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ABSTRACT
Motivation: We describe a new approach to the analysis
of gene expression data coming from DNA array experi-
ments, using an unsupervised neural network. DNA array
technologies allow monitoring thousands of genes rapidly
and efficiently. One of the interests of these studies is the
search for correlated gene expression patterns, and this is
usually achieved by clustering them. The Self-Organising
Tree Algorithm, (SOTA) (Dopazo,J. and Carazo,J.M. (1997)
J. Mol. Evol., 44, 226–233), is a neural network that grows
adopting the topology of a binary tree. The result of the al-
gorithm is a hierarchical cluster obtained with the accuracy
and robustness of a neural network.
Results: SOTA clustering confers several advantages
over classical hierarchical clustering methods. SOTA is
a divisive method: the clustering process is performed
from top to bottom, i.e. the highest hierarchical levels are
resolved before going to the details of the lowest levels.
The growing can be stopped at the desired hierarchical
level. Moreover, a criterion to stop the growing of the
tree, based on the approximate distribution of probability
obtained by randomisation of the original data set, is
provided. By means of this criterion, a statistical support
for the definition of clusters is proposed. In addition,
obtaining average gene expression patterns is a built-in
feature of the algorithm. Different neurons defining the
different hierarchical levels represent the averages of the
gene expression patterns contained in the clusters.

Since SOTA runtimes are approximately linear with the
number of items to be classified, it is especially suitable for
dealing with huge amounts of data. The method proposed
is very general and applies to any data providing that
they can be coded as a series of numbers and that a
computable measure of similarity between data items can
be used.
Availability: A server running the program can be found
at: http://bioinfo.cnio.es/sotarray
Contact: jdopazo@cnio.es

∗To whom correspondence should be addressed.

INTRODUCTION
DNA array technologies (Schena et al., 1995; Shalon
et al., 1996; Lockhart et al., 1996) have opened new
ways of looking at organisms in a wide-genomic manner.
The study of the expression of the genes of a complete
genome, in the case of yeast (DeRisi et al., 1997;
Eisen et al., 1998; Wodicka et al., 1997; Cho et al.,
1998), is now possible using such techniques. Studies
involving human genes (Alon et al., 1999; Iyer et al.,
1999; Perou et al., 1999) or other eukaryotic organisms
(Lockhart et al., 1996) have been carried out using DNA
arrays too. And most probably, in only a few years,
DNA arrays of the complete human genome will be
available. Drug discovery will be a field to especially
benefit by the use of DNA array technologies (Debouck
and Goodfellow, 1999). For example, these technologies
have been successfully applied to drug target identification
(Kozian and Kirschbaum, 1999), development (Gray et al.,
1998) and validation (Marton et al., 1998).

A problem inherent to the use of DNA array technolo-
gies is the huge amount of data produced, whose analysis
in itself constitutes a challenge. Several approaches, in-
cluding hierarchical clustering, multivariate analysis and
neural networks have been applied to the analysis of gene
expression data. Despite the arsenal of methods used, the
optimal method for analysing such data is still open to dis-
cussion.

Hierarchical clustering (Sneath and Sokal, 1973) is the
most widely used method for the analysis of patterns
of gene expression. It produces a representation of the
data with the shape of a binary tree, in which the most
similar patterns are clustered in a hierarchy of nested
subsets. These techniques have already been applied to
the study of gene expression patterns (Eisen et al., 1998;
Iyer et al., 1999; Wen et al., 1998). Nevertheless, classical
hierarchical clustering presents drawbacks when dealing
with data containing a non-negligible amount of noise,
as is the case. Several authors (Tamayo et al., 1999)
have noted that hierarchical clustering suffers from a
lack of robustness and solutions may not be unique, and
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dependent on the data order. Also, the deterministic nature
of hierarchical clustering and the impossibility of re-
evaluating the results in light of the complete clustering
of the data, can cause some clusters of patterns to be
based on local decisions rather than on the global picture
(Tamayo et al., 1999). Other different clustering methods
have recently been proposed (Heyer et al., 1999; Ben-Dor
et al., 1999), but their performance remains to be evaluated
by the user community.

