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ABSTRACT
Motivation: Today, metabolite levels in biological samples
can be determined using multiparallel, fast, and precise
metabolomic approaches. Correlations between the levels
of various metabolites can be searched to gain information
about metabolic links. Such correlations are the net result
of direct enzymatic conversions and of indirect cellular
regulation over transcriptional or biochemical processes.
In order to visualize metabolic networks derived from
correlation lists graphically, each metabolite pair may be
represented as vertices connected by an edge. However,
graph complexity rapidly increases with the number of
edges and vertices. To gain structural information from
metabolite correlation networks, improvements in clarity
are needed.
Results: To achieve this clarity, three algorithms are com-
bined. First, a list of linear metabolite correlations is gen-
erated that can be regarded as a set of pairs of edges (or
as 2-cliques). Next, a branch-and-bound algorithm was de-
veloped to find all maximal cliques by combining submax-
imal cliques. Due to a clique assignment procedure, the
generation of unnecessary submaximal cliques is avoided
in order to maintain high efficiency. Differences and sim-
ilarities to the Bron–Kerbosch algorithm are pointed out.
Lastly, metabolite correlation networks are visualized by
clique–metabolite matrices that are sorted to minimize the
length of lines that connect different cliques and metabo-
lites. Examples of biochemical hypotheses are given that
can be built from interpretation of such clique matrices.
Availability: The algorithms are implemented in Visual
Basic and can be downloaded from our web site along
with a test data set (http://www.mpimp-golm.mpg.de/fiehn/
projekte/data-mining-e.html).
Contact: kose@mpimp-golm.mpg.de

∗To whom correspondence should be addressed.

INTRODUCTION
In the post-genomic era, gene function elucidation will
be the focus (Oliver, 1997). A number of different ap-
proaches to gain comprehensive data at every cellular
level are being developed that relate gene mutations or
stress conditions to changes in gene expression patterns
at mRNA or protein levels (Fiehn et al., 2001). Recently,
we have extended the idea of profiling gene products
to the metabolite level (Trethewey et al., 1999) using
gas chromatography coupled to mass spectrometry to
cover mono- to trisaccharides, fatty acids and -alcohols,
hydroxy- and amino acids, polyamines, sterols, alco-
hols, sugar alcohols, and miscellaneous compounds
(Fiehn et al., 2000a). It was shown that the analytical
precision in determining metabolite levels (<5% RSD)
was well below the biological variability (>30% RSD)
(Fiehn et al., 2000b). Metabolomic analysis by gas
chromatography/mass spectrometry is complementary
to approaches using infrared spectroscopy (Johnson et
al., 2000), NMR analysis (Gavaghan et al., 2000), or
two-dimensional thin-layer chromatography coupled to
radioactivity detection (Tweeddale et al., 1999). However,
the use of chromatographic separation before multivariate
spectrometric detection seems advantageous for quan-
tifying and identifying as many individual compounds
as possible in mixtures of thousands of metabolites. By
applying metabolite profiling snapshots to comparisons
of mutants and wild type plants, metabolite levels can
be summarized to ‘metabolic phenotypes’ (Fiehn et al.,
2000b) by Principal Components Analysis (PCA). Multi-
gene variations such as those existing between different
wild type ecotypes of the same species reveal larger
metabolic differences than single point mutation/parental
wild type comparisons. This is true even when a sin-
gle point mutation leads to a strong dwarf phenotype
such as in the case of the dgd1 mutant of Arabidopsis
thaliana, which is impaired in the biosynthesis of the
thylakoid membrane lipid DGD (Dörmann et al., 1995).

