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ABSTRACT
Motivation: Polymorphisms in human genes are being
described in remarkable numbers. Determining which
polymorphisms and which environmental factors are
associated with common, complex diseases has become
a daunting task. This is partly because the effect of any
single genetic variation will likely be dependent on other
genetic variations (gene–gene interaction or epistasis)
and environmental factors (gene–environment interac-
tion). Detecting and characterizing interactions among
multiple factors is both a statistical and a computational
challenge. To address this problem, we have developed
a multifactor dimensionality reduction (MDR) method for
collapsing high-dimensional genetic data into a single
dimension thus permitting interactions to be detected in
relatively small sample sizes. In this paper, we describe
the MDR approach and an MDR software package.
Results: We developed a program that integrates MDR
with a cross-validation strategy for estimating the classifi-
cation and prediction error of multifactor models. The soft-
ware can be used to analyze interactions among 2–15 ge-
netic and/or environmental factors. The dataset may con-
tain up to 500 total variables and a maximum of 4000 study
subjects.
Availability: Information on obtaining the executable code,
example data, example analysis, and documentation is
available upon request.
Contact: moore@phg.mc.vanderbilt.edu
Supplementary information: All supplementary informa-
tion can be found at http://phg.mc.vanderbilt.edu/Software/
MDR.

INTRODUCTION
An important goal of human genetics is to identify
DNA sequence variations or polymorphisms in human
genes that confer an increased risk to particular diseases.
This is a difficult challenge for common, complex
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multifactorial diseases such as essential hypertension that
are likely the result of interactions between multiple ge-
netic and environmental factors (Kardia, 2000; Moore and
Williams, 2002). Such gene–gene and gene–environment
interactions are difficult to detect and characterize using
traditional parametric statistical methods such as logistic
regression because of the sparseness of the data in high
dimensions. That is, when interactions among multiple
variables are considered, there are many contingency
table cells that have very few or no data points. This
is referred to as the curse of dimensionality (Bellman,
1961) and can lead to parameter estimates that have very
large standard errors resulting in an increase in type I
errors (Concato et al., 1996; Peduzzi et al., 1996; Hosmer
and Lemeshow, 2000). In addition, detecting gene–gene
and gene–environment interactions using traditional
procedures for fitting logistic regression models can be
problematic leading to an increase in type II errors and
a decrease in power. For example, forward selection is
limited because interactions are only tested for those
variables that have a statistically significant independent
main effect. Those DNA sequence variations that have
an interaction effect but not a main effect will be missed.
With backward elimination, a complete model that
includes all main effects and all interaction terms may
require too many degrees of freedom. Stepwise proce-
dures are more flexible than either forward selection or
backward elimination but can also suffer from requiring
too many degrees of freedom. Detecting interactions
among variables is a well-known problem in data mining
(Freitas, 2001) and an increasingly recognized problem in
human genetics (Templeton, 2000; Moore and Williams,
2002).

To address concerns about inaccurate parameter es-
timates and low power for identifying interactions in
relatively small sample sizes, we developed a nonpara-
metric and genetic model-free approach called multifactor
dimensionality reduction or MDR that uses a data reduc-
tion strategy (Ritchie et al., 2001). With MDR, multilocus
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genotypes are pooled into high risk and low risk groups,
effectively reducing the dimensionality of the genotype
predictors from N dimensions to one dimension. The
new one-dimensional multilocus genotype variable is
evaluated for its ability to classify and predict disease
status using cross-validation and permutation testing.
The MDR approach is model-free in that it does not
assume any particular genetic model and is nonparametric
in that it does not estimate any parameters. We have
demonstrated that MDR is able to identify evidence
for high-order gene–gene interactions in the absence of
any statistically significant independent main effects in
simulated data (Ritchie et al., 2001, 2003), in sporadic
breast cancer (Ritchie et al., 2001), and in essential
hypertension (Moore and Williams, 2002). Further, we
have outlined a mathematical proof that no method
will discriminate between multilocus clinical endpoints
better than MDR using multilocus genotypes (Hahn and
Moore, 2003). In the present study, we describe recent
extensions to the MDR method and a software package
for implementing MDR in case-control and discordant
sib-pair study designs.

ALGORITHM
For ease of discussion, let us first consider the case
in which MDR is used without cross-validation. In this
instance, the MDR algorithm uses the complete dataset
to identify the variables (i.e. genetic and/or environmental
factors) that show the strongest association with disease
status. In this algorithm, there are two parameters required
from the user: (1) N , the number of variables to be
selected at one time; and (2) T , the threshold ratio of
affected individuals to unaffected individuals that is used
to distinguish high-risk genotype combinations from low-
risk genotype combinations. Typically, the MDR analysis
is repeated using a range of values for N with part of the
model discovery process being the selection of a best N .
It should be noted that a single-locus analysis for main
effects can be conducted with MDR by setting N to one.
Selecting a best value for T depends on the goals of the
analysis. The influence of T on the results and inferences
is an active area of investigation (Hahn and Moore, 2003).

