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ABSTRACT
Motivation: Our aim is to develop a process that automat-
ically defines a repertory of contiguous 3D protein struc-
ture fragments and can be used in homology modeling.
We present here improvements to the method we intro-
duced previously: the ‘hybrid protein model’ (de Brevern
and Hazout, Theor. Chem. Acc., 106, 36–47, 2001) The
hybrid protein learns a non-redundant databank encoded
in a structural alphabet composed of 16 Protein Blocks
(PBs; de Brevern et al., Proteins, 41, 271–287, 2000). Ev-
ery local fold is learned by looking for the most similar pat-
tern present in the hybrid protein and modifying it slightly.
Finally each position corresponds to a cluster of similar 3D
local folds.
Results: In this paper, we describe improvements to our
method for building an optimal hybrid protein: (i) ‘baby
training,’ which is defined as the introduction of large
structure fragments and the progressive reduction in the
size of training fragments; and (ii) the deletion of the
redundant parts of the hybrid protein. This repertory of
contiguous 3D protein structure fragments should be a
useful tool for molecular modeling
Contact: debrevern@urbb.jussieu.fr

INTRODUCTION
Although it has been suggested that protein structures
may adopt only a limited number of folds (Govindarajan
et al., 1999), the determination of their 3D structure
from their sequence remains a difficult task (Baker and
Sali, 2001). The conventional methods, such as homology
modeling (Fiser and Sali, 2002) and threading (Kelley
et al., 2000) take advantage of the substantial growth of
the Protein DataBank (Berman et al., 2000). At the same
time, the ‘ab initio modeling’ strategy is still restricted
to small proteins (Bonneau and Baker, 2001). At the
last CASP4 workshop, ab initio modeling with some
structural constraints showed very encouraging results in
some complicated protein structure predictions (Bonneau
et al., 2001).

∗To whom correspondence should be addressed.

Protein prediction is based first and foremost on an
accurate knowledge of the available protein structures.
These structures may be studied at different levels: (i)
local, on the basis of its classical secondary structures (3-
state coding) or of a ‘structural alphabet’ (n-state coding,
n > 3); (ii) the protein domains; and (iii) the clusters of
protein folds.

At the simplest level, the 3D structure description is of-
ten limited to sequences of secondary structures (α-helix,
β-sheet and coil). Defining this simple 3-state alphabet is
not an easy task. Accordingly, different algorithms have
been developed for this; they use various criteria, such as
dihedral angles (φ, ψ) distribution, energetic values, Cα

distances, consensus or crystallographic approaches (Col-
loc’h et al., 1993; Frishman and Argos, 1995; Labesse et
al., 1997; King and Johnson, 1999). The α-helix and β-
sheet repetitive structures represent less than 50% of all
protein folds. Attempts to classify coils have not yielded
completely satisfactory results, due to their large confor-
mational variability (Ring et al., 1992)

To overcome these limitations, libraries of small proto-
types have been built to describe protein structures in their
entirety. They are based on different types of data (back-
bone description in terms of Cα, dihedral angles, or other
angles), fragment lengths (from 4 to 9) or numbers (from
4 to 100) (for a review, see de Brevern et al., 2001). We
have chosen to use an alphabet composed of 16 Protein
Blocks (PBs), each 5 Cα in length; it approximates pro-
tein 3D-structures with adequate accuracy and has been
used in a Bayesian prediction of protein structures from
their sequences (de Brevern et al., 2000).

At the intermediate level, a protein is described as a
set of protein domains, with the definition of domains
dependent on the criteria used. Jones et al. (1998) have
shown that the three classic algorithms—PUU (Holm and
Sander, 1994), DOMAK (Siddiqui and Barton, 1995) and
DETECTIVE (Swindells, 1995)—assign only 72% of pro-
teins to the same cluster. Wernisch et al. (1999) and Taylor
(1999) have developed new more precise definitions of do-
mains. This type of research is essential to the understand-
ing of protein folding and interactions (Jones et al., 2000).
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A higher level of protein description classifies them into
different families, i.e. the proteins are described by their
secondary structures. The most popular classifications
are SCOP, which provides a detailed description of
the structural and evolutionary relations between all
proteins with a known structure (Murzin et al., 1995),
FSSP, based on exhaustive all-against-all 3D structure
comparisons (Holm and Sander, 1996), and CATH, a
hierarchical domain classification of protein structures
(Orengo et al., 1997). These classifications are used to
find distant structural homologues (Bray et al., 2000)
or for structural genomics purpose (Pearl et al., 2000).
Systematic comparison of protein structure classifications
of these three databases shows that they classify similarly
only two thirds of all proteins (Hadley and Jones, 1999).