1198 c© Oxford University Press 2001



Metabolite networks

Once PCA pattern recognition reveals different clusters,
these clusters may be treated as individual populations
for statistical analysis. However, during both pattern
recognition and statistical analysis, information about
metabolite regulation in the individual snapshots gets lost
in the process of data reduction (e.g. averaging or linear
combination). Therefore, methods are needed that utilize
metabolite data in a more biochemically directed way.
Recently, it has been proposed that metabolite data might
be the key to elucidating novel gene functions (Teusink
et al., 1998). New algorithms based on stoichometric
analysis of standard metabolic pathways have been
shown to predict new pathways in cellular compartments
(Pfeiffer et al., 1999; Schuster et al., 2000). Researchers
focusing on metabolic control analysis emphasize the
importance of profiling analyses in understanding the
effects on metabolic networks when changing the activity
of specific enzymes (Kell and Mendes, 2000). Mathe-
matical modelling of metabolism might then direct plant
bioengineering (Giersch, 2000; Gombert and Nielsen,
2000). Further algorithms have been developed that aim
to engineer biochemical pathways in a more general way
(Mendes and Kell, 1998). The ultimate goal of profiling
techniques is to qualitatively and quantitatively define
differences between different biological samples. The
number of independent variables (mRNA, proteins, or
metabolites) is only limited by technical advances and
methods. Pair-wise comparisons among such variables
are regularly found to represent important biological
functions, such as protein–protein interactions, but
also DNA–protein or DNA–metabolite interactions. In
this report, metabolite–metabolite pairs are compared
with the long-term objective to reveal novel regulation
mechanisms or potential biochemical pathways. Once
multiple interactions among variables can be screened
experimentally by analytical tools, it seems adequate to
visualize the resulting networks instead of giving the
information in the form of tables. It will be important
for any visualization of correlation networks to obtain
immediate information about structural organization.
Graphs currently used to visualize network interactions
between specific biological variables (Schwikowski et al.,
2000), however, lose clarity if not restricted to a small
number of vertices. One obvious way to improve clarity
is to reduce the number of edges. Here we report a novel
approach to compute correlations between metabolite
levels, and to create a graph based on these correlations
by structuring the visualization using maximal cliques.

ALGORITHMS
Metabolite correlations
In order to detect interactions between metabolites,
metabolite levels of a series of physiological snapshots

can be compared in pairs to test for their involvement
in synchronous cellular processes. The coefficients, rxy
for linear correlations of pairs of metabolites that are
calculated after normalization, regulate both members of
a given pair. rxy is defined as follows.

rxy = mxy

sxy
=

n∑
i=1

(xi − x)(yi − y)

√
n∑

i=1

(xi − x)2
n∑

i=1

(yi − y)2

. (1)

These correlation coefficients can be used as estimates of
how tightly the proposed metabolic links are controlled—
the degree of control results in weaker or stronger fixation
of metabolite–metabolite ratios. To allow researchers
to define their own thresholds by which to define the
cellular co-regulations of metabolite pairs, we made it
possible to vary the threshold for rxy according to user-
defined criteria. After defining a correlation threshold,
lists of metabolite correlations are generated from raw
data. A further feature allows users to define a threshold
for the minimal number of metabolite pairs necessary
for calculating a correlation. Similarly, the empirical
regression coefficients, bxy

bxy = r
sy

sx
= mxy

s2
x

(2)

give the slopes of the corresponding regression curves

y = y + by,x (x − x). (3)

Regression slopes can then be used to determine whether
ratios of correlating metabolite pairs are altered or not.
These different slopes may indicate changes in metabolite
fluxes across branching points in biochemical pathways.

