pathways of each IBD-associated module were investi-
gated for functional analysis. The abundance of each pathway

contributed from the member taxa in all samples of the “10-visit-
set” was summed up, and the top 20 abundant pathways were
selected.

To study the relationships between the microbial taxa in the same
module, the intramodule co-occurrence and functional similarity were
investigated. The co-occurrence was measured by Dice Index (DI) and
Spearman correlation, and the functional similarity was measured
based on the contributed pathway abundance (Supplementary
Methods). Specifically, we first calculated the co-occurrence for each

taxa pair (i) individually by
P

n C v
�

nl:; v
�

nl0 :

� ����
���=N and (ii) across sub-

jects by C vecðv�:l:Þ; vecðv�:l0:Þ
� ����

���, where C x;x0ð Þ was the DI or

Spearman correlation between x and x0, and vecðxÞ was the flattened
vector of x. Then, the intramodule DI and Spearman correlation were
computed by averaging the pairwise measures for each module. The
intramodule functional similarity was computed by averaging the pair-
wise similarity of its members over all samples. In addition, we also
estimated the pairwise correlations of microbial taxa using SparCC, a
method proposed to estimate correlation values from compositional
data to construct interaction networks of microbes (Friedman and Alm
2012). The sparcc function reimplemented by the SpiecEasi R package
was used (Kurtz et al. 2015).

2.4 Classification of the subjects
To investigate the ability of the identified microbial modules to
characterize the subjects, especially the IBD-associated modules, we
evaluated the performance of the modules in stratifying the subjects
into the IBD and control groups, as disease state characterization is
of central importance. The module activities with respect to each
subject (represented in the factor matrix H) were quantile normal-
ized and used as features for classification. To compare the overall
performance of different models and random runs, the top 100 mod-
ules that demonstrated the lowest P-value in associations with dis-
ease states were selected by Wilcoxon rank-sum test. The
performance of using different numbers of top-ranking modules was
evaluated. Random Forest (RF) with 2000 trees in the forest was
adopted as the classifier. Other parameters of RF were tuned using
the R package caret (Kuhn 2015). The classification performance
was evaluated by the average area under the receiver operating char-
acteristic curve (AUROC) of 10-fold cross-validation. In the analysis
of IBD-associated modules, modules associated with disease states
(Wilcoxon rank-sum test, FDR � 0:25) were used. For comparison,
we evaluated the classification performance of the relative abun-
dance of both differentially abundant taxa and all microbial taxa
(Supplementary Methods). To thoroughly investigate the classifica-
tion performance of relative abundance, we trained and tested RF
models on the samples, the averaged profile, and randomly gener-
ated one-visit profiles of the “10-visit-set”, respectively. Area under
the precision-recall curve (AUPR) was calculated as complementary
for AUROC. Sensitivity, specificity, and precision were also eval-
uated by optimizing the cutoffs using Youden’s Index method
(Youden 1950) implemented by the R package OptimalCutpoints
(López-Ratón et al. 2014).

2.5 Validation of the microbial modules
The intramodule taxa relationships and the classification perform-
ance of the IBD-associated modules were further validated in the ex-
ternal datasets. The intramodule co-occurrence was evaluated in the
validation sets, i.e. “Val_Hall”, “Val_Lewis”, and “Val_HHS” in
the same way as in the discovery set discussed above. The classifica-
tion performance of the IBD-associated modules was validated on
“Val_Hall” which consisted of both IBD patients and healthy con-
trols (Supplementary Fig. S1A–C). To estimate the module activities
for the validation cohort, an incomplete third-order tensor v0 was
constructed from the samples in “Val_Hall”, and then factorized
using the visit-uncorrelated model. The factor matrix of taxa
extracted from the discovery set (M) indicating the identified micro-
bial modules was used and fixed in the decomposition of v0 to esti-
mate the corresponding factor matrices of subjects (H0) and visits
(T0) for the validation set (Supplementary Fig. S1D). In addition, to
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take full advantage of the knowledge derived from the discovery set
and to make the validation results robust and reproducible, the aver-
age activities over the subjects and visits were calculated for each
module and used as the initializations of the factor matrices H0 and
T 0, respectively. Suppose C0 � 1; . . . ;Cf g was the set of IBD-
associated modules identified from the discovery set, the RF model
with 2000 trees was trained on H:C0 and tested on H0 :C0 to evaluate
the classification performance (AUROC and AUPR) of the IBD-
associated modules on the validation set. As a comparison, the clas-
sification performance of relative abundance was also validated on
“Val_Hall”, where RF was trained on all samples in the “10-visit-
set”, and tested on all samples, the averaged profile and the one-visit
profiles (evaluated by the average AUROC/AUPR over ten randomly
generated one-visit profiles) of the validation set, respectively. The
corresponding sensitivity, specificity, and precision were also calcu-
lated based on Youden’s Index for the validation results.