Describing and classifying protein structures are thus
not easy tasks. The ‘hybrid protein model’ (HPM) at-
tempts to tackle some of these issues. Because proteins
have common local structures of various lengths, we tried
to stack the structures locally. HPM is an unsupervised
classifier, similar to Kohonen’s self-organizing maps
(SOM; Kohonen, 1982). These unsupervised methods are
widely used in proteomics. For example, SOM can assess
the composition of protein secondary structures from
circular dichroism experiments (Unneberg et al., 2001)
or from the clustering of protein sequences into families
(Ferrán et al., 1994; Andrade et al., 1997). Developing
those approaches makes it possible to create an associative
database of protein sequences, accessible via the internet
(Hanke et al., 1999). They can also be used to search
for protein cleavage sites (Schneider et al., 1998), map
enzyme sites (Stahl et al., 2000), or determine secreted
proteins (Schneider, 1999).

In our approach, HPM builds a concatenation of local
structures that share common parts (de Brevern and Ha-
zout, 2001). After training a non-redundant protein data-
bank, every local structure of every protein is located in a
given position of the hybrid protein. Its principal interest is
that it defines contiguous fold clusters. The improvements
that we introduce to the HPM approach here affect two cri-
teria: (i) continuity between consecutive hybrid positions;
and (ii) redundancy within the hybrid protein. The strate-
gies to accomplish this involve: (a) ‘baby training,’ by
which large structural fragments are introduced, with their
size progressively reduced during the training; and (b) the
deletion of the redundant parts of the hybrid protein.

Hence, the hybrid protein helps us understand both its
structures and its amino acid sequences. The quality of this
optimal hybrid protein has been assessed by evaluating the
3D local folds at each site of the hybrid protein. Some
of these are detailed here, and the informativity of the
sequence is analyzed. In the last section, we will point
out the various potential uses of this repertory of protein
structure fragments for structure prediction.

MATERIALS AND METHODS
Databank of 3D protein structures encoded into
protein Blocks
In a previous paper (de Brevern et al., 2000), we es-
tablished a structural alphabet for coding 3D protein
structures; it is a set of 16 local prototypes, called Protein
Blocks (PBs), that can approximate the protein backbone
locally. The average root mean square deviation (rmsd) of
the PBs is 0.58 Å. The 16 PBs are labeled by letters from
a to p. PB m is the prototype of the central α-helix and d
the prototype of the central β-sheet. PBs a to c primarily
represent β-sheet N-caps and e and f , C-caps; g to j are
specific to coils, k and l to the N-caps, and n to p to the
C-caps of α-helices. This categorization provides a rough
approximation of the PB locations in the protein folds.

Figure 1 shows the coding of a lysozyme (code PDB:
153l): every fragment of 5 consecutive residues is assigned
to the corresponding Protein Block according to its series
of dihedral angles. Thus a protein M amino acids long
is translated into a string vector of (M − 4) PBs. The
interest of using a structural alphabet lies in its conversion
of a 3D object (i.e. the protein backbone) into a string
of characters (i.e. the associated PB series). This alphabet
has also been used to predict local protein structure by a
Bayesian approach (de Brevern et al., 2000).

The databank used in our study is composed of 717
non-redundant proteins taken from the Protein DataBank
(Berman et al., 2000). Specifically, we selected from the
PAPIA databank (Noguchi et al., 2001) the chains with
a resolution of 2 Å or less and an R-factor less than 0.2.
Each structure selected had an rmsd value at least 10 Å
larger than all the other structures selected and a sequence
identity of 30% or less. The entire 3D protein structure of
each protein selected was encoded into PBs. Hence, the
databank is composed of 177 986 PBs.