These arguments lead to the use of neural networks as
an alternative to hierarchical cluster methods (Tamayo
et al., 1999; Törönen et al., 1999). Unsupervised neural
networks, and in particular self-Organising Maps (SOM)
(Kohonen, 1990, 1997), provide a more robust and accu-
rate approach to the clustering of large amounts of noisy
data. Neural networks have a series of properties that
make them suitable for the analysis of gene expression
patterns. They can deal with real-world data sets contain-
ing noisy, ill-defined items with irrelevant variables and
outliers, and whose statistical distributions do not need
be parametric. SOM are reasonably fast and can be easily
scaled to large data sets. They can also provide a partial
structure of clusters that facilitate the interpretation of the
results. SOM structure, unlike in the case of hierarchical
cluster, is a two-dimensional grid usually of hexagonal
or rectangular geometry, having a number of nodes fixed
from the beginning. The nodes of the network are initially
random patterns. During the training process, that implies
slight changes in the nodes after repeated comparison
with the data set, the nodes change in a way that captures
the distribution of variability of the data set. In this way,
similar gene expression patterns map close together in the
network and, as far as possible from the different patterns.
At the end of the training process, the nodes of the SOM
grid have clusters of patterns assigned, and the trained
nodes represent an average pattern of the cluster of data
that map into it. This reduction of the data space is a
very interesting property when dealing with big data sets,
which is often the case in DNA array data (Herwig et al.,
1999).

Nevertheless, this approach presents several problems
(Fritzke, 1994). Firstly, the SOM is a topology-preserving
neural network. In other words: the number of clusters
is arbitrarily fixed from the beginning. This makes the
recovering of the natural cluster structure of the data
set a very difficult and subjective task. The training of
the network (and, consequently, the clusters) depends on
the number of items. Thus the clustering obtained is
not proportional. If irrelevant data (e.g. invariant, ‘flat’
profiles) or some particular type of profile is abundant,
SOM will produce an output in which this type of data will
populate the vast majority of clusters. Because of this, the
most interesting profiles will map in few clusters and their
resolution might be low. Finally, the lack of a tree structure

makes it impossible to detect higher order relationships
between clusters of profiles.

Within this context, the Self-Organising Tree Algorithm
(SOTA) (Dopazo and Carazo, 1997), an unsupervised
neural network with a binary tree topology provides a
good solution. SOTA combines the advantages of both
approaches, hierarchical clustering and SOM, and is free
of the problems these methods present when applied to
gene expression profiles. The result of the algorithm is
a hierarchical clustering achieved with the accuracy and
robustness of a neural network.

The SOTA was first described by Dopazo and Carazo
(1997) as a new type of self-organising neural network
based on both the SOM maps of Kohonen (1990) and the
growing cell structures (Fritzke, 1994), but implementing
a new topology and a different strategy of training. It was
applied to cluster sets of aligned sequences. Later it was
used for clustering sequences using as data their dipeptide
frequencies (Wang et al., 1998b) and to cluster amino
acids in classes based on their physico-chemical properties
(Wang et al., 1998a). Thus SOTA has demonstrated the
ability to successfully cluster data of different nature. We
propose here an application of this algorithm to DNA array
data, and show how a statistical method for the definition
of clusters can be implemented in the network.

ALGORITHM AND IMPLEMENTATION
The Self-Organising Tree Algorithm
SOTA is based both on the SOM (Kohonen, 1990)
and the growing cell structures (Fritzke, 1994). The
algorithm proposed by Kohonen generates a mapping
from a complex input space to a simpler output space.
The input space is defined by the experimental input
data, whereas the output space consists of a set of nodes
arranged according to certain topologies, usually two-
dimensional grids. The application of the algorithm maps
the input space onto the smaller output space, producing
a reduction in the complexity of the analysed data set. In
the case of SOTA, the output is a binary tree topology that
incorporates the principles of the growing cell structures
algorithm of Fritzke (1994). In this algorithm a series
of nodes, arranged in a binary tree, are adapted to the
intrinsic characteristics of the input data set. As in the
growing cell structures, the output space can grow to fit
as much as possible to the variability of the input space.
The growing of the output nodes can be stopped at the
desired taxonomic level or, alternatively, they can grow
until a complete classification of every gene in the input
data set is reached.

