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ABSTRACT
Motivation: Increasingly, biological processes are being
studied through time series of RNA expression data col-
lected for large numbers of genes. Because common pro-
cesses may unfold at varying rates in different experiments
or individuals, methods are needed that will allow corre-
sponding expression states in different time series to be
mapped to one another.
Results: We present implementations of time warping al-
gorithms applicable to RNA and protein expression data
and demonstrate their application to published yeast RNA
expression time series. Programs executing two warping
algorithms are described, a simple warping algorithm and
an interpolative algorithm, along with programs that gen-
erate graphics that visually present alignment information.
We show time warping to be superior to simple clustering
at mapping corresponding time states. We document the
impact of statistical measurement noise and sample size
on the quality of time alignments, and present issues re-
lated to statistical assessment of alignment quality through
alignment scores. We also discuss directions for algorithm
improvement including development of multiple time series
alignments and possible applications to causality searches
and non-temporal processes (‘concentration warping’).
Availability: Academic implementations of alignment
programs genewarp and genewarpi and the graphics
generation programs grphwarp and grphwarpi are avail-
able as Win32 system DOS box executables on our web
site along with documentation on their use. The publicly
available data on which they were demonstrated may
be found at http://genome-www.stanford.edu/cellcycle/.
Postscript files generated by grphwarp and grphwarpi may
be directly printed or viewed using GhostView software
available at http://www.cs.wisc.edu/∼ghost/.
Contact: church@arep.med.harvard.edu
Supplementary information: http://arep.med.harvard.
edu/timewarp/supplement.htm.
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INTRODUCTION
Recently developed high throughput assays for mRNA
expression such as DNA microarrays, oligonucleotide
arrays, microbeads, and Serial Analysis of Gene Ex-
pression (SAGE) (Brenner et al., 2000; DeRisi et al.,
1997; Lockhart et al., 1996; Velculescu et al., 1995)
have enabled researchers to study biological processes
systematically at the level of gene activity. Clustering of
expression data gathered by these means to functionally
characterize genes (Eisen et al., 1998; Tamayo et al.,
1999; Tavazoie et al., 1999), and to classify samples and
conditions (Aach et al., 2000; Alizadeh et al., 2000; Bit-
tner et al., 2000; Golub et al., 1999) is now commonplace.
An important area of application of these techniques is
the study of biological processes that develop over time
by collecting RNA expression data at selected time points
and analyzing them to identify distinct cycles or waves of
expression (see Table 1). Progress in the development of
high throughput protein level assays (Gygi et al., 1999,
2000) suggests that similar techniques will soon be used
in the area of protein expression analysis. We will focus
on RNA expression data.

Biological processes have the property that multiple
instances of a single process may unfold at different
and possibly non-uniform rates in different organisms,
strains, individuals, or conditions. For instance, different
individuals affected by a common disease may progress
at different and varying rates. This presents an issue for
analysis of biological processes using time series of RNA
expression levels: to find the time point of one series that
corresponds best to that of another, it is insufficient to
simply pair off points taken at equal measurement times.
Analysis of such time series may therefore benefit from
the use of alignment procedures that map corresponding
time points in different series to one another.

Dynamic time warping is a variety of time series
alignment algorithm developed originally for speech
recognition in the 1970s (Sakoe and Chiba, 1978;
Velichko and Zagoruyko, 1970). Similar to algorithms
used for sequence alignment, time warping aligns two
time series against each other. Whereas sequence align-
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Table 1. Examples of gene expression time series published in literature including unevenly sampled time series. Non-time series data points (e.g. mutants)
published with the studies are not described

Study Published time points References

Diauxic shift, yeast 9, 11, 13, 15, 17, 19, 21 h DeRisi et al. (1997)

Sporulation, yeast 0, 0.5, 2, 5, 6, 7, 9, 11.5 h Chu et al. (1998)

Cell cycle, yeast. 17 time points from 0, every Cho et al. (1998)
Cells synchronized by cdc28-ts 10 min

Cold shock, yeast 0, 20, 40, 160 min Eisen et al. (1998)
Heat shock, yeast 0, 10, 20, 40, 80, 160 min
Reducing shock, yeast 15, 30, 60, 120 min

Cell cycle, yeasta Spellman et al. (1998)
Cells synchronized by
• Alpha factor 18 time points from 0, every

7 min

• cdc15-ts 10, 30, 50, 70, then every 10
min to 250, then 270, 290 (24
time points)

• Elutriation 14 time points from 0, every
30 min

Embryo development, � 18 h BPFb, 4 h BPFb, 0 h White et al. (1999)
Drosophila PFb, 3, 6, 9, 12 APFb

a Collection of time series analyzed in this article.
b PF = puparium formation, BPF = before PF, APF = after PF.

ment algorithms consider the similarity of pairs of single
bases or residues taken one from each sequence, time
warping considers the similarity of pairs of vectors taken
from a common k-dimensional space (feature space)
taken one from each time series. Here the feature space
comprises vectors of RNA expression levels from a
common set of k genes. The time warping algorithms
developed here are global alignment algorithms; therefore
Needleman–Wunsch presents the most analogous se-
quence algorithm (Needleman and Wunsch, 1970). While
in its most general form time warping makes no assump-
tions about the evenness or density of data sampling in
the time series it aligns, simplifications and efficiencies
are often possible when sampling rates are constant and
of high density. These conditions are easily met when
sampling speech data through appropriate electronics and
data processing, but not for RNA expression level data
where collection of data at a time point involves laborious
and costly steps. Examples of unevenly and sparsely
sampled RNA expression time series are common in the
literature (see Table 1), and this will surely be true of
protein time series as well. As a result, time warping algo-
rithms developed for speech recognition cannot generally
be directly applied to typical expression level time series.
To demonstrate time warping on these data, we therefore
implemented time warping algorithms for expression data

from first principles as described in Kruskal and Liberman
(1999), including an interpolative algorithm that to our
knowledge has never been previously implemented.