Now, let us consider MDR analysis with cross-
validation. Before dividing the data into a training set and
a testing set, the MDR program randomly shuffles the
order of the observations in the dataset using a random
seed supplied by the user. This reduces the risk of biasing
the cross-validation due to nonrandom ordering of the
data (e.g. the first half of the data consisting of affected
subjects and the second half unaffected subjects). After
the randomization, the individuals are arranged so that
disease status alternates. If the number of affected and
unaffected individuals is unbalanced, the alternation

ceases before reaching the end of the dataset. When using
matched data, such as data from a matched case-control
study, randomizing and alternating the data is undesirable
because it disrupts the matching. In such a case, the
randomization and alternation can be turned off with
the RANDOMSHUFFLE parameter. The type of cross-
validation used by MDR (NUMBERCVINTERVALS) is
determined by the number of cross-validation intervals
as defined by the user. When the number of affected and
unaffected individuals are not equal, the excess individ-
uals are distributed across the cross-validation groups as
evenly as possible. The cross-validation analysis can be
conducted several times using different random seeds
and the results averaged to avoid spurious results due
to chance divisions of the data (Ritchie et al., 2001).
Cross-validation allows estimation of the prediction error
of a model by leaving out a portion of the data as an
independent test set (Hastie et al., 2001). With 10-fold
cross-validation, the data are divided into 10 equal parts,
the model is developed on 9/10 of the data (i.e. the
training data) and then evaluated on the remaining 1/10
of the data (i.e. the independent testing data). This is
repeated for each possible 9/10 and 1/10 of the data and
the resulting ten prediction errors are averaged. Leave-
one-out cross validation (LOOCV) is also a common
strategy for estimating prediction error (Hastie et al.,
2001). With LOOCV, a single observation is left out as
the independent test data.

Figure 1 illustrates the general steps involved in imple-
menting the MDR method for case-control study designs
using 10-fold cross-validation. The same procedure is
equally applicable to discordant sib-pair study designs.
The first step of MDR involves partitioning the data into
some number of equal parts for cross-validation. In step
two, a set of N genetic and/or discrete environmental
factors is selected from the list of all factors. In step three,
the N factors and their multifactor classes or cells are
represented in N -dimensional space. For example, for
two polymorphisms, each with three genotypes, there are
nine two-locus genotype combinations. Then, the ratio
of the number of cases (or affected sibs) to the number
of controls (or unaffected sibs) is evaluated within each
multifactor cell. In step four, each multifactor cell in
N -dimensional space is labeled as high-risk if the ratio
of cases to controls meets or exceeds some threshold
T (e.g. T = 1.0) and low-risk if the threshold is not
exceeded. In this way, a model for cases and controls
(or affected and unaffected sibs) is formed by pooling
those cells labeled high-risk into one group and those
cells labeled low-risk into another group. This reduces the
N -dimensional model to one dimension (i.e. one variable
with two multifactor classes; low risk and high risk). In
the case where there are cases but no controls, the cell
is labeled high-risk. Likewise, when there are controls
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but no cases, the cell is labeled low-risk. In the final
model, the user can decide whether this is an accurate
assignment. All possible combinations of N factors are
evaluated sequentially for their ability to classify affected
and unaffected individuals in the training data and the best
N -factor model is selected in step five. In step six, the
independent test data from the cross-validation is used to
estimate the prediction error of the best model selected in
step five. Steps one through six are repeated 10 times with
the data split into 10 different training and testing sets.
The data are only randomized and alternated once at the
beginning of the analysis. Once MDR identifies the best
combination of factors, the final step is to determine which
multifactor levels (e.g. genotypes) are high risk and which
are low risk using the entire dataset. This final evaluation
is conducted with a ratio threshold that is determined
by the ratio of the number of affected individuals in the
dataset divided by the number of unaffected individuals in
the dataset. Note that the user-defined threshold ratio (T )

is not used in this final evaluation. This final threshold
is used to adjust the results for an unbalanced number
of cases and controls. The user can reassign high-risk
and low-risk labels in a posthoc analysis of the output if
needed. Also note that, in this implementation of MDR,
only variables with a maximum of three levels (e.g. three
genotypes) are allowed.

Previous versions of MDR required each individual
in the dataset to have observed data for each variable.
We have now modified MDR to accept missing data by
defining a new level for each variable to be used when
missing data is encountered. Thus, instead of each factor
having three levels, there is now a fourth level encoding
the missing data point. Thus, if three factors are being
modeled, and one of them has missing data, information
from the other two can now be incorporated into the
analysis. All missing data should be encoded by a specific
number (e.g. 9) that is different from the encoding used for
the factor levels (e.g. 0, 1, and 2). The software described
here includes the new missing data feature.