Encoding the data
Each DNA array contains the measures of the level of
expression for many genes. These values are usually
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obtained by measuring the fluorescence intensity and
subtracting the background (see, for example, Eisen et
al., 1998, for details on the experimental procedure).
Each DNA array can be considered as a single measure
of the expression of many genes for a given condition
(e.g. timepoints, a particular concentration of a product,
etc.) Gene expression profiles are obtained from the
different DNA arrays of an experiment collecting, for
any particular gene, the intensity of its expression in
each array. Data are arranged in tables where rows
represent all genes for which data has been collected
and columns represent the individual expression values
obtained in each DNA array. Raw data often display highly
asymmetrical distributions that make difficult the use of
a distance to assess differences among them. Therefore,
it is quite unusual to use the data directly , without a
previous transformation. There are several transformations
currently used with different purposes, depending on the
problem that may affect to the data. Square transformation
compresses the scale for small values and expands it for
large values. The opposite effect is achieved with square
root, logarithm and inverse transformations. Since gene
expression values are given as ratios of the expression
under a given condition to the expression under a reference
condition, logarithmic transformation can be considered
the most suitable option because it provides a symmetrical
scale around 0. Each gene profile is a vector identified by
the name of the gene, which contains as many values as
points have been measured. The values are obtained from
the original ones and transformed using logarithm 2. Then,
for the sake of the adaptation process of the network, all
the vectors were normalised to have a mean of zero and a
standard deviation of 1.

The distance function
Depending on the concept by which we want to cluster
patterns of expression, different types of distances can be
used. Distances are obtained from the pair-wise compari-
son of patterns of gene expression.

If we have two genes with their corresponding expres-
sion patterns: gene1 (e11, e12, . . . , e1n) and gene2 (e21,
e22, . . . , e2n), different distances are obtained as follows.
Euclidean distance is obtained as the square root of the
summation of the squares of the differences between all
pairs of corresponding values.

d1,2 =
√∑

i

(e1i − e2i )2.

An equivalent distance, the squared Euclidean distance, is
the square of the Euclidean distance. Generally speaking,
these types of distances are suitable when the aim is to
cluster genes displaying similar levels of expression.

Another extensively used distance function is the

Pearson correlation coefficient, r . It gives values between
−1 (negative correlation) and 1 (positive correlation). The
more the two profiles have the same trend; the closer to
1 is the r -value, irrespective of their absolute values of
expression. The distance is obtained then as follows:

d12 = (1 − r) = 1 −
∑

i ((e1i − ê1)(e2i − ê2))/n

Se1Se2
.

Where: ên and Sen are the mean and the standard deviation
of all the points of the nth profile, respectively. A similar
distance for measuring trends is the correlation coefficient
with an offset of 0. In this case, the distance is obtained
from the correlation coefficient in the same way as in
the previous case: d12 = (1 − r), but considering
zero as reference, instead of the mean value of the
distribution. This maybe an interesting choice in cases
where the data are serial measures with respect to an initial
state of reference (time series, dosage series, etc.) This
transformation is used by Eisen et al. (1998).

SOTA dynamics
The initial system is composed of two external elements,
denoted as cells, connected by an internal element (see
Figure 1A), that we will call node. Each cell (or node)
is a vector with the same size as the gene profiles. Each
component in the vector corresponds to a column in the
data set, that is, to one of the conditions under which the
gene expression has been measured. In the beginning, the
entries of the two cells and the node are initialised with
the mean values of the corresponding column of the data
set. Initialising them to random values produces identical
results (data not shown).

In addition to the topology, this type of network has
another feature that makes it different from previous
growing cell approaches (Fritzke, 1994): only cells, but
no nodes, are compared to the input gene profiles. Due
to this, the network is trained only through their terminal
neurons, or cells. The algorithm proceeds by expanding
the output topology starting from the cell having the
most heterogeneous population of associated input gene
profiles. Two new descendants are generated from this
heterogeneous cell that changes its state from cell to node.
The series of operations performed until a cell generates
two descendants is called a cycle. During a cycle, cells and
nodes are repeatedly adapted by the input gene profiles
(see below).