‘Hybrid protein model’ (HPM)
In another previous paper (de Brevern and Hazout, 2001),
we developed a novel training approach called the ‘hybrid
protein model’ (HPM). Its goal is to compact the protein
structure encoded in PBs into clusters of contiguous
3D structure fragments. Hence, the hybrid protein is a
chimerical protein composed of N sites and for which
every position i is defined by a probability distribution
fi (bn), with bn denoting one of the 16 PBs (n =
1, 2, . . . , 16). Figure 2 summarizes the principle of the
training. Every 3D protein structure is cut into overlapping
series of L PBs. A fragment of 13 PBs is taken randomly
from the non-redundant databank, here mmmmmmnopafkl
(cf. Figure 2a). The fragment is presented to the hybrid
protein and a score is computed to find the best fit
between the fragment and the hybrid protein region. The
position associated with the highest score is noted by a
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Fig. 1. Coding of a lysozyme (code PDB: 153l) into protein blocks (PBs). (a) 3D structure representation using XmMol (Tuffery, 1995) and
Raster 3D (Merritt and Bacon, 1997). (b) Local coding of 153l N-ter with PBs n, o, p and f . (c) Representation of protein 153l in terms of
PBs. The two symbols ‘Z’ denote the extremities of the structure.

Fig. 2. Principle of the ‘hybrid protein model’ (HPM) training (see text).

star (cf. Figure 2b). The submatrix around this position is
slightly modified to learn this fragment: the frequency of
the PBs of this fragment increases (colored box), while
others decrease (cf. Figure 2c). Another fragment is then
presented for training (cf. Figure 2d). This training aims at
the progressive improvement of the S score, used to cluster
the protein fragments.

For a local structure F from the databank, we compute
an Si score at each position i of the hybrid protein:

Si =
k=+w∑
k=−w

ln

[
fi+k(bk)

fR(bk)

]

where k denotes the position of block bk in fragment F of
length L (= 2w+1). The index k = 0 indicates the middle
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of the fragment (PB n in the example). The frequency
fR(bk) corresponds to the reference frequency of PB bk
observed in the databank.

The Si score is the log odds score, i.e. the logarithm of
the ratio of likelihoods between two hypotheses: the first
is that fragment F is defined by a randomly-ordered series
of PBs, and the second that it is built according to the PB
distribution of the hybrid protein.

The most similar local structure prototype is determined
by searching for the position i0, the index for which Si
is maximal, i.e. i0 = argmax[Si ]. The positions i0 − w to
i0+w will be modified slightly to increase the resemblance
between this part of the hybrid protein and local structure
F. In position i + k, the value of the x th PB fi+k(bx ) is
changed to [ fi+k(bx )+α]/[1+α]. The value of x ′ of all the
other PBs decreases by [ fi+k(bx ′)]/[1 + α]. The learning
coefficient, α, is a user-fixed value (e.g. α = 5 × 10−3)
and decreases during the iterations.

This transformation allows us to increase the score of
fragment F. The training is progressive and must examine
the entire local structure databank C times.

Continuity between the consecutive positions (i.e. con-
tiguous fragment clusters) is ensured. After training, ev-
ery position i of the hybrid protein characterizes a cluster
of folds of length L that are structurally similar. This site
maintains its continuity with the contiguous site i − 1, be-
cause they have in common for the score computation the
distribution of L − 1 PBs.

Improvements for obtaining an optimal hybrid
protein
Two properties characterize an optimal hybrid protein:

(i) consistency between consecutive hybrid positions,
i.e. when a fragment F, extracted from a given 3D
protein structure in the first position p of the the
sequence, is located in position i0 in the hybrid
protein, F ′ shifts by one residue in the sequence
(into position p + 1) must be generally located in
position (i0 + 1) in the hybrid protein. A 3D protein
structure is thus represented by a limited number of
hybrid protein regions.

(ii) lack of redundancy within the hybrid protein. Two
regions of length L are redundant in the hybrid
protein when their L consecutive PB distributions
are similar.

To maximize continuity, we introduced a procedure
called ‘baby training,’ by which long fragments are
introduced in the early cycles, with the fragment size pro-
gressively reduced in the following cycles. This procedure
should promote continuity in hybrid protein learning. It is
called ‘baby training’ by analogy with the development
of visual perception in infants: in the early months, they

perceive crude patterns and progressively their vision
becomes finer. For example, in our study, we want to
build a protein hybrid able to cluster the local folds of 13
PBs (L = 13). In this strategy, the training starts with
fragments of 23 PBs and continues on to fragments of 18,
15 and finally 13 PBs.

To minimize redundancy, we compute a confusion
matrix C(i, j) of dimension N × N during one cycle.
A fragment F is counted in the element (i0, j0) of the
matrix when its optimal position in the hybrid protein is
i0 (i.e. i0 = argmax[Si ]) and its second best is j0 (i.e.
j0 = argmax(i �=i0)

[Si ]). From this matrix, symmetrized
for the analysis, we search for redundant regions, that
is, those longer than a user-defined value l0. Indeed, this
matrix defines the diagonals of minimal lengths l0, i.e.
C(i, j), C(i + 1, j + 1), . . . , C(i + l0 − 1, j + l0 − 1)

that occur more than a given nlim. In our study, we set l0
and nlim at 10 and 85 respectively.