An example from a metabolomic data set of over 184
polar metabolites from 45 individual dgd1 mutant plants
is given in Figure 1. Serine, isoleucine, and leucine
show an obvious correlation to threonine levels with
rxy > 0.90 for each metabolite pair, although known
biochemical pathways do not point to direct enzymatic
conversions. Furthermore, isoleucine and leucine have
almost identical regression slopes indicating that there is
tight control over relative metabolite ratios along amino
acid biosynthetic pathways. When compared to valine
levels, leucine and isoleucine levels indicate that the
metabolic control of relative metabolite ratios is occurring
(rxy = 0.83 and 0.89), but this control is clearly less pro-
nounced for threonine (rxy = 0.70), and is completely lost
for serine (rxy = 0.59). Linear correlations of rxy < 0.8
can at best be interpreted as trends. Regularly, hundreds of
metabolite correlations can be found with rxy > 0.80. In
this work, we aimed to develop tools to visualize each and
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Fig. 1. Plots of metabolite/metabolite levels for individual plants. Correlations are shown by regression curves. (a) Serine, isoleucine, leucine
versus threonine. (b) Threonine, leucine, isoleucine, serine versus valine. For threonine (rxy = 0.7) and serine (rxy = 0.59), correlation
coefficients did not match the thresholds. Therefore, no correlation curve is plotted.

every correlation as part of a greater network in order to
gain information about potential links and control points
in plant metabolism. One way to visualize such complex
graphs is to generate cliques derived from pairs of fully
correlated metabolites.

The algorithm works to order all metabolites in a lexico-
graphic way. Following this, every metabolite correspond-
ing to the lexicographic sequence is proofed for correla-
tions with all following metabolites. The result is a com-
prehensive list of correlations that consists of sublists with
one identical metabolite in every correlation.

Maximal cliques of metabolite correlations
Graphs are regularly used to derive information from lists
of variable correlations in a convenient way. A graph
G = (V, E) consists of a finite set of vertices V and a
finite set of edges E . Elements of E have the form (xy)

where x, y ∈ V are vertices. In this paper, we consider
only undirected graphs without loops ((xx) /∈ E). Edges
represent biological relationships, e.g. in our case, the
linear correlation between pairs of metabolites, which are
elements of V . If visualization tools are employed that

try to symbolize all edges simultaneously, the resulting
graph will lose clarity due to the increasing number
and complexity of edges. We suggest to take the graph
apart into maximal cliques, and, thus, to reduce graph
complexity without losing information. To define maximal
cliques, the term ‘adjacency’ is used.

DEFINITION. Two vertices x and y are adjacent, if they
are connected via an edge (xy).

A graph G ′ = (V ′, E ′) is called a subgraph of a graph
G = (V, E) if V ′ ⊆ V , E ′ ⊆ E and each edge
(xy) ∈ E with x, y ∈ V ′ is also an edge of G ′. A graph
C = (VC , EC ) is a clique in G, if C is a subgraph of
the graph G such that for each two vertices x, y ∈ VC we
have (xy) ∈ EC . The set of vertices VC is fully adjacent. A
clique is also called a complete graph. A clique C , being a
subset of G, is a maximal clique of G if there is no clique
H such that C is a proper subset of H . Accordingly, we
will call a clique with n vertices an n-clique. In order to
distinguish cliques, we define:

C = {(a . . . n)|a, . . . , n ∈ Vc} (4)
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Fig. 2. Example of an undirected test graph. (a) Maximal cliques
{abcde}, {cdeg} and {cdfg} are marked by clique covers. (b) Algo-
rithms to find these maximal cliques are further explained in the text
and in Figures 3 and 4.

with n giving the number of vertices that are combined
in a clique. All vertices that are members of a clique are
numbered from 1 to n. A list of all cliques including
n vertices is indicated as Cn . For the description of the
proposed algorithm, it is necessary to divide Cn according
to identical vertices. If cliques in Cn have (n − 1) identical
vertices, they are summarized to an (n−1)-sublist. As seen
in the Section Metabolite correlations, all correlations
are sorted in a list consisting of sublists with one identical
metabolite in every correlation. All correlations can be
regarded as 2-cliques with two vertices. Hence this list is
identical with Cn consisting of (n−1)-sublists with n = 2.
Additionally, we define (n − 2)-sets, including all cliques
from Cn with (n − 2) identical vertices.