3 Results

3.1 Decomposition of longitudinal gut microbiota to

identify microbial modules
The workflow of the study is illustrated in Fig. 1. The human longi-
tudinal gut microbiota data of 97 subjects, including 72 IBD patients
(47 CD and 25 UC) and 25 healthy controls, was collected from in-
tegrative Human Microbiome Project et al. (2019) and used as the
discovery set (Fig. 1A and B). Two sets were generated from the dis-
covery set, of which the “10-visit-set” consisted of 10 samples from
each subject with roughly equal sampling intervals, whereas the
“24-visit-set” involved all samples of the subjects (Fig. 1C–E). The
“10-visit-set” included about 66% of the samples in the “24-visit-
set”.

To identify the underlying microbial modules, we represented
the samples in the “10-visit-set” as a complete third-order tensor v

�

and factorized the tensor into three factor matrices in terms of the
subjects (H), taxa (M), and visits (T) (Fig. 1F) using the visit-corre-
lated model which accounted for the correlations between the sam-
ples collected from the same subject (Fig. 2A). Thereby, the
taxonomic composition of the gut microbiota in a subject over time
was factorized into the contributions of multiple microbial modules.
The factor matrices were then used for microbial module identifica-
tion, module analysis, and subject stratification. As a comparison, a
visit-uncorrelated model was implemented (Supplementary Fig. S2)
and used to factorize v

�
as well as the incomplete third-order tensor v^

constructed from the “24-visit-set”. The factorization results were
referred to as “10-visit-correlated”, “10-visit”, and “24-visit”, re-
spectively (Table 1).

We compared the performance of the top-ranking microbial
modules identified using different models and data in stratifying the
subjects into IBD and healthy controls to demonstrate their ability
in gut microbiota characterization. The AUROC increases when
more modules are used to stratify the subjects (Fig. 2B). For the
visit-uncorrelated model not accounting for the correlation among
samples from the same subjects, the results of the “24-visit-set” out-
perform that of the “10-visit-set”, indicating that involving mores
samples improves the classification performance, probably due to
the more comprehensive information of the subjects (Fig. 2C). The
performance is further improved by the results of the visit-correlated
model applied to the “10-visit-set” although fewer samples are
included compared with the “24-visit-set”, revealing the benefit of
modeling the correlations of repeated measures.

In order to determine the final microbial modules for down-
stream analysis, we compared the results of different runs of “10-
visit- correlated”. The result of “run_10” was selected on account of
(i) the best overall classification performance and (ii) the lowest re-
construction error (RMSE), i.e. the differences between the original
abundance tensor and the results of factorization (Fig. 2D). A total
of 287 modules were identified from the results of “run_10” for fur-
ther analysis. On average, there are 15.03 taxa included in each
module.

3.2 Interindividual variation of the microbial modules
By factorizing the composition of gut microbiota into the contribu-
tion of microbial modules, we characterized gut microbiota by mi-
crobial modules instead of individual microbial taxa. To explore the
interindividual dissimilarity, we quantified the variation of micro-
bial module activities explained by several clinical factors, including
disease states, medication, antibiotics, immunosuppressant, chemo-
therapy, diarrhea, bowel surgery, age, sex, and race, using
PERMANOVA, and compared with the intersample variation of
taxonomic composition. The subjects’ clinical information in the
“10-visit-set” is summarized in Supplementary Table S1. In general,
each factor only explains a small proportion of the interindividual
variation of the microbial module activities, consistent with the situ-
ation of taxonomic compositions (Fig. 3A). Race explains the high-
est variation of both the module activities (4.01%) and taxonomic
compositions (3.28%) among the factors, indicating the ethnic dif-
ferences in gut microbiota related to lifestyle, diet, etc. (Deschasaux
et al. 2018; Amato et al. 2021) Medication, antibiotics and immuno-
suppressants (1.23%–1.43%), as well as disease states (1.22%),
contribute more to the diversity of the module activities with higher
significance compared with the other factors (�1.19%), implying
their greater influences on gut microbiota.