Data quality, completeness, and normalization present
additional issues when applying time warping to gene
expression data. The different high throughput mRNA
expression level assays are each affected by different
sources and sensitivities to error and generate RNA
expression levels using different kinds of normalizations,
data quality indicators, and degrees of data completeness.
For instance, expression levels derived from microarray
and microbead studies are generally presented as ratios
of the RNA expression levels of genes in an experimental
condition compared to their levels in a control condition,
while in oligonucleotide array and SAGE studies they
are normalized for experimental conditions alone without
reference to control conditions but in very different forms
(normalized hybridization intensities for arrays and tag
counts for SAGE). Such methodological differences, as
well as differences in strains and cell culture conditions
across studies, affect the comparability of data derived
from different studies (Aach et al., 2000). While these
factors will affect time warping, we minimize them during
this initial demonstration by confining attention to a
collection of RNA expression level time series of the
Saccharomyces cerevisiae cell cycle published in a single
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study (Spellman et al., 1998) where each series used
cells specially prepared by a different technique to move
synchronously through the cell cycle (see Table 2).

Below we present results showing that time warping
produces alignments that are expected given the series
being compared. We show that the stability of alignments
is improved by using large sets of genes with low
measurement noise levels. We compare time warping
with clustering as a way of mapping corresponding time
points, and assess the use of alignment scores in judging
the quality of alignments. In discussion we describe
potential enhancements to and alternative uses of the
algorithms, compare time warping with Singular Value
Decomposition (SVD) and Fourier analysis, and call
attention to the possibility of time series superpositions.

SYSTEMS AND METHODS
Yeast cell cycle time series data sets
Data from Spellman et al. (1998), downloaded originally
from the reference web site, were extracted from the
ExpressDB database (Aach et al., 2000). Briefly, original
data collection and normalization were as follows: data
were collected using microarrays spotted with amplified
genomic DNA for all S.cerevisiae ORFs. Three time
series of RNA expression levels were obtained for cultures
synchronized by different methods and then released at
time 0: alpha mating factor pheromone, a temperature
sensitive cdc15 mutant, and elutriation (see Table 2).
Hereafter we refer to these as the alpha, cdc15, and elu
series, respectively. Data were presented as normalized
log2 ratios of each gene’s RNA expression level in the
experimental sample at the time point to its level in a
control culture sample at the same time point, where
the control culture comprised unsynchronized cells of
the same strain grown under the same conditions as
the experimental culture, and where log2 ratios were
normalized by adjusting each gene’s log2 ratio to 0 over
its time series. To help evaluate time alignments we
desired more precise numerical estimates of each series’
cell cycle period than the approximations presented in
the original reference, and so computed the period of
each series from the gene expression data by a variant
of the analysis used there to identify which genes were
cell cycle regulated. Results (see Table 2) are in good
accord with approximate period information given in the
original reference, although computed periods tend to be
somewhat longer. Details on these calculations are on our
web site.

Application of time warping algorithms to these time
series required using subsets of genes which were shared
by the two series compared and for which expression lev-
els were available in the data for each time point in the two
series. Several subsets of genes used for testing aspects of

the algorithms are described in Table 3. Demonstrations
in this article will focus mainly on alignments between
the alpha and cdc15 series as alignments of these series
appeared to be of higher quality than either of them with
elu, possibly because they both cover ∼2 periods of the
cell cycle whereas elu covers only ∼1 (Table 2). elu was
also excluded for some analyses in the original reference
for apparently similar reasons.

Time warping programs
Four time warping programs genewarp, genewarpi,
grphwarp, and grphwarpi were developed in C++. NT
executables for all programs are available from our
web site. The four programs work in pairs: genewarp
and grphwarp, and genewarpi and grphwarpi. genewarp
performs a simple time warping, while genewarpi per-
forms an interpolative warping (see Section Algorithm
and implementation). grphwarp and grphwarpi are
graphics generation programs that take a file produced
by genewarp and genewarpi, respectively, to generate
graphics for the alignments. Generated graphics are in
the form of PostScript files (Adobe Systems Incorpo-
rated, 1999) that may be directly printed on compatible
printers or viewed using software such as GhostView
(http://www.cs.wisc.edu/∼ghost/) or Adobe Photoshop
(Adobe, San Jose, CA). Generated graphics contain
four parts: graphs of the two input time series in real
time, a graph displaying the optimal path through the
dynamic programming matrix (see Section Algorithm and
implementation), and a graph of the alignment of the input
series in a time frame where time values of aligned time
points are the averages of the aligned input series time
point values (the trajectory average time frame in Kruskal
and Liberman (1999)). grphwarp and grphwarpi can be
instructed to display only specific sets of genes from the
input time series and time alignment, a useful feature
when the number of input genes is large. It takes ∼3 s
to align time series using genewarp containing 18 and
24 time points for 495 genes on a 200 MHz Pentium II
computer with 96 MB RAM. Additional information on
the programs is given on our web site along with samples
of time series and parameter files that may be used to run
them.

