Motivation: Processing and presentation of major histocompatibility complex class I antigens to cytotoxic T-lymphocytes is crucial for immune surveillance against intracellular bacteria, parasites, viruses and tumors. Identification of antigenic regions on pathogen proteins will play a pivotal role in designer vaccine immunotherapy. We have developed a system that not only identifies high binding T-cell antigenic epitopes, but also class I T-cell antigenic clusters termed immunological hot spots.

Methods: MULTIPRED, a computational system for promiscuous prediction of HLA class I binders, uses artificial neural networks (ANN) and hidden Markov models (HMM) as predictive engines. The models were rigorously trained, tested and validated using experimentally identified HLA class I T-cell epitopes from human melanoma related proteins and human papillomavirus proteins E6 and E7. We have developed a scoring scheme for identification of immunological hot spots for HLA class I molecules, which is the sum of the highest four predictions within a window of 30 amino acids.

Results: Our predictions against experimental data from four melanoma-related proteins showed that MULTIPRED ANN and HMM models could predict T-cell epitopes with high accuracy. The analysis of proteins E6 and E7 showed that ANN models appear to be more accurate for prediction of HLA-A3 hot spots and HMM models for HLA-A2 predictions. For illustration of its utility we applied MULTIPRED for prediction of promiscuous T-cell epitopes in all four SARS coronavirus structural proteins. MULTIPRED predicted HLA-A2 and HLA-A3 hot spots in each of these proteins.

To whom correspondence should be addressed.

Author notes

1Division of Biomedical Sciences, Johns Hopkins Medicine in Singapore, 41-Science Park Road, Lobby C, The Gemini, Singapore 117610, 2Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, 3Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA and 4Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597