This process of successive cycles of generation of
descendant cells can last until each cell has one single
input gene profile assigned (or several, identical profiles),
producing a complete classification of all the gene profiles.
Alternatively, the expansion can be stopped at the desired
level of heterogeneity in the cells, producing in this way a
classification of profiles at a higher hierarchical level.
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Fig. 1. Schematic representation of the topology of the SOTA
network and the growing algorithm. The neurons that compose the
network are represented as vectors whose components correspond
to the columns of the data matrix, that is, to the conditions at
which gene expression values have been measured. (A) Initial state
of the network: two terminal neurons, called cells, connected by
an internal neuron called node. Arrows account for the possible
interactions in the system. (B) The two types of neighbourhood:
restrictive and local. As the growth of the network proceeds, internal
nodes remain stable (grey arrows means that the corresponding
updates are not performed anymore) and updating events only
takes place in the external nodes (cells) and their corresponding
neighbourhoods (black arrows show the permitted updating events
allowed for the topology shown). In order to avoid asymmetrical
updating, two different types of neighbourhood are used. The
restrictive one can be seen on the left. Since the mother neuron of the
cell is not receiving updates from the other side, this cell does not
update its mother. The local one can be seen in the right side. Both
sister neurons receive update and transmit to each other as well as
to their mother node. (C) Pathway of interactions. Once a neuron
(bottom left in the example) has been chosen as the winning cell it
is adapted (see text) with a factor ηw. The strength of the updating
decreases as we go further in the neighbourhood. Thus the values
of ηa and ηs for the updating of the mother neuron and the sister
neuron, respectively, are consecutively lower. The darker the arrow
the stronger is the interaction.

Adaptation process
Adaptation in each cycle is carried out during a series
of epochs. Each epoch consists on the presentation of
all the expression profiles to the network. A presentation
implies two steps: first, finding the best matching cell
(winning cell) for each expression profile, that is, the cell
with the lowest distance cell-profile (dpc) and second, to
update this cell and its neighbourhood. Cells are updated
by means of the following formula (Kohonen, 1990):

Ci (τ + 1) = Ci (τ ) + η · (P j − Ci (τ ))

where η is a factor that accounts for the magnitude of the
updating of the i th cell depending on its proximity to the

winning cell within the neighbourhood, Ci (τ ) is the i th
cell vector at the presentation τ , and P j is the j th gene
expression profile vector. The topological neighbourhood
of the winning cell is very restrictive (Dopazo and Carazo,
1997; Fritzke, 1994), unlike in the case of SOM. Two
different types of neighbourhood are used. If the sister
cell of the winning cell has no descendants (both sister
cells are the only descendants of the ancestor node), the
neighbourhood includes the winning cell, the ancestor
node and the sister cell, otherwise it includes only the
winning cell itself (see Figure 1B). We have used the
decreasing values ηw, ηa, and ηs for the winning cell,
the ancestor node and the sister cell, respectively (see
Figure 1C).

There is a particular case for the adaptation process:
when both sister cells are equal. This occurs in the initial
stage of the network and just after a cell duplicates, giving
rise to two new sister cells. In this case the first cell
to which the profile is compared is taken as winner by
default. Since the adaptation process is asymmetrical, its
effect on the winner is stronger than on the sister. Then,
the winner is dragged closer to the profile presented by the
other cell. This small difference allows that the remainder
profiles in the data set, more similar to this one, tend to
map in the first cell, and the rest in the other cell. Since
the adaptation depends on the expression values of the
profiles, the first group to segregate is always the one that
is less similar to the average value in the cell, irrespective
of the presentation order. The asymmetry is due to the use
of different, decreasing values for the η-factors. Typical
values are: ηw = 0.01, ηa = 0.005 and ηs = 0.001 (see
Dopazo and Carazo, 1997).

The heterogeneity under each cell is computed by its
resource, R. This value will be used to direct the growth
of the network by replicating, at the end of each cycle, the
cell with the largest resource value (Dopazo and Carazo,
1997; Fritzke, 1994; Kohonen, 1990). The resource is
defined as the mean value of the distances among a cell
and the expression profiles associated to it:

Ri =
∑K

k=1 dPkCi

K
where the summation is done over the K profiles associ-
ated to the cell i .