The disassembly of a graph into maximal cliques is
called clique cover. In Figure 2, a test graph G with
V = {a, b, c, d, e, f, g} is demonstrating the usefulness of
using maximal cliques instead of drawing all edges for
visualizing complex relationships. This is possible without
losing information according to the definition of a clique,
which consists only of fully adjacent vertices. Missing
edges are much easier to be identified in Figure 2b than
it is in Figure 2a. This is especially useful in cases when
there are only some edges missing for a new maximal
clique. In this way, a graph can be taken apart into
maximal cliques, which may overlap. Overlapping areas
of maximal cliques contain submaximal cliques.

Our algorithm is based on the definition that any
subgraph consisting of two adjacent vertices (in our case,
correlating metabolite pairs) can be regarded as a 2-clique.
The task, therefore, is to test if these 2-cliques are maximal
cliques. Any clique is submaximal if it can be combined
with another clique to form a new, enlarged clique.

Two 2-cliques having one vertex in common can be
combined to form a new 3-clique if there is an addi-
tional edge between the two sole vertices. Similarly,

the combination of two 3-cliques having two vertices
in common to form a new 4-clique can be tested. Two
n-cliques need only be tested to form a new (n + 1)-clique
if both cliques have already at least (n − 1) vertices in
common. Therefore, our algorithm starts with C2 and
looks for all possible combinations of 2-cliques inside
of all (n − 1)-sublists. The information indicating a
possible edge between sole vertices is included in the
corresponding (n − 2)-set and identical with the (n − 1)-
and n-vertex. In the case of C2, the (n −2) vertex is empty
and C2 is identical to the (n − 2)-set with n = 2. The
result is a list of all 3-cliques, called C3. This procedure
is repeated as often as new cliques can be generated.
All combined cliques are assigned by the (n − 2)-vertex
of the newly formed clique. The assignment process
enables to mark submaximal cliques and to avoid the
generation of unnecessary submaximal cliques: during the
generation of all possible cliques from a (n − 1)-sublist,
it is possible that other (n − 1)-sublists according to
the same (n − 2)-set can be fully assigned by the same
vertex. Clique generation from such sublists can only lead
to submaximal cliques and therefore need not be made.
Once a clique is assigned, the assignment is not changed
anymore. In order to distinguish assignments, we define:

C = {(a . . . n)assignment|a, . . . , n ∈ Vc}. (5)

Using the test graph of Figure 2, the algorithm is
exemplified in Figure 3, which also demonstrates the
assignment of submaximal cliques. In Figure 3, all sets
with (n − 2) identical vertices are divided by fat lines,
while (n − 1)-sublists are divided by thin lines. The
vertices n and (n−1) of (n−2)-sets contain the information
of edges. For example, the cliques (abc) and (abd) are
identical in the first (n − 1) vertices with n = 3, i.e. (ab).
For a combination of these two cliques, there must be an
edge (cd). This is identical to a constrained search for a
clique (acd) in the corresponding (n − 2) set. Since this
is the case, all three cliques (abc), (abd), and (acd) are
simultaneously combined to generate the new 4-clique
(abcd). All three combined cliques can now be assigned
by the (n − 2) vertex of the new 4-clique, b.

Similarly, the cliques (abc), (abe), and (ace) are com-
bined to a new 4-clique (abce) and are also assigned by
the corresponding (n − 2)-vertex, b. The last b assignment
is carried out after combination of (abd), (abe), and (ade)
to the 4-clique (abde). All 3-cliques in this (n −2)-set now
have been assigned by b, and any further combination
within the sublists of this set cannot lead to maximal
cliques. As an example, a combination of (acd), (ace), and
(ade) to (acde) is later found to be already included in the
final maximal clique (abcde). This is true independent of
clique sizes. Any further testing of fully assigned (n − 1)-
sublists can be stopped. However, if cliques in a sublist
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2-Cliques 3-Cliques 4-Cliques 5-Cliques 
(ab) a (abc) b (abcd) c (abcde) 