Among the paired regions, we select the longest and
delete the other ones. Only one region longer than l0 is
rejected from the hybrid protein per cycle. After a certain
number of cycles, the reduction of hybrid protein length is
stopped. We obtain an optimal hybrid protein, conditioned
by the choice of the parameters l0 and nlim.

Description of contiguous local fold clusters
The hybrid protein is a series of PB distributions from
which an S score can be computed to cluster the struc-
turally similar protein fragments of length L . From the
optimal hybrid protein, we can superimpose the protein
backbones of fragments located in a given position and
assess the structural variability at each point by the rmsd,
the quantity conventionally used in molecular modeling.
We can also calculate the associated amino acid compo-
sition (i.e. the frequency of a given amino acid in a given
position of the fragment) and assess the informativity of
the sequence within the cluster.

Entropy can be computed to quantify the diversity of the
PBs of the hybrid protein: Hi = − ∑16

b=1 fi (b). ln[ fi (b)],
where i denotes the position of the site and fi the
corresponding PB distribution, b indexes a given PB.
The transformation of the entropy into Neq = exp[Hi ]
allows us to assess the PB diversity in terms of ‘equivalent
number of PBs’: Neq varies between 1 (i.e. only one
PB is present) and 16 (i.e. every PB occurs at the same
frequency).

Each position is associated with a set of 3D protein
fragments of length L with their corresponding sequences.
To quantify the occurrence of each amino acid at each site,
we computed the N occurrence matrices of dimensions
L × 20. Then we normalized this information into
Z -scores to determine which amino acids were over-
and under-represented (de Brevern et al., 2000). Hence,
positive Z -scores (respectively negative) correspond to
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Hybrid Protein Model

Fig. 3. Successive reductions of the hybrid protein. (a) Hybrid protein at cycle 5 shows redundancy between two regions located in positions
[68:84] and [384:400]. The latter is deleted. (b) At cycle 6, the new redundant regions are located in positions [71:88] and [303:320]. (c) At
cycle 7, the redundancy is between positions [7:25] and [340:358]. The black boxes under the hybrid proteins indicate the locations of the
redundant regions.

over-represented (respectively, under-represented) amino
acids.

Another index used to quantify the sequence informa-
tivity in a given position of the cluster is the Kullback–
Leibler asymmetric divergence measure (noted KLd,
Kullback and Leibler, 1951). With a denoting a given
amino acid, it is defined as

KLd(pi, q) =
20∑

a=1

pi (a) ln

(
pi (a)

q(a)

)

It quantifies the contrast for a given position between
the amino acid frequencies observed in the cluster pi :
{pi (a)}a=1,...,20 and a reference probabilistic distribution
q{q(a)}, i.e. the probability of each amino acid type in
the database. For a fold cluster, a KLd profile is built
by computing this quantity for the (L + 4) positions
that compose the sequence windows associated with the
fragments of length L .

RESULTS AND DISCUSSION
Evolution of the hybrid protein
The hybrid protein is initially defined by a series of N
almost identical PB distributions: fi (bx ) = fR(bx ).(1 +
εi ), where fR(bx ) is the frequency of PB bx in the database
and εi a random value in the range [−τ ; +τ ] (in our study,

τ is fixed at 0.10). We then readjust fi (bx ) to obtain a total
sum of 1 per site i . To avoid possible bias at the extremes,
the hybrid protein is close, since the N th site is contiguous
with the first.

The initial size of the hybrid protein is fixed at 400.
During the training, it shrinks as the redundancy criterion
is applied. Figure 3 shows the successive reductions in
length through 3 successive iterations; the black boxes
under the hybrid protein indicate the redundant regions.
The similarity of the PB composition is clear. After the
deletion of each region, a new cycle of fragment training
begins. This procedure is controlled by two parameters:
the minimum size l0 of the redundant region to be deleted,
and the redundancy level nlim (i.e. the minimum number
of fragments located in these redundant regions). The
parameters we chose—l0 = 10 and nlim = 85—enable us
to one an optimal hybrid protein with 233 positions after
30 cycles (= C). This reduction is substantial, i.e. 167 of
400 positions deleted.