Some sample-level clinical factors, e.g. chemotherapy and bowel
surgery, demonstrate more significant differences in the contribu-
tions to taxonomic composition and module activities, possibly sug-
gesting distinct perturbation effects to the hosts. For each sample,
the taxonomic composition and clinical information reflect the tem-
porary changes and status of the subject in the week of sample col-
lection. As the module activities of a subject are summarized from
the longitudinal samples, they provide an overall characterization of
the subject in the whole sampling period, and the overall states of
the clinical factors were used for the variance analysis
(Supplementary Methods). Therefore, the contributions of the clinic-
al factors to taxonomic composition and module activities imply
their influences on the short- and long-term changes of gut micro-
biota, respectively. For example, bowel surgery explains a larger
proportion of taxonomic variation (1.79%) among the factors, but
less proportion of module activity variation (1.0%). One possible
reason is that the gut microbiota is dramatically changed in the
bowel preparation and early postoperative period, and then recovers
to the baseline after a few weeks with less long-lasting changes to
the hosts (Bachmann et al. 2017; Nalluri-Butz et al. 2022). On the
contrary, chemotherapy explains a low proportion of taxonomic
variation (0.33%) and a higher proportion of module activity vari-
ation (1.01%). Several studies have reported that gut microbiota
would be altered after chemotherapy treatments and recover to new
communities which are highly dissimilar to the baseline, indicating
the long-term effects of chemotherapy on gut microbiota (Chua
et al. 2020; Rashidi et al. 2022).

3.3 Association analysis of the microbial modules
We first investigated the associations between the microbial modules
and the above-mentioned clinical factors. The modules demonstrat-
ing differential activities (Wilcoxon rank-sum test, FDR � 0:25) in
distinct groups of each factor were identified. We linked four mod-
ules with each of antibiotics and immunosuppressants use, three
modules with disease states and two modules with diarrhea
(Fig. 3B). Different modules were detected associated with the same
factor, possibly due to the different effects of the factor on the mod-
ules and the interindividual heterogeneity. The activities of the mem-
bers in each module are illustrated in Fig. 3C–E, except the IBD-
associated modules, which are discussed in detail later. The modules
suggest groups of microbial taxa altered together by the correspond-
ing factor, providing candidates for mechanism study and therapeut-
ical interventions. For instance, as the most active species in the
antibiotics-associated modules, Prevotella copri has been reported
changed abundance under antibiotic treatment (Zhang et al. 2019;
Péan et al. 2020), and Bacteroides vulgatus has been found sensitive
to antibiotic exposure (Cuisiniere et al. 2021). Dialister invisus,
Bacteroides stercoris, and Eubacterium rectale, which contribute a
lot to the immunosuppressant-associated modules, have been
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previously linked to autoimmune and inflammatory conditions
(Culina et al. 2018; van den Munckhof et al. 2018; Wang et al.
2018; 2021; Leonard et al. 2021; Yeoh et al. 2021). For the micro-
bial taxa included in the diarrhea-associated modules, Bacteroides
finegoldii has been reported crucial to intestinal barrier damage pre-
vention (Leng et al. 2021). The relative abundance of genera
Eubacterium, Faecalibacterium, Bifidobacterium, and Bacteroides
in the diarrheal fecal specimens significantly differs from the control
group (Lee et al. 2019). The relative abundance of these active taxa
in distinct groups of the corresponding clinical factors is shown in
Supplementary Fig. S3. In addition, the activities of these microbial
modules in the subtype groups of IBD (CD and UC) and the control

group are illustrated in Supplementary Fig. S4A–C. The differences
in the module activities are mainly dominated by the states of the
corresponding factors rather than the disease states. Each diagnostic
class demonstrates increased/decreased activities in the case group
compared with the control group of each clinical factor. The results
further support the principal effects of the clinical factors on the mi-
crobial modules.