(ac) a (abd) b (abce) c  

(ad) a (abe) b (abde) c  

(ae) a (acd) b (acde)  
 (ace) b   
 (ade) b   

(bc) a (bcd) (bcde)  

(bd) a (bce)   

(be) a (bde)  

(cd) a (cde) d (cdeg) 

(ce) a (cdf) d (cdfg) 

(cf) c (cdg) d 
(cg) c (ceg) d 

 (cfg) d 

(de) a (deg) 

(df) c (dfg) 

(dg) c 
(eg) c 
(fg) c 

Fig. 3. Cliques that are generated by the proposed algorithm using the test graph in Figure 2. Fat lines divide lists of cliques into (n − 2)
sets consisting of all cliques that have (n − 2)-vertices in common. Thin lines divide lists into (n − 1)-sublists. The branch-and-bound tree
visualizes how the three maximal cliques in the example graph are found. Further, the assignment of cliques is exemplified. By combination
of 2-cliques to generate the first sublist of 3-cliques (abx), the 2-cliques are assigned by the index ‘a’. Correspondingly, the cliques of this
3-clique subset are assigned by ‘b’ during combination to generate the next larger subset of 4-cliques (abxy). When all cliques of a subset are
assigned by an identical index, any further combination cannot lead to new maximal cliques. Cliques that were not generated by our algorithm
are crossed out, such as (acde). Due to lexicographic ordering, the two cliques (dfg) and (deg) could not be eliminated by assignment but
were later found as included in a maximal clique. For further explanations, see text.

are assigned differently, such as in (cd)a , (ce)a , (cf), and
(cg), further combinations of these cliques have to be
carried out. Subsequently, it leads to an assignment of (cf)
and (cg) with c. Assigned cliques are submaximal, and in
Figure 3, the final maximal cliques are marked in bold.
For this simple test graph G with V = {a, b, c, d, e, f, g},
a total of 40 cliques are found, 3 of which are maximal
cliques. By the assigning procedure, five submaximal
cliques were avoided to be generated using our algo-
rithm. As a result of clique assignment, the number of
non-generated cliques increases with increasing graph
dimensions, as demonstrated in the Section Application
and discussion below. Due to the lexicographic order
of metabolite names, some submaximal cliques may not
be eliminated along the branch-and-bound tree, such as
(deg) and (dfg) for our test graph. If the vertices in our
test graph were named differently, zero to four of such
non-assigned submaximal cliques would have been found.
These cliques are removed at the last step of the algorithm
by testing to see if any non-assigned cliques are fully

included in a larger clique. This assignment is a powerful
tool to minimize the branch and bound tree as can be seen
in Table 1.

In conclusion, our algorithm progresses in the following
steps to find all maximal cliques:

(1) Start with all 2-cliques, that are sorted by lexico-
graphic order.

(2) Divide all cliques into (n − 2)-sets. (For 2-cliques,
the only (n − 2)-set is C2)

(3) Subdivide these sets into (n − 1)-sublists.

(4) Take a (n − 1)-sublist and test if all cliques have
identical assignments. If this is the case, go to the
next (n − 1)-sublist.

(5) If not, test all possible pairs of cliques for potential
edges connecting the n-vertices. An edge is present,
if there is a clique in the corresponding (n − 2)-set
that has an (n − 1)- and an n-vertex identical to the
n-vertices of two tested cliques.
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Table 1. Number of maximal cliques found in a metabolomic data set of 184
metabolites and 45 individual plant samples. The graph dimension (and the
resulting total number of cliques) was altered by varying the threshold for
linear metabolite–metabolite correlations