Growing, convergence and end conditions
The criteria used for monitoring the convergence of the
network is the total error, ε, which is a measure of how
close the expression profiles are to their corresponding
winning cell after an epoch. The error is defined as the
summation of the resource values of all the cells that are
being presented at the epoch t :

εt =
∑

i

Ri .
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Thus, a cycle finishes when the relative increase of the
error falls below a given threshold:∣∣∣∣εt − εt−1

εt−1

∣∣∣∣ < E

(see the next section below for a discussion on criteria
for choosing thresholds). The network follows its growing
process by replicating the cell with the highest resource
value. This cell gives rise to two new descendant cells
and becomes a node. The values of the two new cells are
identical to the node that generated them.

The growing process ends when the heterogeneity of
the system falls below a threshold. Two measures of the
heterogeneity of the system have been used in this work.
One of them is the resource value, R, of the network,
that is the maximum resource value among all the cells.
And the other one is the variability, V . Lets define Di as
the maximum value among all the possible profile–profile
distances between all pairs of genes belonging to cell i .
Di , can be considered an alternative way of measuring
the heterogeneity in the cells. Then, the variability V is
defined as the maximum value among these Di -values:

V = max
i

{Di };
Di = max

jk
{dPj Pk }.

In this way, the network can be instructed to grow until the
desired hierarchical level. If the threshold is chosen to be
zero, the network will grow until every cell has associated
either one unique profile or several identical profiles. On
the other hand, different threshold values will cause the
network to stop at higher hierarchical levels, clustering in
single cells those groups of profiles whose heterogeneity
falls below the threshold.

Confidence intervals and definition of clusters
One of the most complicated problems is the definition
of a non-subjective criterion to stop the growing of the
tree. Since the aim of clustering is to find groups of
genes having a similar expression profile, what we need
is to define the upper level of distance at which two
genes can be considered to be similar at their profile
expression levels. This distance depends on the values
contained in the data set. For example, if many genes
with profiles of very few points are analysed, it is likely
that, randomly, some of them display very similar patterns.
On the contrary, if many points compose gene profiles,
the possibility for two profiles being similar by chance is
very low. Figure 2 shows the distribution of the coefficient
of correlation in random, unrelated profiles with different
number of points (from 5 to 21). As expected, the mean
value is zero, but there exist a significant number of cases

Fig. 2. Distribution of the coefficient of correlation in random,
unrelated profiles in the cases of profiles of different numbers of
points. Labels account for the distributions obtained for profiles
ranging from 5 to 21 points. The mean value is zero in all the
cases, because the data are uncorrelated, but the lower the number of
points, the higher is the probability of finding positive and negative
correlation by chance.

of both high positive and negative correlations that arise
purely by chance, when the number of points is low.

If the random distribution of the values of the measure of
distance used for quantifying the degree of similarity be-
tween pairs of gene expression profiles were known, a one-
tail test could be applied. In this case, a confidence level
α could be defined for a given distance value threshold.
The confidence level means that distance values like this
threshold or lower are found only in the proportion of α

when comparing two unrelated genes. Or, in other words,
the probability of taking two random profiles as identical
is lower than α if the distance between them is smaller than
the threshold. In this way, the number of misassignments
of items to a cluster is minimised to a threshold fixed by
the α-value.

The true random distribution of the distance value is
not known, but an approximation can be obtained by
resampling the original data set (Efron and Tibsirani,
1991). For each profile, all the points are randomly
shuffled. That destroys the actual correlation among the
different profiles, whereas the rest of the characteristics of
the data set (number of points, ranges of values, frequency
of values) are conserved.

Figure 3 shows an example using the data of the
yeast cellular cycle (Spellman et al., 1998) (see
http://cellcycle-www.stanford.edu). The measure chosen
is the correlation coefficient. The internal distribution
(continuous line) corresponds to the randomised data, and
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Fig. 3. Distribution of the observed values of coefficient of
correlation (dotted line) and the values obtained after shuffling the
values of the profiles and calculating again all the coefficients of
correlation for the pairs of randomised profiles (continuous line).
The data are from the yeast cellular cycle (Spellman et al., 1998) and
consist of 800 genes for which 78 data points had been measured.
Real data contains much more positive and negative correlation
than that expected from a random distribution. It is worth noticing
that the actual distribution (dotted line) is biased towards positive
correlation values. This points to the fact that in this real data set
there are more genes whose expression patterns display a positive
correlation than genes with negatively correlated patterns.

the external one (dotted line) is the distribution obtained
when comparing all the possible pairs of profiles in the
real data. The 95% of the coefficient correlation values are
below 0.178, that is, a distance of 0.882 (= 1 − 0, 178).
So, if we choose this value as threshold, the probability
of having two uncorrelated profiles with a correlation
coefficient higher than 0.178 is smaller than the 5%. If
such a threshold is applied to the data set, the dendogram
grows until the variability in any cluster is below this
threshold (see Figure 4B). In this way we have a statistical
assessment of the content of each cluster.