Since the modules represent groups of related taxa with similar
underlying patterns affected by the same latent factor, we examined
the intramodule associations of the taxa. Compared with the ran-
dom groups formed by the taxa pairs not included in any module,
the identified microbial modules demonstrate significantly higher

Figure 3 Relationships between the microbial modules and clinical factors. (A) The variation in terms of the microbial module activities and the taxonomic composition

explained by several clinical factors, quantified by PERMANOVA. The color represents the proportion of variance explained by each factor. (B) Associated modules of antibi-

otics, immunosuppressants, disease states, and diarrhea, respectively (Wilcoxon rank-sum test, FDR � 0:25). Each column lists the associated modules of one factor, and each

panel demonstrates the activities of a module in distinct groups (“Yes” and “No”) of the associated factor. Member taxa of the associated modules of antibiotics (C), immuno-

suppressants (D), and diarrhea (E), respectively. Each column represents a module. The color demonstrates the activities of the taxa in the modules.
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intragroup DI, relative abundance correlation over time (measured
by the absolute Spearman correlation), and similarity of pathway

contributions (Fig. 4A–C), indicating that the taxa in the same mod-
ule are highly correlated and participate in the same pathways. In

particular, the modules include most taxa pairs with relatively high
co-occurrence, especially the IBD-associated modules (Fig. 4D and E
and Supplementary Fig. S5). The pairwise correlation coefficients of

microbial taxa estimated by SparCC demonstrate consistent results
(Supplementary Fig. S6), confirming the close relations of the taxa

in the same module.

3.4 Analysis of IBD-associated microbial modules
We identified three microbial modules demonstrating differential activ-
ities in the IBD and control groups (Wilcoxon rank-sum test,
FDR � 0:25), i.e. IBD_module_1, IBD_module_2, and IBD_module_3

(Fig. 3B), and two of them (IBD_module_1 and IBD_module_3) also dis-
tinguish the control group from each subtype of IBD (Kruskal–Wallis

test, FDR � 0:25; Supplementary Fig. S4D). The activities of the

members in the modules are illustrated in Fig. 5A. Several species dem-
onstrate higher importance in the IBD-associated modules, such as
Eubacterium siraeum in IBD_module_1, E. rectale, and Bacteroides uni-
formis in IBD_module_2, and Bacteroides fragilis and B. stercoris in
IBD_module_3. The 3 modules are composed of 28 taxa, mainly belong-
ing to the phyla of Bacteroidetes and Firmicutes. All of the taxa are asso-
ciated with IBD based on DA analysis and previous studies (Fig. 5B and
C and Supplementary Tables S2–S6). Specifically, five taxa are detected
by DA analysis of the discovery set using LMM, and the associations of
another six are indicated in HMDAD. Among the remaining 17 taxa,
14 are reported as differentially abundant taxa in two IBD studies
(Franzosa et al. 2019; Ma et al. 2021). For the other three taxa, literature
validations are also found by searching PubMed (Vidal et al. 2015;
Takahashi et al. 2016; Nomura et al. 2021). The log-transformed rela-
tive abundance of the taxa in the “10-visit-set” is illustrated in
Supplementary Fig. S7.

The top 20 abundant pathways of each IBD-associated module
as well as the contributions of the member taxa to the pathways are
demonstrated in Fig. 5D–F and Supplementary Fig. S8. The most

Figure 4 Intramodule associations of the member taxa. The intramodule co-occurrence of taxa measured by DI (A) and absolute Spearman correlation (B) calculated individu-

ally (average of subjects) and across all samples, compared with that of equal-size random groups formed by the taxa pairs not included in any module. (C) The intragroup

functional similarity of the modules calculated across all samples. ***, P-value� .001. The values are multiplied by a scaling factor of 100 and then log-transformed. (D)