Description of the optimal hybrid protein
Figure 4 reports the results of the training after 30 learning
cycles (i.e. C-value). Figure 4a shows the composition of
the PBs along the hybrid protein. The regular secondary
structures (those associated with PBs m and d) are
clearly detectable: eight types of α-helices distinguishable
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Fig. 4. Optimal hybrid protein. (a) PB distribution along the hybrid protein, with a final length of 233. (b) The number of protein fragments
per site (the position 43 is associated with 4649 observations). (c) Neq distribution along the hybrid protein (Neq varying between 1 and 16).
(d) rmsd values (computed for all the fragments of length 13 Cα associated at each site).

by their sizes (4–20 PBs) and at least eight β-strands.
All the transitions between regular secondary structures
can be identified: α-helix to α-helix positions [34:51]
and [82:105], α-helix to β-strand positions [41:67] and
[100:125] β-strand to α-helix positions [57:87], [132:160]
and [182:215], and a series of β-strand to β-strand
between positions [57:67], [110:150] and [171:201].

We also detect different motifs located at the beginning
or the end of regular secondary structures; these include
fkl and nop for α-helices, and ac and ehia for β-strands.
Figure 4b shows the number of fragments along the
hybrid protein. The distribution is almost uniform, with
the smaller sizes corresponding to coils. Figure 4(c) gives
the variation of the ‘equivalent number of PBs’ Neq
index along the hybrid protein. Most positions are highly
specific, with an Neq value close to 1. The high Neq
values correspond to transition regions, such as turns
between two strand positions [135:142], coils between
two α-helix positions [29:34], and long coil positions
[398:15], or to distorted secondary structures such as β-
strand positions [177:192]. After 3D superimpositions of
the protein fragments of a cluster (associated with a given
position), we computed the rmsd. Figure 4(d) shows the
variation of the rmsd per site. This quantity assesses the
quality of the training in terms of structural variability.
The average rmsd is 3.4 Å for the fragment 13 Cα in
length. The range is [0.92 Å; 6.20 Å], which is quite good
compared with other classifications (Wojick et al., 1999).

The lowest value corresponds to a long regular α-helix
located in position 48, the highest to a variable coil in
position 183. Globally, the local structures with a low rmsd
(less than 2 Å) are α-helices or transitions between a β-
sheet and an α-helix, or between two α-helices.

Examples of fragment clusters
Figure 5 shows three examples of fragment clusters. They
are located in positions 48, 138 and 183 in the hybrid
protein and correspond to three different rmsds levels
(0.92, 3.43 Å and 6.20 Å, respectively). The first is a
regular α-helix, the second a turn between two consecutive
β-sheets and the third a long curved coil.

The occurrence matrix of PBs, i.e. the number of times
a given PB is observed in a given position for all the
fragments of the cluster, is displayed for each example
(see Figure 5d–f). We observe that the first is defined
principally by the motif m10nop, i.e. a regular α-helix
of 10 consecutive m PBs, followed by the often observed
terminal series nop. The second example has a signature
in terms of PBs: d(d, f )( f, k)(k, n)opacd3, according
to the most frequent PBs in every position. The motif
opac is often observed at the beginning of a β-sheet.
The third example has a variable signature, but we see
that in positions 2 and 5 PBs f and c appear respectively
at a frequency of more than 89%. Its first five blocks
are characteristic of a coil, and the next four follow a
distorted β-strand that is composed primarily of a mix of
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Fig. 5. Examples of local prototypes (or local fold clusters). 3D superimpositions of fragments associated with the sites : (a) # 48 (fragments
associated with positions [41:55], rmsd = 0.92 Å), (b) # 138 (positions [131:145], rmsd = 3.43 Å) and (c) # 183 (positions [176:190],
rmsd = 6.20 Å) and the PB occurrence matrices (displayed in grey levels) associated with those sites: (d) # 48, (e) # 138 and (f) # 183. The
symbol # denotes the number of the central amino acid positions.

PBs—b, c and d. These occurrence matrices are similar
to the associated hybrid protein parts, but not identical.
The hybrid protein is a scoring matrix used to cluster
fragments, not a PB occurrence matrix.