SOTA allows the dimensionality of the system to be re-
duced. DNA array data usually consist of a huge amount
of genes (several thousands in many cases). What is im-
mediately obvious is that such an amount of data cannot
be easily analysed by eye, even in the case of reconstruct-
ing a complete clustering of all the items using any hier-
archical clustering method. SOTA provides the possibility
of reducing the problem to a scale in which differences
and similarities among patterns can be analysed in an eas-
ier way. Figure 4A shows a low-resolution picture of the
clustering obtained for the data set. Clusters contain items
whose inter-profile distance (scored as explained above for

the coefficient of correlation with an offset of 0) is below
0.75. Figure 4B shows the clustering obtained at higher
resolution displaying the 174 patterns that are really differ-
ent at a confidence level of 5%, out of the 800 gene expres-
sion profiles contained in a data set. The number of signifi-
cantly different profiles is usually not very large compared
to the original data size. A similar analysis by hierarchical
clustering would have resulted in a densely branched tree
of 800 genes, whose interpretation had been very difficult,
if not impossible. Moreover, if lower resolution is required
two alternatives can be taken. One of them is to reduce
the confidence level. If, for example, we choose 10% of
reliability, instead of the 5% previously chosen, the corre-
sponding threshold would be a lower value for the coef-
ficient of correlation, giving rise to less clusters, that is, a
dendogram reflecting a higher hierarchical level. The other
alternative is to choose the number of clusters to which
we can reduce the system. In this case the dendogram will
grow until the specified number of clusters is reached, ir-
respective of the reliability of the clusters obtained. Obvi-
ously, the higher the hierarchical level the lower the relia-
bility of the clusters. This is due to the fact that as we climb
in the hierarchy of clusters, the upper level clusters have
less and less defined average profiles, and the probability
of having wrongly assigned gene profiles is higher. Or, in
other words, it is more difficult to warrant that higher hi-
erarchical relationships are true than affirm the same of
lower hierarchical relationships. This fact, which is true in
any case independently of the cluster method used, can be
monitored by SOTA. The algorithm calculates after each
cycle the resource and the variability value. The variability
can be related to the random distribution, giving the relia-
bility of the cluster under this node. SOTA has built-in the
assessment of the reliability of any cluster in the whole
hierarchy. Figure 4A and B show how SOTA allows the
management of the resolution with which the system is
going to be analysed producing dendograms that describe
the system at different hierarchical levels.

Nodes as averages of expression profiles
As previously mentioned the training process causes
that the initially random vectors in the cells approach
to weighted averages of the profiles associated to them
(Kohonen, 1990). Figure 5 shows examples of expression
profiles in nodes, cells (terminal nodes) and genes in the
cluster corresponding to the cell. The profiles gathered
under the cells are highly correlated and the cell vector
constitutes an average of them. In fact, the comparison
between the cell vector values and the average values
obtained from the profiles display a very low discrepancy
(less than 0.3%). Due to the way in which the network
is trained, this convenient node feature of representing an
average of the items (either nodes or genes in the case of
terminal nodes) below them can be extended to all the
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A B 