ALGORITHM AND IMPLEMENTATION
We implemented algorithms based on Kruskal and
Liberman (1999). Details are provided on our web site.
Briefly, if expression levels of k genes are tracked during
the unfolding of a biological process, the process can be
conceived as tracing out a trajectory in k-dimensional
space (k-space) over time. A time series a for the process
then consists of a set of time points i (0 � i � n) each
corresponding to a particular measurement time ti , whose
expression level values ai define points in k-space on
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Table 2. Periods and related information for time series used for demonstration of time warping

Series Cell cycle perioda Periods in seriesb Periods / time pointc Initial phased

alpha 67.5 ± 6.5 1.8 0.10 G1
cdc15 119.0 ± 14.0 2.4 0.08 Late M
elu 422.5 ± 77.5e 0.9 0.07 G1

a Cell cycle periods and errors computed from RNA expression data as described in web supplement. Values are in minutes.
b Periods represented in entire time series (see Table 1).
c Periods represented by interval between consecutive time points. For the cdc15 series the interval was taken to be 10 min and applies to 18 out of the
24 series time points (see Table 1).
d Cell cycle phase of series at time 0 (Spellman et al., 1998).
e Error value presented for elu series is an underestimate (see our web site for additional details).

Table 3. Subsets of genes employed in time warping experiments. Non-null genes are genes for which expression levels were available in the original reference
data for every time point in the time series under consideration

Gene subsets Description Usage

pgt50 Non-null genes in both the alpha and cdc15
series with variances >50th percentile in
both series individually and together, sorted
in descending order by combined series
variance (990 genes).

• Alignment stability testing (Table 4)

• Time series used for most algorithm
testing

pgt33 Same as alpha/cdc15-pgt50 except for use
of 33rd percentile threshold (1549 genes).

• Alignment stability testing (Table 4)

pgt33-990 Last 990 genes of alpha/cdc15-pgt33,
containing genes with combined series
variance percentiles >33 and �80.1.

• Alignment stability testing (Table 4)

pgt50-odd, pgt50-even Division of pgt50 where each subset
contains every other gene. These sets have
approximately the same variance
distribution as pgt50 but half the sample
size (495 genes).

• Alignment stability testing (Table 4)

elu-pgt50 Non-null genes in the elu series alone with
variances >50th percentile (2883 genes).

• elu half series alignment (see text)

MET, CLB2, CLN2 Genes from the MET, CLB2, and CLN2
clusters identified in (Spellman et al., 1998)
that are non-null in each of the alpha, cdc15,
and elu series (11, 27, and 22 genes,
respectively).

• Alignment visualization

• Small cluster alignments (web site)

the trajectory (sample points). Relative to the a series,
a second time series b for a different instance of the
process may contain a set of time points j (0 � j � m)

corresponding to different times u j , and whose sample
points b j may come from a trajectory that traces through
different regions of k-space or traces through the same
regions at different rates (see Figure 1a). Simple time
warping uses dynamic programming to find the (many-
to-many) mapping i ↔ j that minimizes a weighted
sum of the k-space distances between the corresponding

sample points, subject to constraints of order preservation
(i < i ′ implies j � j ′ and j < j ′ implies i � i ′) and
globality (every i maps to some j and vice versa, 0 ↔ 0,
and n ↔ m). The mapping identifies an optimal time
alignment of the two series. The task of finding it is set up
as a dynamic programming problem by placing the time
points of each series along the axes of a grid, representing
alignments as paths through the grid cells, and finding the
path with minimum accumulated weighted distance score
(Figure 1b).
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Fig. 1. Illustration of simple and interpolative time warping algorithms (see text and web site for details): (a) Two time series a and b in a
two-dimensional feature space containing sample points from a continuous process, with sample points of each series mapped to each other
by simple time warping. (b) Dynamic programming matrix for simple warping and the optimal path corresponding to (a). (c) Series a and b
from (a) with sample points on each series mapped to interpolative points on the other by interpolative time warping algorithm. (d) Dynamic
programming grid for interpolative warping and the optimal path corresponding to (c).

Horizontal or vertical segments of the optimal path
identify places where multiple time points of one series
correspond to a single time point of the other. Where
measurement time intervals are comparable between
the series, these may represent situations in which the
instance of the biological process measured by one series
moves quickly through a phase of the process relative
to the instance measured by the other series. We call
such situations compexps (compression/expansions) and
they are analogous to the indels (insertion/deletions)
considered in sequence alignment algorithms. Where
the underlying processes sampled by time series are
continuous or nearly so, compexps artificially represent
process segments that span continuous intervals of time
as jumping instantaneously at a point in time. Compexps
may also result in artificially inflated alignment scores
(Kruskal and Liberman, 1999). Use of interpolations

between time points can address these issues. One option
is to apply simple warping to time series which have
been supplemented with interpolated values, an approach
that has been used successfully in fitting time series to
mathematical models (D’Haeseleer et al., 1999). The
genewarp and grphwarp programs can be used directly
on such interpolated time series (see Figure 4c). In this
method, compexps still appear in warps of interpolated
time series but may represent smaller time intervals, and
computed alignment scores will be based on comparisons
of interpolated time points that do not represent actually
measured values. For situations where these characteris-
tics are undesirable, Kruskal and Liberman describe an
interpolative algorithm that helps minimize them.