Pairwise DI of all taxa calculated individually (upper triangle) and across all samples (lower triangle). Taxa pairs in the IBD-associated modules (þ) are distributed in the blue

rectangle. (E) Examples of the pairwise DI of an IBD-associated module, an equal-size module, and an equal-size random group, respectively.
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abundant pathway in all three modules is adenosine ribonucleotides
de novo biosynthesis, which is involved in many basic biochemical
processes (Schirmer et al. 2018). Some other abundant pathways in-
clude coenzyme A biosynthesis II, phosphopantothenate biosyn-
thesis I, CDP-diacylglycerol biosynthesis, and dTDP-L-rhamnose
biosynthesis I, which play crucial roles in therapeutic interventions
and host immune response. Coenzyme A (CoA) is a cofactor of ubi-
quitous occurrence in many living organisms involved in a large
number of enzymatic reactions (Rubio et al. 2006). It is recognized
as a target for antibacterial drug discovery (Leonardi et al. 2005).

4’-phosphopantothenate, the product of phosphopantothenate bio-
synthesis I, is the universal precursor for synthesizing the 4’-phos-
phopantetheine moiety of CoA. Pantothenate in the pathway could
only be synthesized by plants and microorganisms (Begley et al.
2001), and the enzymes of this pathway are therefore considered to
be antimicrobial drug targets. The metabolism of phospholipids,
which is synthesized and remodeled through pathways including
CDP-diacylglycerol, represents a highly controlled cellular signaling
network that is essential for mounting an effective innate immune re-
sponse (O’Donnell et al. 2019). In dTDP-L-rhamnose biosynthesis I,

Figure 5 The IBD-associated modules. (A) The activities of the member taxa in each IBD-associated module. (B) The association support from different sources. Top, the venn

plot comparing the taxa in the IBD-associated modules, the IBD-associated taxa detected by DA analysis and the taxa reported associated with IBD in HMDAD. Bottom, the

venn plot demonstrating the supports from another two studies. The color of the species indicates the phyla they belong to. (C) The pie chart of the number of taxa supported

by each source in each IBD-associated module. (D–F) The contributions of the member taxa to the top pathways in each IBD-associated module. Blue circles, microbial taxa.

Brown circles, the top 20 abundant pathways. Size of the circles, the abundance of the pathways (for pathway circles), or the contribution of the taxa to the pathways (for the

taxon circles). Lines, contributions of the taxa to the pathways. (G) The classification performance (AUROC) of the IBD-associated modules and taxa relative abundance in

the discovery set.
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b-L-rhamnopyranose is produced as a building block of the glycan
component of the O-antigens, a major target of the immune system
(Schirmer et al. 2018).

The classification performance of the three IBD-associated mod-
ules was compared with that of the relative abundance of microbial
taxa (Fig. 5G). For relative abundance, we evaluated the perform-
ance of the differentially abundant taxa (8 species) detected by
LMM and all taxa (123 species) in stratifying (i) all samples, (ii) the
averaged profile, and (iii) the randomly generated one-visit profiles,
respectively (Supplementary Methods). The performance of all taxa
(average AUROC¼0.68) is inferior to that of the differentially
abundant taxa (average AUROC¼0.73), possibly due to the overfit-
ting issue. The IBD-associated modules (AUROC¼0.80) outper-
form the relative abundance (AUROC � 0.75) in the discovery set,
indicating that they better distinguish between the gut microbiota of
the IBD and control groups and are likely better depictions of gut
microbiota. The evaluated AUPR demonstrates consistent results
with AUROC (Supplementary Fig. S9A). The results of other met-
rics, including sensitivity, specificity, and precision, are summarized
in Supplementary Table S7.

3.5 Validation of microbial modules in external cohorts
To validate the microbial modules identified from the discovery set, we
estimated the intramodule co-occurrence of taxa in three validation
sets (Table 1) and evaluated the classification performance of the IBD-
associated modules in “Val_Hall”. As in the discovery cohort, the mod-
ules also demonstrate significantly higher intragroup DI and Spearman
correlation in the validation cohorts compared with the random
groups, which confirms the close relationships between the taxa in the
same module (Fig. 6A and Supplementary Fig. S10). The relative abun-
dance of taxa in the IBD-associated modules in the validation set
“Val_Hall” are illustrated in Supplementary Fig. S11.