Higher 
resolution

Fig. 4. Dendograms obtained for the data analysed in Figure 2. The data have been normalised (standard deviation of 1 and mean of 0) and
the distance used was a coefficient of correlation with an offset of 0. The parameters used for training the network were ηw = 0.1, ηa = 0.05
and ηs = 0.01. (A) The end condition for stopping the growing of the dendogram was to reach a heterogeneity threshold of less than 0.75
for the chosen distance. In this case, the 800 genes involved in the yeast cellular cycle experiment (Spellman et al., 1998) have been grouped
into 40 different clusters. (B) The stop condition in this case was to reach a threshold of α = 5% of probability of including wrong patterns.
Now, the 800 have been grouped into 174 different clusters. It can be seen how the cluster in the bottom of the dendogram splits into four new
clusters in the higher resolution dendogram. The resolution in the dendogram (B) is approximately four times the resolution of dendogram
(A). Circle diameters are proportional to the number of profiles in each cluster.
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Fig. 5. Values of the node vectors and gene expression profiles ob-
tained after the training process by SOTA. Top Average expression
profile of the node in the bottom of the dendogram in (Figure 4A)
(black line), together with node vectors corresponding to the four
nodes in which this node splits in the higher resolution dendogram
shown in (Figure 4B) (grey lines). Bottom Average expression pro-
file in one of the nodes within the circle in (Figure 4B) (thick black
line), together with the 18 expression profiles in the cluster (thin
grey lines), and the average expression profile in the bottom node of
(Figure 4A) (thin black line). The values of the cell vectors (SOTA
averages) are very close to the average values obtained from the pro-
files for each point. Only a 0.3% disagreement among both averages
was found for the clusters in the figure.

nodes at any level. This allows the study of high-level
correlation (either positive or negative) between clusters of
genes, instead of among individual genes, and can be very
useful for the study of networks of interaction in genomes
or in systems for which little information is available.

All against one versus all against all: the way to
linear runtimes
One of the interesting properties of this type of neural
network is that the most time-consuming comparison

A

B

Fig. 6. Comparison between SOTA linear (dotted line) and UPGMA
quadratic (continuous line) runtimes. (A) For a moderate number
of genes (<1000) SOTA and UPGMA performances are similar. In
fact, for less than 600 genes UPGMA is slightly faster. This is a
consequence of the time used by SOTA in the initial training steps
of the neural network. (B) For a larger number of genes, SOTA is
clearly faster than UPGMA. For 5000 genes is around three orders
of magnitude faster.

operations are performed among the data and one single
node (see Figure 1B). The obvious advantage derived
from this fact is that the number of comparisons needed
for the classification depends, mainly, on the number
of items. In the case of classical clustering (UPGMA
and related methods, see Hartigan, 1975), the most time-
consuming operations are performed on a distance matrix,
whose size is proportional to the square of the number of
items. In fact, runtime for the clustering procedures used
in phylogenetic reconstruction are N2 to N4 (Hartigan,
1975).

If runtimes between both approaches are compared (see
Figure 6), a similar behaviour can be observed when the
number of genes to analyse is small (less than 600). In
fact, in this range, UPGMA is faster than SOTA, because
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the training of the neural network implies a minimum
number of presentations. Nevertheless this trend changes
drastically for values over 600 genes. For 5000 genes
SOTA runtimes are three orders of magnitude faster than
UPGMA runtimes (Figure 6B). The runtimes in Figure 6
were obtained in a SGI O200.

DISCUSSION
SOTA is an unsupervised neural network that grows as a
binary tree describing, at different levels, the hierarchical
relationships between the items analysed, based on an
appropriate distance function. Since the growing can be
stopped at the desired level of variability, SOTA provides
a natural way for defining the actual cluster structure in the
set of data. Contrary to the classical hierarchical clustering
algorithms (agglomerative), SOTA starts with a high level
hierarchy of two neurons (connected by means of a third
one that transmit the input signal). After a training cycle,
in which the data set is segregated into two groups,
the neuron having the most variable population splits in
two new sister neurons. The process is repeated until a
threshold of heterogeneity is reached for each neuron. The
way in which this threshold is defined provides different
functionality to SOTA. The heterogeneity threshold can
be set to zero for a fully resolved dendogram. In this
case the result is similar to that provided by a method
of hierarchical clustering. If the heterogeneity threshold
is obtained from the randomised distribution of data,
SOTA will provide the cluster hierarchy that minimises the
probability of having misassigned genes to them. Finally,
if the condition to stop the growing of the binary tree
is to reach a given number of clusters, SOTA becomes
similar to SOM. Nevertheless, SOTA has two crucial
advantages: the topology is that of a hierarchical tree, and
the clustering obtained is proportional to the heterogeneity
of the data, instead of to the number of items. Thus, if
a given type of profile is abundant, all the similar items
will remain grouped together in a single cluster and they
will not directly affect to the rest of the clustering process
performed by the network. This last property is due to the
fact that SOTA is distribution preserving while SOM is
topology preserving (Dopazo and Carazo, 1997; Fritzke,
1994).