The key difference between the interpolative algorithm
and simple time warping is that instead of finding a map-
ping between time points of one series and time points of
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the other that minimizes the accumulated weighted dis-
tance between the corresponding k-space sample points,
it finds a mapping between time points of the two series
and linear interpolations between adjacent time points in
the other series that minimizes the accumulated weighted
distance between the corresponding k-space sample points
and interpolated sample points of the other (see Figure 1c).
We graph these alignments using a slightly modified ver-
sion of the scheme used for simple time warping: Here
time points are represented by the edges of the grid cells
instead of their centers, segments of the alignment path by
lines going from the lower or left edge of a grid cell to
the upper or right edge, and interpolation fractions by the
distances between path intersections with the lower or left
edges of a grid cell and the lower left grid cell corners (see
Figure 1d). Details are available on the web site along with
a discussion of issues raised by this algorithm including
time weight and interpolation definitions, reduced optimal
paths, and interpolation time point order errors.

For both the simple and interpolative algorithms,
execution time is O(mnk) and memory requirement is
O(c1mn + c2k(m + n)) for appropriate constants c1 and
c2.

RESULTS
In the following, please refer to Tables 1 and 2 for
information about the time series (alpha, cdc15, and elu)
and to Table 3 for information about sets of genes used in
the alignment (MET, CLB2, pgt50, etc.). When referring
to time series used as input to an alignment run, we use
the notation gene set:series, e.g. pgt50:alpha refers to the
time series defined by using only the genes from the pgt50
group from the alpha time series.

Whole series alignments and alignment stability
While genewarp can be used on any set of genes regardless
of whether their individual time course expression profiles
are similar, we first applied it to small clusters of genes
identified as having similar profiles (Spellman et al.,
1998) so that the operation of the algorithm could be
visualized easily. Several examples are presented on our
web site. While we noted that by eye the rises and
falls of the clusters in each pair of time series were
successfully aligned, we also noted that the path graphs
of the alignments of different clusters and time series
were quite variable. Focusing on the alpha and cdc15 time
series, we note that these series began in different cell
cycle phases and were sampled in such a way that each
time point represents approximately the same fraction of
the cell cycle for most of the two series (Table 2). If time
warping were working perfectly we would thus expect
to see an optimal path graph that starts with a vertical
or horizontal segment representing a short compexp that
compensates for the initial phase difference followed by

a long segment with slope close to 1. Such a pattern is
not consistently seen in the small cluster alignments. We
suspected that statistical variation due to the small size
of the gene clusters and the influence of measurement
noise might be masking the expected diagonal path
graphs. To explore the impact of measurement noise on
the stability of alignments we took the pgt50 set of
990 genes (see Table 3) and performed the following
procedure 250 times: (a) we randomly partitioned the
990 genes into two sets of 495, pgt50-rp1 and pgt50-rp2;
(b) ran genewarp alignments on pgt50-rp1:alpha versus
pgt50-rp1:cdc15, and on pgt50-rp2:alpha versus pgt50-
rp2:cdc15; (c) computed the area between the optimal path
graphs of these two alignments when overlaid on the same
grid (�A). pgt50 genes have low relative measurement
noise because they exhibit differential expression by dint
of having high variance across the time series, hence have
variances that reflect actual signal as well as noise, and
thus exhibit higher signal to noise ratios. By contrast,
genes that are not differentially expressed will have
log2 ratio expression levels consistently close to 0 and
their variance will reflect mostly measurement noise. We
followed this same procedure for two other sets of genes
that differed from pgt50 in their sample size and variance
characteristics and compared their average �A values
(�A) to the pgt50 �A (Table 4). The pgt50 �A values
are significantly lower than all the alternatives, indicating
that larger sample size and lower measurement noise
improve alignment stability. We repeated these results
with interpolative alignment using genewarpi and obtained
results supporting this same conclusion (Table 4). Because
of this stability, we focus mainly on the pgt50:alpha versus
pgt50:cdc15 alignment in further discussion below.

The genewarp alignment for pgt50:alpha versus
pgt50:cdc15 is shown in Figure 2 (see below for a
genewarpi alignment). Though the optimal warping path
graph (Figure 2c) is based on the full 990 genes in pgt50,
only the MET, CLB2, and CLN2 clusters are shown in
the time series graphs (Figures 2a, b, and d). This path
graph appears to be close to the expectations described
above for a perfect alignment by presenting a short mainly
horizontal segment at the beginning of the graph followed
by a long segment with an overall slope of ∼1. A feature
that does not match this expectation is the nearly vertical
segment in the upper right of the path graph. This feature
is common to many of the alignments we have generated
from the three series and even appears in some of the
small cluster alignments (see our web site). One possible
explanation is simply that the cdc15 series contains ∼0.5
cell cycle periods more than the alpha series (Table 2)
while the horizontal segment at the start of the path graph
suggests that the alpha series has to run through some
early time points to synchronize with the cdc15 series
start. The long vertical segment at the end of the path
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Table 4. Dependence of stability of time alignments on statistical character-
istics of the input time series data sets. Identified sets of genes were randomly
partitioned 250 times and, for each partitioning, the alpha and cdc15 series
data for the partition were aligned using simple (genewarp) and interpola-
tive (genewarpi) time warping. The area between the optimal warping paths
for the two partition alignments was computed for each trial and the average
used as a measure of alignment stability. Data sets with different statisti-
cal characteristics exhibit different levels of alignment stability, with larger
sets of genes with low relative measurement noise yielding the most stable
alignments