Correlation Total no. of Total no. No. of No. of submaximal
threshold r maximal of cliques non-generated cliques later found

cliques cliques due to to be included in
the assignment maximal cliques

0.98 6 9 0 0
0.97 14 17 0 0
0.96 18 28 0 0
0.95 26 54 6 0
0.94 29 73 6 0
0.93 29 105 11 1
0.92 33 146 21 5
0.91 41 301 67 4
0.9 45 589 170 11
0.89 57 896 327 16
0.88 67 1 511 680 21
0.87 70 1 990 956 24
0.86 86 3 584 2 068 32
0.85 95 5 435 3 303 57
0.84 89 11 169 7 320 63
0.83 102 17 828 11 815 125
0.82 108 29 800 20 399 188
0.81 130 57 052 42 028 395

(6) If there is an edge, combine all vertices of the
three cliques to form a new (n + 1)-clique. Assign
all combined cliques by the (n − 2)-vertex of the
new (n + 1)-clique, if they have not already been
assigned.

(7) Write a new list that contains all new (n+1)-cliques.

(8) Repeat this algorithm for all (n − 1)-sublists.

(9) Take the list generated in step 7 and repeat steps 2–8
as long as new cliques can be generated.

(10) At the end, all lists are tested, if any non-assigned
n-clique is fully included in a (n + x)-clique. In this
case, such n-cliques are eliminated.

Using this algorithm, all maximal cliques will be gener-
ated from arbitrary undirected graphs and sorted into lists.

Finding all maximal cliques in arbitrary, undirected
graphs is an np-hard problem, for which an efficient
branch-and-bound process was developed nearly 30 years
ago (Bron and Kerbosch, 1973). The simple version of the
Bron–Kerbosch algorithm generates each clique (maximal
or submaximal) on the way along the branch and bound
tree only once. It is based on the three sets compsub,
candidates, and not. For a comparison with the Bron–
Kerbosch algorithm, (n − 1)-sublists can be understood as
a state of the sets compsub and candidates. All identical
vertices in a (n − 1)-sublist correspond to the vertices

in the set compsub, and the set of all different vertices
in an (n − 1)-sublist corresponds to the vertices in the
set candidates. A (n − 1)-sublist containing only one
clique corresponds to an empty candidate set. All further
possible extensions of the set compsub correspond to all
possible combinations of cliques in a (n − 1)-sublist.

Since Bron and Kerbosch’s contribution, numerous vari-
ants for finding maximum maximal cliques (Carraghan
and Pardalos, 1990; Babel, 1991; Masuda et al., 1990;
Pardalos and Xue, 1994), and for detecting all maximal
cliques of a graph (Osteen and Tou, 1973; Osteen, 1974;
Balas and Toth, 1985; Gardiner et al., 1997) have been
reported. Several of these approaches are compared in
a most recent fundamental study (Koch, 2001). Using
these correlations, our algorithm provides a feature not
available when using the Bron–Kerbosch algorithm: by
combining cliques inside of lists and by introducing the
assignment technique, our algorithm is a powerful tool to
avoid non-maximal clique-generation.

Visualization
The third algorithm uses these lists in order to visualize
structures in the resulting network of cliques and vertices.
This network is visualized by a vertex–clique matrix that
orders metabolites in columns and cliques in rows. The
presence of a vertex in a clique is indicated by colouring
its corresponding cell green. As further information, the
number of cliques in which a vertex is found is given
as number. Empty cells connecting different cliques are
marked by vertical blue lines. Empty cells connecting
different vertices of the same clique are marked by
horizontal brown lines. In order to minimize the number
of empty cells that connect cliques and vertices, rows and
columns are ordered by the following algorithm:

(1) Search for the column with the largest number of
green cells and set it to position p with p = 1.

(2) Search for the column that has the largest number
of connections to all columns that have already been
set and set this column to the position p + 1.

(3) Repeat step 2 as long as columns can be added.

(4) Repeat step 1–3 for all rows.