Among the three IBD-associated modules identified from the dis-
covery set, two of them (IBD_module_1 and IBD_module_3) also
demonstrate significantly differential activities (FDR � 0:25) be-
tween the IBD and control groups in the validation cohort, and re-
tain the same patterns as in the discovery set, i.e. higher activities in
the IBD group (IBD_module_1) and control group (IBD_module_3),
respectively (Figs 3B and 6B). We compared the classification per-
formance of the three IBD-associated modules to that of the micro-
bial taxa relative abundance in the validation set, where RF models

Figure 6 Validation of the microbial modules in the external cohorts. (A) The intramodule co-occurrence in the validation cohorts measured by DI and absolute Spearman cor-

relation, compared with that of equal-size random groups formed by the taxa pairs not included in any module. ***, P-value� .001. NS, not significant. (B) The activities of

the IBD-associated modules in the control and IBD groups of the validation set “Val_Hall”. *, FDR � 0.25. (C) The classification performance (AUROC) of the IBD-associated

modules and the taxa relative abundance in “Val_Hall”. (D) Comparison of the classification performance (AUROC) in the discovery set (iHMP) and the validation set

“Val_Hall”.
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were trained on the discovery set and tested on “Val_Hall”.
Contrary to the results in the discovery set, the relative abundance
of all taxa (average AUROC¼0.77) performs better than that of the
differentially abundant taxa identified from the discovery set (aver-
age AUROC¼0.67), indicating that the differentially abundant
taxa are not the most discriminative taxa in the validation set any-
more (Fig. 6C and D). In fact, among the eight differentially abun-
dant taxa, only one (Alistipes putredinis) demonstrated DA between
the two groups in the validation cohort, in line with the previous dis-
covery that inconsistent associations are reported in different
cohorts and studies (Duvallet et al. 2017; Wirbel et al. 2019;
Nearing et al. 2022). The IBD-associated modules (AUROC¼0.85)
are superior to the relative abundance (AUROC � 0.81), revealing
their efficacy in other cohorts and the great promise of the proposed
method in identifying common microbial modules from human gut
microbiota. The results also suggest that it might be more reliable to
investigate the gut microbiota using microbial modules instead of in-
dividual microbial taxa. The AUPR also demonstrates consistent
results in the validation cohort (Supplementary Fig. S9B). The sensi-
tivity, specificity, and precision determined by Youden’s Index are
summarized in Supplementary Table S8.

4 Discussion

In this study, we proposed a tensor factorization-based method to
identify the underlying microbial modules from longitudinal gut
microbiota data and applied it to IBD. The taxonomic composition
was factorized into the contributions of multiple microbial modules
where spike-and-slab prior was adopted to group taxa with similar
abundance patterns. The correlations of repeated measures in longi-
tudinal data were also accounted for. The taxa members in the same
module demonstrate higher co-occurrence and functional similarity,
revealing their close relationships and potential microbe–microbe
interactions. The modules with differential activities between dis-
tinct groups in terms of several clinical factors, including disease
states, antibiotics, immunosuppressants, and diarrhea, were identi-
fied, respectively. All of the taxa in the IBD-associated modules are
linked to IBD in previous studies or demonstrate DA between the
IBD and control groups. The performance of the IBD-associated
modules in stratifying the subjects is superior to taxa relative abun-
dance in both the discovery set and the validation set, indicating
that the IBD-associated modules well capture the alterations in dis-
ease conditions and are more robust across cohorts. The results re-
veal the benefit of microbial modules and their promise in
uncovering the underlying structures of gut microbiota and deci-
phering associations between gut microbiota and clinical factors.