Gene seta Comparison with pgt50b �Ac s�A
d P-valuee

Size Noise

Simple warping (genewarp)
pgt50 = = 7.22 3.21
pgt33-990 = more 9.42 5.88 3.03e−07
pgt50-even less = 9.83 2.36 6.71e−23
pgt50-odd less = 12.71 3.43 1.93e−58

Interpolative warping (genewarpi)
pgt50 = = 3.46 1.85
pgt33-990 = more 8.06 3.00 8.48e−69
pgt50-even less = 8.46 3.19 9.31e−73
pgt50-odd less = 6.50 3.32 6.65e−32

a Gene sets as described in Table 3.
b Comparison of gene set with pgt50. See Table 3 and text for details.
c Area between optimal warping paths resulting from genewarp or
genewarpi alignment of each partition, averaged over the 250 random
partitionings.
d Sample standard deviation of �A.
e P-value of two-tailed t-test of equality of pgt50 and data set �A values.
The difference between pgt50 �A scores and those of all other data sets is
statistically significant for both simple and interpolative alignments. We
have no explanation for the fact that the difference between pgt50-odd and
pgt50-even �A values is also statistically significant for both simple and
interpolative alignments (P = 4.23e−25 for genewarp and 4.38e−11 for
genewarpi).

graph may simply represent excess time points at the end
of the cdc15 series that do not correspond with alpha
points and have no choice but to compexp with points at
the end of the alpha series. Dephasing of the synchronized
cell cultures towards the end of the time series might
also contribute to the generation of the vertical segment.
Dephasing would result in a flattening out of the time
course of expression levels for each cell-cycle regulated
gene (possibly seen in the MET and CLN2 clusters of
Figure 2b), and the feature space distances between these
sample points and any one sample point in the other series
would be about the same. Thus, once time warping found
a point p in the pgt50:alpha series with minimal distance
to the first dephased point in pgt50:cdc15, distances of the
remaining dephased pgt50:cdc15 points to p would also
be small, encouraging a compexp with p.

Half series time warps
The alpha series contains nearly two full periods of the
cell cycle and the cdc15 series contains slightly more than

two (Table 2). An additional test of time warping would
be to see if it could map the first and second cycles of
each of these two series. Again, if warping were perfect
we should expect to see an optimal warping path be close
to a line of slope 1. Meanwhile, the elu series contains
less than a full cell cycle period (Table 2) so an alignment
of its two halves should not yield a graph featuring a
slope 1 segment. We performed genewarp alignments on
all three pairs of half series and found that they all met
their respective expectations. Details may be found on our
web site.

Statistics of optimal alignment scores
Our use of warping path slope as an indicator of the
correctness of an alignment has only been possible
because we are dealing with time courses that are designed
to track the same processes, are for the most part evenly
sampled, and whose time points cover approximately the
same fraction of the process in each series. We cannot
expect these criteria to be met as more and different
kinds of time series are collected and compared; moreover,
our assessments based on slope have been qualitative
and a quantitative measure of alignment quality is highly
desirable. In other uses of dynamic programming such as
sequence and structure comparison, the alignment score
has proved a powerful means of evaluating alignment
quality when the probability of obtaining a given score or
better can be estimated. A frequently employed method is
to estimate the distribution of scores expected by random
queries and to locate the score for a query of interest
in this distribution (Karlin and Altschul, 1990; Levitt
and Gerstein, 1998; Pearson, 1998). However, this cannot
yet be done for time warping since it requires either a
theory-based estimate of the distribution of possible scores
for random queries or a large sample of scores from
alignments within a database of comparable time series,
neither of which is available.

As an alternative, we explored whether the quality of
an alignment might be assessed statistically by randomly
shuffling the vectors of gene expression levels associ-
ated with time points in each of the pgt50:alpha and
pgt50:cdc15 time series individually and obtaining the ge-
newarp alignment score for the shuffled series, repeating
this procedure for 500 iterations. This is a variant of pro-
cedures originally used to evaluate Needleman–Wunsch
and FASTA sequence alignments (Needleman and Wun-
sch, 1970; Pearson and Lipman, 1988). An advantage
of this method is that it is not affected by many factors
that might bias alignment scores in a general database
context, including varying numbers of genes in common
between query and database time series, numbers of time
points in each series, and data normalization differences.
We hoped that the actual score for the pgt50:alpha versus
pgt50:cdc15 alignment (3850.62, see Figure 2c) would
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Fig. 2. Overall genewarp alignment of alpha and cdc15 series using large set pgt50 of differentially expressed genes. This alignment is more
stable than those of smaller sets of genes or genes that are less differentially expressed (see text). (a) Average trajectories of MET, CLB2, and
CLN2 clusters of genes in input pgt50:alpha data series. Error bars represent standard deviations at each time point. (b) Average trajectories
with error bars of the same clusters in pgt50:cdc15 series. (c) Path graph and optimal path based on entire set of 990 genes in the input data.
(d) Time alignment of the MET, CLB2, and CLN2 clusters based on (c).
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be found at a low percentile of the shuffled series score
distribution. However, this value proved to be at percentile
25.5 of the shuffled series score distribution. We conclude
that use of shuffled series does not provide a good basis
for evaluating scores statistically. The fact that the alpha
and cdc15 are periodic so that more shuffles might score
as well as the original than might arise in non-periodic
series does not affect this conclusion, as such shuffles
would be extremely improbable (calculations not shown).
It is possible that the short lengths of time series (here 18
and 24 time points) compared to sequence lengths in
typical sequence alignment situations make it harder to
make use of score statistics in time warping.