In both SOM and SOTA, the training process changes
the vectors in the nodes to weighted averages of the gene
expression patterns associated to them (Kohonen, 1990).
The advantage in the case of SOTA is that the binary
topology produces a nested structure in which nodes at
each level are averages of the items below them (items
that can be nodes or in the case of terminal nodes, genes).
This makes it straightforward to compare average patterns
of gene expression at different hierarchical levels even for
large data sets.

Table 1 lists the differences between classical hierarchi-
cal clustering methods, SOM and SOTA. They are related
to the type of structure in which the results are arranged,
the way in which the different algorithms proceed, and the
reliability of the results. SOM and SOTA are, as neural
networks, more robust against noise, which is extremely
important in the case of data like profiles of gene expres-
sion.

Despite the advantages that SOM presents when com-
pared to classical hierarchical cluster methods, it also has
some drawbacks. The rectangular, two-dimensional topol-
ogy is not of much help for the definition of clusters. All
the high level hierarchical relationships are lost in this rep-
resentation. Moreover, the necessity of arbitrarily fixing
the number of clusters from the beginning introduces a
bias towards this size in the final structure of the results.

On the other hand, classical hierarchical clustering
methods, when applied to large amounts of data, produce
pictures of difficult interpretation. Obviously, with the
appropriate software, the results of a fully developed
tree obtained by a classical hierarchical method can be
represented at different higher hierarchical levels. But, in
any case, the tree must be completely constructed before
by a method whose runtimes are quadratic.

An additional advantage of neural networks when
compared to classical hierarchical clustering methods is
the fact that all the original data are used for defining the
clusters during the whole training process. In the case of
classical hierarchical clustering the information contained
in the data is coded as a distance matrix that is averaged
many times. This distance matrix suffers a process of
sequential transformations during the definition of the
cluster hierarchy that produces a gradual lack of identity
of the data that, in addition, can be dependent on the order
in which the data are placed in the matrix.

One of the most interesting properties of SOTA is its
approximately linear runtimes. This property, together
with the possibility of constructing high level trees, makes
SOTA a really fast approach to the analysis of large gene
expression data sets.

The performance of any method depends critically on
the use of an appropriate distance function with the
adequate biological meaning. Often it is also necessary to
make a transformation of the data before proceeding with
the analysis. SOTA includes Euclidean distances (point
to point differences between the patterns) and pattern
correlation as a distance. Both cases have a clear biological
meaning: Euclidean distances are used when the interest
is in looking for identical patterns, whereas correlation
distances are used in the case of the trends of the patterns.
In our experience correlation, that implies looking for
clusters of profiles with similar trends, gathers gene
expression profiles in biologically meaningful clusters.
Euclidean distances are more affected by small variations
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Table 1. Comparison of the properties of the different clustering methods for analysing gene expression patterns

Classical
hierarchical SOM SOTA
clustering

Topology Hierarchical tree Hexagonal or Hierarchical tree
rectangular

Growing Aggregative (from Size fixed from Divisive (from top
bottom to top) the beginning to bottom)

Number of clusters As many as items Fixed from the Customisable
beginning

Statistical definition of cluster No No Yes
Proportional clustering Yes No Yes
Possibility of obtaining clusters No No Yes
at different hierarchical levels
Robustness against noise No Yes Yes
Provide average values of the No Yes Yes
profiles in the cluster
Runtime Quadratic Linear Linear

in the patterns and produce less interpretable clusters of
sequences.

The approach presented here for analysing gene expres-
sion profile data combines the advantages of the different
clustering methods. DNA array technologies are under-
going a very fast development and in a few years, DNA
chips with hundreds of thousands of genes will be avail-
able. The management of that huge amount of information
will require the application of new approaches like those
presented here. We believe that SOTA provides a fast, ro-
bust and accurate framework for the study of relationships
among large sets of gene expression patterns and can be
very useful for analysing gene expression at genomic level
in a near future.
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