The general shape of such a matrix is a diagonal line of
green cells (clique/vertex pairs). Cliques that do not have
further connections to the rest of the network are mostly
found isolated at the lower right corner of the matrix (see
Figures 7 and 8a). The visualization of our test graph from
Figure 1 is given in Figure 4.

APPLICATION AND DISCUSSION
To test our approach, the algorithms have been imple-
mented by visual basic programming as macros running
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c d e g b f a
Clique 1 3 3 2 1 1

Clique 3 3 3 2 2

Clique 2 3 3 2 1

Fig. 4. Clique–vertex matrix visualization of the test graph from
Figure 2. The presence of a vertex in a clique is indicated by
colouring its corresponding cell green. As further information, the
number of cliques in which a vertex is found is given as number.
Empty cells connecting different cliques are marked by a vertical
blue line. Empty cells connecting different vertices of the same
clique are marked by a horizontal brown line.
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Fig. 5. Computing time due to number of maximal cliques in a graph
based on a list of correlations generated from 184 metabolites and
different correlation thresholds r .

on MS Excel 2000. Their performance was tested using
a small data set of 45 metabolic snapshots covering 184
polar metabolites of the A.thaliana dgd1 mutant, resulting
in 8280 variables. Metabolite identities were confirmed
by external and internal references (Fiehn et al., 2000a).
Metabolite levels were quantified relative to internal
references and normalised to plant fresh weights (Fiehn

et al., 2000b). No further data scaling or pre-processing
was applied. The number of cliques was increased by
reducing the correlation threshold rxy from 0.98 to 0.80.
In Table 1, the total number of cliques within a graph is
compared to the reduced number of cliques generated by
the assignment process, and to the number of maximal
cliques. This table clearly demonstrates that the power
of the assignment process is increasing with increasing
graph dimensions. Resulting, run times were compared
using a PIII 600 MHz computer and 128 MB RAM.
Figure 5 demonstrates that the proposed algorithm en-
abled largely reduced run times. For comparison, the run
time is compared for the same data set to the original
version of the Bron–Kerbosch algorithm, implemented
in Visual Basic. Once all maximal cliques were found,
stepwise clique rearrangement for clearest visualization
took roughly 2 min. Figure 6 compares visualization by
the freely available program DaVinci (Fröhlich, 1997)
with the results using our algorithm. Without reducing
graph complexity, it is essentially difficult to obtain
any structural information. For detailed information on
metabolite pairs, one must follow distinct edges. However,
this is regularly not the focus of graph visualization since
this information could also be obtained directly from
correlation lists. In our approach (Figure 7), a matrix
of cliques (in rows) and vertices (in columns) is used
for direct visualization of relationships. All metabolites
numbered by 1 are associated with only one clique and
are isolated in the metabolic network with no direct
connections to other cliques. Vice versa, metabolites
that are numbered >1 are members of other maximal
cliques. Some metabolites represent the only connection
between two or more different cliques. Potentially, these
connections could highlight branch points in biochemical
pathways or routes bridging different metabolic cycles.
Overlapping cliques are symbolized by vertically marked
blue lines, whereas horizontally marked brown lines
connect all metabolites of a clique. Detailed views of
Figure 7 give further structural information. For example,
a closed subgraph consisting of a 5-, a 4- and a 3-clique
can be seen (marked as ‘A’). Metabolites appearing in
such a subgraph may occur only in certain compartments
of plant cells. In the special case of this small example
data set, an interpretation of an unconnected closed
subgraph might also have the simple reason, that the
missing vertices have not been analyzed. In addition,
subgroups of metabolites can be identified that correlate
to the same metabolites, based upon their presence in the
same cliques. (e.g. U ara38 and U ara24 in Figure 8a).
Metabolites in such subgroups show the same relationship
in their correlations with all other metabolites. One
interpretation of this relationship is that, these metabolites
are synchronous to the remaining network. This structural
information can easily be extracted from the network
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Fig. 6. Graph based on a correlation list generated from 184 metabolites. Vertices represent metabolites, edges represent correlations between
metabolites.

independent of clique size. The algorithm described in the
Section Visualization sorts these metabolites into spatial
neighbourhood.