Comparison with clustering
To compare time warping with clustering, we clustered
the combined set of alpha and cdc15 series time points
over the expression levels of the pgt50 gene set with
Ward’s algorithm (Everitt, 1980), a hierarchical clustering
algorithm that minimizes variance when combining sub-
clusters, using SPLUS 2000 (MathSoft, Seattle, WA). The
results are in Figure 3. As clustering groups time points
together regardless of what series they come from and
does not use the order information inherent in the time
values themselves, Figure 3 contains both groupings of
time points from individual series (e.g. figure grouping
a) and groupings that contain mixtures from both series
(grouping b), as well as groupings of nearby (c) and
remote (d) time points. The many examples of leaf-
level clusters containing adjacent time points of a series
(e.g. grouping c) are likely due to the fact that RNA
expression levels change slowly from one time point to
the next; hence, the feature vectors associated with each
time point are likely to be closer in feature space to those
of adjacent time points than any others. Feature vectors of
time points a period apart should also be close in feature
space and thus tend to group together, and this may be
behind grouping (d) which contains two alpha series time
points 56 min apart, not far from the 67.5 min computed
period (Table 2). From the point of view of time point
mapping, time warping’s ability to keep the two series
apart and focus on the correspondences between them
is a clear advantage over clustering. Both clustering and
time warping have a tendency to treat adjacent time points
similarly, resulting in compexps in time warping and the
clusters of adjacent time points just noted. But clustering’s
ability to map temporal correspondences may be blurred
by its inability to distinguish feature vectors in a series
that are close due to similar cell states from those close
due to time point adjacency, compared to time warping
which can distinguish them.

To see how the clustering may reflect these influences,
we labeled the alpha time points in Figure 3 according
to how well the hierarchically closest cdc15 time point(s)
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Fig. 3. Results of clustering of alpha and cdc15 time points based
on the pgt50 set of genes and comparison of time point clusters with
time warping alignments of pgt50:alpha versus pgt50:cdc15 (see
Figure 2) and the alignments of pgt50:alpha and pgt50:cdc15 half
series (see text and web supplement). Groupings a–f and time point
labels 0–4 are described in the text.

to an alpha point (cluster matches) corresponds with the
cdc15 time point(s) mapped to it by the time warping
of Figure 2 (warp matches). Alpha points labeled with 1
have a cluster match that exactly matches a warp match.
Alpha points labeled with 2 have a cluster match that is
adjacent in the cdc15 time series to a warp match. Alpha
points labeled with 3 have a cluster match that is a cdc15
period away from a warp match, where cdc15 points that
correspond across a period are identified by the cdc15 half
series time warping described above and on our web site.
Alpha points labeled with a 4 have a cluster match adjacent
to a cdc15 point a period apart from a warp match.
Alpha points that do not meet any of these conditions
are labeled with 0. From these assignments, possible
origins of larger groupings may be inferred. For instance,
grouping e appears to have begun from clusterings of the
alpha 91, 98, and 105 min points, and then the alpha 28
and 35 min points, by adjacency. The alpha 28 and 35 pair
then grouped with a cdc15 70 min point that represents the
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Fig. 4. Interpolative alignments of pgt50:alpha versus pgt50:cdc15. (a) Interpolative alignment of pgt50:alpha versus pgt50:cdc15 time series
as depicted by grphwarpi-generated path graph. Input time series graphics from grphwarpi are identical to Figures 2a and b. Two interpolation
time point order errors (see text) are indicated by ∗. Arrowhead: time point of alpha series which has been repeated with Gaussian noise to
mimic arrest (see text and Figure 5). (b) grphwarpi-generated time alignment graphic of MET, CLB2, and CLN2 clusters as determined by (a).
The effect of the order errors in (a) is seen in the sawtooth deviations of the alpha time series (circular ticmarks) at the vertical lines marked by
∗. (c) Non-interpolative genewarp alignment of pgt50:alpha versus pgt50:cdc15 where these time series were first modified by interpolation
of additional time points halfway between each pair of consecutive originally provided time points, as depicted by grphwarp-generated path
graph. Time point numbers in the graphic have been modified to be consistent with the path graph of the original uninterpolated pgt50:alpha
versus pgt50:cdc15 series shown in Figure 2c.

same cell cycle state, and the alpha 91, 98, and 105 min
grouping then joined in by virtue of being a period away
from the cdc15 (and also the alpha series) perspective.
Similarly, grouping f apparently consists of three alpha
points grouped by adjacency, which are then joined to a
cdc15 point that exactly corresponds to one of them.