Figure 6 gives the occurrence matrices of the amino
acids observed in each cluster, normalized into Z -scores,
and the KLd profiles within the sequence window of 15
residues. Some amino acids are more commonly found
in α-helices while others have a predisposition for β-
sheets. Globally, we again find the standard propensities
of amino acids in the regular secondary structures: over-
representation of alanine (positions 3–14 in Figure 6a) in
the α-helices, with charged residues at their N-caps and C-
caps, such as lysine, arginine and glutamic acid (positions
1–6 and 12–14); similarly, glycine and asparagine in coils
(position 15 for the first cluster–Figure 6a—, position 10
for the second cluster—Figure 6b—and aliphatic residues
for the β-sheets—Figure 6b). The under-representation of
amino acids in certain positions is also informative. For
example, leucine, methionine and alanine are favored in
α-helices, but not found in β-sheets (compare the Z -score
matrices of Figure 6a and b). Similarly, the central region
of the second motif (positions [7:10]) shows hydrophobic
residues to be under-represented, with serine, threonine
and proline possible. This region corresponds to a turn
between two β-sheets. Figures 6d–f are the KLd profiles
of the same clusters, i.e. the sequence informativity for
every position of the window. Figures 6d and e show
that some positions are highly informative (KLd > 0.15),

mainly because of the presence of glycine or asparagine.
The third cluster, on the other hand, shows substantial
structural variability (rmsd = 6.2 Å) and low sequence
informativity (K Ld < 0.15).

Relevance of the HPM improvements
We assessed the advantages of the two procedures intro-
duced in the training: ‘baby training’ and hybrid protein
size reduction by redundancy deletions. To test the baby
training, we eliminated it, i.e. we set a fixed size for the
series of PBs to be learned by the hybrid protein (L = 13
in our study). The result was a priori surprising: much
of the hybrid protein (approximately 150 sites) was not
used for the training (figure not shown). In fact, only 250
sites were needed to stack the fragments of that size (13).
Moreover, the hybrid protein was cut up into lengths close
to L . Accordingly, while the baby training procedure is
useful for extending continuity between the regions and
promoting an optimal distribution of the fold clusters,
some parts of the hybrid protein appear somewhat redun-
dant. The second important point is controlling the length
N of the hybrid protein by deleting the redundancy. This
control is ensured by the parameters l0 and nlim. The
parameter l0 should be approximately or slightly less than
fragment size L (in our study l0 = 10). Higher values
do not reduce size significantly. Lower values cut up the
hybrid protein into small pieces. The other parameter,
nlim, i.e. the minimum number of occurrences between
two redundant regions, is essential to control the size of
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Fig. 6. Amino acid propensities for the three prototypes. (a) to (c) Amino acid occurrence matrices normalized into Z -scores associated with
the prototypes in Figure 5. The elements are characterized by Z -values: grey (Z < −1.96), white (−1.96 < Z < 1.96) and black (Z > 1.96).
(d) to (f) KLd profiles within the sequence window of 15 residues. The KLd-values are multiplied by 100.

the hybrid protein. A value of 85 was chosen to enable a
repertory to be characterized with a nearly uniform fold
distribution. With a lower nlim-value (= 80), the size of
the hybrid protein decreases from 233 to 175, indicating
some fragmentation. Conversely, when the value is
higher (=90), it increases to 325 and some redundancy
remains.

An optimal hybrid protein thus attains a delicate equilib-
rium between deletion of the redundant regions and con-
servation of the fold continuity.

CONCLUSION AND PERSPECTIVES
The ‘hybrid protein model’ (HPM) presented here is based
on the notion that 3D protein structures are composed
of structural domains similar enough to be stacked. The
principle of HPM is very simple: it seeks to optimize
a series of PB distributions used for a clustering score,
finally enabling a repertory of contiguous local protein
folds to be built.

The value of HPM is that it compacts a non-redundant
protein structure databank into a limited set of local folds.
The ‘baby training’ and ‘deletion of the redundancy’
procedures presented in this study make it possible to build
an optimal repertory with reasonable structural variability
and a high level of sequence informativity.

Through this hybrid protein, we dispose of a collection
of fragments able to form a protein structure whose amino
acid propensities are defined. This rich collection should
be very useful for the prediction of protein structures
through fold recognition or for ab initio modeling. In a

previous work, we used the example of two cytochromes
to illustrate the advantages of using the hybrid protein to
extract similar local folds in these proteins (de Brevern and
Hazout, 2001). The success of the HPM method in fold
recognition must be validated in a further work. Using the
sequence informativity found in the amino acid occurrence
matrices associated with different fold clusters, we should
be consistently able to pick out candidates for folding
simulations from the repertory.

In conclusion, a procedure of stacking local folds lets us
build an optimal repertory sufficiently rich to be used in
molecular modeling.
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