Another example in which the algorithm can be used to
gain structural information is given in Figure 8b, which is
a magnification of Figure 7 (marked there as ‘B’). When
examining the series of metabolites from U 13 to U ara58,
it can be seen that some metabolites, such as U ara74,
are not adjacent to other metabolites, such as U ara58.
However, these both metabolites are found to be connected
by co-regulated metabolites, monopalmitin, U ara78, and
U ara79. Again, we also find metabolites in this cluster
that show identical relationships to all other metabolites
(monopalmitin and U ara79), which are indistinguishable,
therefore. Such metabolites are supposedly very similar in
their biochemical regulation.

This example demonstrates how to select missing
edges from subgraphs. However, metabolite networks
gained from linear correlations have to face limitations.
A (linear) relationship between two metabolite levels,
particularly a correlation, can be interpreted as a synchro-
nized co-regulation of these metabolites. Since non-linear
correlations are not yet covered, more general concepts
to indicate relationships among expression data might
be valuable such as mutual information (Shannon and
Weaver, 1949; Baldi et al., 2000) as well as clustering
methods (Bittner et al., 1999). For complex networks of
more than 1000 variables, further visualization strategies
have to be implemented to keep graphical clearness and
to gain information from these graphs. Among these,
a three-dimensional visualization of cliques is needed,
including features such as visualizing the degree of
overlap between different cliques and the strength of the

1205



F.Kose et al.

Fig. 7. The final graph is visualized by a vertex–clique matrix that orders metabolites in columns, and cliques in rows. The presence of
vertex in a clique is indicated by colouring its corresponding cell green, with brown lines connecting all vertices of a clique, and blue lines
connecting all cliques in which a particular vertex is member. Details A and B are explained in Section Application and discussion and
Figures 8a and b.

(a) (b)

Fig. 8. (a) The enlarged detail A from Figure 7 shows an isolated graph. Arcs mark subgroups of metabolites revealing identical relationships
to all other metabolites (both correlating and non-correlating). Such subgroups can be recognized by finding marked metabolites exclusively
in the same cliques. (b) Enlarged detail B from Figure 7 shows a part of a graph. Due to missing horizontal connections missing correlations
can be seen, e.g. The two metabolites U ara74 and U ara58 do not have connection in any clique, but are still found in the same cluster of
cliques. Connections of both metabolites are found via monopalmitin, U ara78, and U ara79.

correlation factor rxy . Further, comparisons of networks
gained from different experiments (such as diseased and
healthy tissues) have to be facilitated. In the next years
it will become increasingly important to evaluate which

chemometric and bioinformatic tools (or, combination of
tools) can best be applied to gain biologically meaningful
information from multivariate expression data. Obviously,
this will strongly depend on the biological question to be
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answered. For comparisons, data sets stored at publicly
available sites might prove highly useful, as has been
demonstrated recently for transcriptomic approaches
(Gilbert et al., 2000). It will prove useful to set up such
a data bank for metabolomic analyses including accurate
descriptions of all obtainable experimental and biological
details.

CONCLUSIONS
The main point of analyzing correlations within metabo-
lite profiling data sets is to obtain information about
complex metabolite relationships. This has been achieved
here by generating lists of maximal cliques that are sorted
on matrices. These matrices provide a means to visualize
overlapping cliques and their corresponding vertices in
a compact way. Examples of structural information that
can be derived through the analysis of such metabolite
correlation networks include cliques with no further con-
nections to the network, missing edges within overlapping
cliques, and (connected) clusters of cliques. It has been
shown that these algorithms can be applied to small data
sets (max. 1024 metabolites) using widely available MS
Excel programs. For larger data sets, 3D-visualization
will be needed.
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