Interpolative alignment
We used genewarpi to align the pgt50:alpha and
pgt50:cdc15 series and the grphwarpi-generated path
graph and time alignment is shown in Figures 4a and b.
The input time series graphs are identical with those in
Figures 2a and b. The interpolative path graph remains
close to the expectations for a perfect alignment in having
a long segment of slope near 1. Deviations from the
slope 1 line appear by eye less pronounced than the non-
interpolative alignment graph in Figure 2c. Interpolative
time warping can sometimes generate alignments where
interpolated time points are out of proper time sequence
(interpolation time point order errors). Two interpolation
time point order errors are marked in Figure 4a with
asterisks. They appear as path graph segments with
negative slopes where the second of two consecutive

interpolations in the alpha series has an earlier time
value than the first. These order errors also appear at the
asterisked vertical lines as small sawtooths in the alpha
series graph lines (circular tic marks) in the overall time
alignment in Figure 4b. Because of the order errors, the
alignment score of 3511.47 must be smaller than the
score of the truly optimal path. (See our web site for
explanations of this and the related issues below.) The
alignment was rerun with the enforceorder option, which
suppresses order errors at the cost of returning a possibly
suboptimal alignment. When running with enforceorder
the appearance of a similar graph to the original cannot
be guaranteed; however, in this case, the enforceorder
graph is identical except for correction of the order errors.
Because the score with enforceorder is 3512.49 (see web
site), the score of the truly optimal path must be in the
small range between 3511.47 and 3512.49. As expected,
the optimal alignment score is less than the score of
3850.62 returned by simple non-interpolative alignment
of the same series (Figure 2c). For purposes of compar-
ison, we also performed a simple genewarp alignment
on the same pgt50:alpha and pgt50:cdc15 time series but
where these time series were first modified by addition
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of interpolated time points halfway between each pair of
consecutive time points in the original series (Figure 4c).
This, too, results in an alignment score lower than the
original simple alignment of the uninterpolated time series
(3400.3 versus 3850.62) and presents an optimal path
that tracks closely to a diagonal of slope 1. However, as
noted above (see Section Algorithm and implementation),
compexps are not eliminated in this alignment. Indeed, in
this particular interpolative alignment, the path graph is
composed entirely of compexps and presents no diagonal
segments at all.

Generality and robustness of alignments
We wished to confirm that the algorithms produce ex-
pected results in situations where we would not expect
the time series to align with a nearly diagonal path graph
slope, and where the time points of the two series do not
represent nearly equal fractions of a biological process.
We therefore created 100 instances of a time series
pgt50:alpha.tp7+4rand that mimicked what pgt50:alpha
would be like if the cells arrested at time point 7 (49 min)
for 28 min, by repeating four copies of time point 7
after the original at the usual 7 min alpha series time
intervals with admixtures of Gaussian noise. We chose
standard deviations for the noise for each gene by taking
the time point 7 expression level value and the expression
levels for the four other time points whose values were
the closest to the time point 7 value, reasoning that
this choice mimics an arrest at time point 7 better than
considering the time point 5, 6, 8 and 9 values (which
could reflect possibly large motions through the time
point 7 value for some genes). We chose time point 7
(which is in S/G2 according to Alter et al. (2000))
because it is in the midst of a series of time points that
appear in a strongly diagonal segment of the genewarpi
path graph with pgt50:cdc15 (Figure 4a, arrowhead). If
time warping is working properly, alignments of these
modified series against pgt50:cdc15 should generate path
graphs in which the original diagonal is interrupted by a
horizontal compexp for four time points. Figure 5 presents
a superimposition of all 100 path graphs. The 100 path
graphs are all so similar that even as a group they are
visually indistinguishable from a single graph containing
a perfectly horizontal line at the repeated time points.
We also computed the areas between each of these path
graphs against one containing a perfectly horizontal line
at the repeated points, and found �A = 0.0349 ± 0.0116
(mean ± SD). These results suggest that time warping
will work properly in situations in which time points in
two time series represent unequal portions of a biological
process, and where the process unfolds at varying rates.
They also suggest that time warping can map series that
would be difficult to map by simpler means such as linear
fits between time axes.
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Fig. 5. Superimposition of 100 path graphs generated from ge-
newarpi alignment of modified version of pgt50:alpha against
pgt50:cdc15 where four copies of pgt50:alpha time point 7 are in-
serted into the pgt50:alpha series with admixtures of Gaussian noise,
mimicking a 28 min arrest in the alpha series at the state achieved
at time point 7. Time point 7 in the alpha series is in the midst of a
strongly diagonal section of the path graph of the genewarpi align-
ment with pgt50:cdc15 (Figure 4a, arrowhead). The result of all
100 alignments of pgt50:cdc15 with noise modified insertions into
pgt50:alpha is insertion of a four time point segment visually indis-
tinguishable from a horizontal line (arrowhead, above) that correctly
represents the mapping of pgt50:cdc15 against the arrest simulated
in modified pgt50:alpha series.

DISCUSSION
The programs described here provide a basic capability to
align RNA or protein expression time series but can be
used in other applications. One possibility is to use them
to align composite time series that contain phenotype pa-
rameters in addition to expression levels that are measured
on the same time course. Depending on the domain of
application, these might include cell-specific parameters
such as average cell size or physiological parameters such
as blood pressure or temperature. The relative contribu-
tions of such parameters to alignment score calculations
can be adjusted using feature weight parameters already
supported by the programs. The alignment programs can
also be used not only to align RNA and protein expres-
sion series individually, but series that combine both RNA
and protein data. Finally, the programs can also be applied
to aligning non-temporal series such as expression pro-
files for cells over a range of concentrations of compounds
(concentration warping). These would be of interest when-
ever cells have a common dose response trajectory at the
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RNA or protein expression level but move through it at
different rates relative to changes in compound concen-
tration when the cells are from different strains or culture
conditions.