The identified association between a microbial module and a
clinical factor suggests potential influences of the factor on the
whole taxa group through direct regulation and microbe–microbe
interactions. For some modules, there are a few active taxa with re-
markably high absolute activities among the others, which are prob-
ably leading taxa of the modules, e.g. P. copri in an antibiotics-
associated module and B. finegoldii in a diarrhea-associated module.
Evidence of the associations between the active taxa and the corre-
sponding factors has been reported in previous studies (Zhang et al.
2019; Péan et al. 2020; Cuisiniere et al. 2021). As the microbial
modules represent the underlying patterns in terms of individual la-
tent factors, whereas the relative abundance of taxa demonstrates
the overall outcome of the factors, the abundance patterns of the
member taxa might differ from the activity pattern of the corre-
sponding module. Even for the most active member taxa in a mod-
ule, their underlying patterns might also be masked and obscured in
the relative abundance due to the effects of other factors. The rela-
tive abundance of individual taxa might not be a robust way to
study gut microbiota alterations and associations with clinical fac-
tors because of the compositional format, intricate effects of various
latent factors and ecological interactions. It is further validated in
this study by the inconsistent differential taxa of disease states be-
tween the discovery and the validation cohorts as well as the inferior
classification performance compared with microbial modules.

Longitudinal data of gut microbiota explored in this study facili-
tate capturing the co-occurrence of the microbial taxa, including not
only the co-existence but also the co-varying relationships. The taxa

in the same module tend to co-vary in the relative abundance caused
by the influences of the underlying factor, which are signified by the

higher intragroup pairwise absolute Spearman correlation of the
modules, even though the patterns are diluted in observations by
other factors. However, the result of the microbial modules might

be affected by the alignment of the samples from different subjects
in the tensor. It is difficult to determine a baseline or starting time

point for all subjects to align the samples. Some temporal alignment
methods for longitudinal microbiota data have been proposed to
map the time series data from different subjects to the same time

scale to unify the distinct rates of change (Lugo-Martinez et al.
2019), but there are some limitations in aligning the samples.

Remodeling and scaling of the time series data during the alignment
might involve additional noises. Moreover, some studies suggest
that the change rate of microbiota itself might serve as a clinical fea-

ture, which is an essential aspect of gut microbiota characterization
(Gajer et al. 2012; Gilbert et al. 2018) but possibly eliminated by the
alignment methods. Therefore, we did not perform time alignment

before microbial module identification. The results of this study
demonstrate that the proposed method is able to identify representa-

tive and robust microbial modules without time alignment.
In the proposed method, the longitudinal data was modeled as a

third-order tensor where the samples from the same subject were
placed in the same slice, and the correlations between them were
accounted for, which improved the results compared with the visit-
uncorrelated model. In addition, we also implemented the 2D ver-
sion of the proposed method where the samples in the “10-visit-set”
were arranged in a matrix modeling neither the relationships be-
tween the samples and the subjects nor the correlations between the
repeated measures. The relative abundance matrix was factorized

using the model illustrated in Supplementary Fig. S12 to identify mi-
crobial modules. In general, the microbial modules identified using

the proposed method demonstrate higher intragroup co-occurrence
than the 2D version (Supplementary Fig. S13). Furthermore, no
IBD-associated module was detected from the results of the 2D ver-

sion by LMM with FDR � 0:25. The results additionally validate
the advantages of accounting for the relationships between the sam-
ples in the proposed method.

The microbial modules provide insights into underlying factors
that collectively determine human gut microbiota composition,

which deserves further investigation. Our results demonstrate the
benefit and great promise of group analysis of gut microbial taxa to-

ward conventional association study of individual taxa, emphasizing
the significance of ecological effects in understanding the relation-
ships of gut microbiota with human health. The study has demon-

strated the efficacy of the method in association analysis of
longitudinal gut microbiota data in inflammatory bowel disease,

suggesting its potential in other disease scenarios. The proposed
method is also applicable to other types of omics data as it does not
involve any specific prior knowledge and designs of metagenome

(Cheng and Leung 2018; Cheng et al. 2018; Liu et al. 2021).

Supplementary data

Supplementary data is available at Bioinformatics online.
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Data availability

The longitudinal gut microbiota data used as the discovery set in
this study is available at https://www.ibdmdb.org. The validation
datasets are available at BioProject with accession number P
RJNA385949 (“Val_Hall”), NCBI SRA with accession number
SRP057027 (“Val_Lewis”) and https://www.hmpdacc.org/
hmsmcp2/ (“Val_HHS”), respectively.
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