In addition, many modifications and enhancements to
the algorithms are possible, including support for (a) time
series containing genes with incomplete sets of mea-
surement values (see equation (5) in the Algorithm and
implementation section of the web supplement) (b) gaps
(Kruskal and Liberman, 1999), (c) local time series align-
ments (cf. Smith and Waterman, 1981), (d) multiple time
series alignments, and (e) incorporation of constraints
that would bar alignments between time series segments
covering widely unequal time intervals (Sakoe and Chiba,
1978) (however, this cannot be done using path slope
constraints which implicitly presume even sampling
across the time series). Other directions for development
would include (f) development of hidden Markov models
(Durbin et al., 1998) for time alignment of expression
data, and (g) support for what we call causality searches:
Here the time series expression profile of a gene or gene
set is warped against that of another gene or gene set in
the same time series, and the object is to find cases where
the second genes follow similar trajectories to the first but
where they are generally delayed in the series relative to
the first, identifying the first genes as candidate regulators
of the second.

Development of statistics for time alignment scores
is an area of opportunity for improving time warping.
A possible direction would be to base alignment scores
on functions of Euclidean distance rather than directly
on these distances. In an analogous situation, structure
alignment score distributions have been successfully fit
to extreme value distributions when algorithms maximize
similarity scores based on Si j = M/(1 − (di j/d0)

2)

where di j are Euclidean distances and M and d0 are
suitable constants, rather than minimizing weighted
sums of di j directly as done here (Levitt and Gerstein,
1998). A more general issue will involve development
of appropriately normalized forms of scores that take
into account variable numbers of common genes and
different time series lengths that will enable com-
parisons of scores of a query time series against a
database of other time series of similarly normalized
expression data that differ in these properties. As with
clustering (Aach et al., 2000), time alignments of time
series of expression level data gathered by different
methodologies or subjected to different normalizations
will likely be affected by biases and artifacts and should
be interpreted with caution.

As an alignment algorithm, time warping is a differ-
ent kind of tool than other kinds of analysis recently
applied to expression time series. Though it has points of
contact with Fourier analysis (e.g. as used in Spellman

et al., 1998) and SVD (Alter et al., 2000; Holter et al.,
2000; Raychaudhuri et al., 2000), it is not a method of de-
composing signals into a weighted sum of basis functions
or vectors and simplifying them by focusing on principal
terms. Though these techniques hold much promise, they
are not principally alignment tools and we foresee the
need for research into the techniques and conditions of
applying them to alignment. For instance, we would be
interested in seeing how Fourier analysis might be used to
align series that contain varying relative rate differences
or arrests (cf. Figure 5), and in understanding how densely
and evenly sampled time series must be to apply Fourier
analysis effectively in this way. Like clustering, SVD
does not make use of the information provided by the
measurement times of the time points it analyzes and
thus might require special techniques to avoid confusing
temporal proximity with non-temporal similarity of cell
state in aligning series. Though we do not doubt that
these tools will eventually offer powerful methods of time
series alignment in some applications, time warping is
available now as a simple and general alignment tool.

While time warping maps two time series in a way that
compensates for varying relative rate differences in gene
expression levels moving along similar expression trajec-
tories, it does this by mapping the time points themselves
and therefore operates as if all the genes in a cell move
relatively in lock step. But we suspect that biology will
present cases where some pathways or gene groups in a
cell move quickly through an expression trajectory while,
at the same time, others are moving slowly, relative to
another time series of the same process. We call such situa-
tions time course superpositions. Their detection raises an
interesting scientific problem because pathways and gene
groups whose time courses are superposed may contain
only small numbers of genes and their apparently distinct
time course relative to other genes might be indistinguish-
able from the statistical instability we found characteristic
of small gene group alignments (see Results). For
instance, the MET gene cluster appears to align less well
than the CLB2 and CLN2 series in the middle segment of
the time alignment of Figure 2d, but we cannot conclude
that it is on a separate time course because this cluster
contains only 11 genes, too small to assure a stable align-
ment. If only a few large sets of genes with superposed
time courses exist, the sets might be found by clustering
the individual time series and their variant time courses
characterized by time warping the clusters. Otherwise,
repeated experiments or demonstration of independent
and unsynchronized regulation would be required.
Superpositions may be interesting to consider in connec-
tion with cell checkpoints, for the latter may represent
situations where different pathways operate under
independent regulation and need to be synchronized by a
supervening process.
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Gene expression time series analysis will become
increasingly important as researchers apply high through-
put assays for gene expression to the understanding of
biological processes as they unfold over time. We have
adapted time warping algorithms to gene expression
data and demonstrated them on published yeast gene
expression time series, showing that they are capable of
mapping corresponding cell states across these series. By
using time series information available to but not used
by clustering, we have also shown that time warping is
superior to clustering in this task. We believe that time
warping, with the suitable enhancements indicated above,
will soon join clustering and signal analysis as a key
bioinformatics tool.
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