As described by Ritchie et al. (2001) and Moore et
al. (2002b), it may be of interest to use cross-validation
consistency as a measure of evidence for a particular
model in addition to the prediction error. That is, how
often were the same genes or same set of genes selected
across different cross-validation datasets? The reasoning
is that the functional factors should consistently be found
regardless of how the data are divided for cross-validation.
Finally, an empirical P-value for the result can be
determined using one of a number of permutation testing
strategies (Good, 2000). Since there are multiple ways to
conduct the permutation testing, we leave this part of the
analysis to the user. One strategy is to randomize the case
and control labels in the original dataset multiple times to
create a set of permuted datasets. MDR can then be run on
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Fig. 1. Summary of the general steps involved in implementing
the MDR method (adapted from Ritchie et al., 2001). In step
one, the data are divided into a training set (e.g. 9/10 of the
data) and an independent testing set (e.g. 1/10 of the data) as part
of cross-validation. In step 2, a set of N genetic and/or discrete
environmental factors is then selected from the pool of all factors.
In step three, the N factors and their possible multifactor classes
or cells are represented in N -dimensional space. In step four, each
multifactor cell in the N -dimensional space is labeled as high-risk
if the ratio of affected individuals to unaffected individuals (the
number in the cell) exceeds some threshold T (e.g. T = 1.0) and
low-risk if the threshold is not exceeded. In steps five and six,
the model with the best misclassification error is selected and the
prediction error of the model is estimated using the independent
test data. Steps 1 through 6 are repeated for each possible cross-
validation interval. Bars represent hypothetical distributions of cases
(left) and controls (right) with each multifactor combination. Dark-
shaded cells represent high-risk genotype combinations while light-
shaded cells represent low-risk genotype combinations. No shading
or white cells represent genotype combinations for which no data
was observed.

each permuted dataset and the maximum cross-validation
consistency and minimum prediction error identified for
each saved and used to create an empirical distribution for
estimation of a P-value. This is the approach we use in the
example run described below.

When dealing with many variables, one may want to
consider a number of N -factor models where N may
vary across a range of factor counts. The MDR software
can be run several times with the configuration reflecting
a different number of factors each time. Each run of
MDR will produce a single model that maximizes the
number individuals with the proper risk assignment.
Single best models are selected from among each of
the one-factor, two-factor, three-factor, four-factor, up to
N -factor combinations. Among this set of best multifac-
tor models, the combination of genetic and/or discrete
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environmental factors that minimizes the prediction error
and/or maximizes the cross-validation consistency is
selected and evaluated using permutation testing. When
two or more models have the same prediction error and
cross-validation consistency, statistical parsimony can
be used to select the smaller model as the more likely
candidate. It is up to the user to select the final model
using these criteria or others.

For large datasets and/or high-order models, the exhaus-
tive consideration of all possible factor combinations can
become computationally infeasible. When the number of
combinations to be evaluated exceeds computational fea-
sibility, machine-learning methods such as parallel genetic
algorithms (Cantu-Paz, 2000) must be employed as has
been done for the cellular automata method (Moore and
Hahn, 2002a,b).

IMPLEMENTATION
The MDR software is available in a Linux version
(compiled and benchmarked on a PC with a 600 MHz
Pentium-III running Red Hat 2.2.5-15) and a Sun ver-
sion (compiled and benchmarked on a SPARC Ultra-80
running SunOS 5.8). It was written in C and compiled
with the GNU C compiler. The executable files and
some example datasets are freely available to not-for-
profit organizations and studies upon request. Benchmark
measurements are available in the supplemental documen-
tation at http://phg.mc.vanderbilt.edu/Software/MDR. In
addition to the platform used, the following analysis
parameters significantly altered computation time: (1) the
number of factors considered for a model; (2) the number
of cross-validation intervals; (3) the number of individuals
in a dataset; and (4) the number of variables in the dataset.

Input format
The input file can be in one of two formats: (1) text
format; and (2) restricted pre-makeped format. In text
format, a single individual’s data are represented on a
single line. The first value in a line is the individual’s
disease status and all following values are assumed to be
genotypic or discrete environmental data. The values must
be separated by non-numeric delimiters such as spaces,
tabs or commas. Although disease status is usually 1
for affected and 0 for unaffected, the user can specify
the value associated with affected individuals in the
configuration file. Comments may be included at the
beginning of the data file by simply initiating the line with
an alphabetic or non-numeric symbol.

Pre-makeped format refers to the input files used by
the utility makeped (Terwilliger and Ott, 1994). For a
given line, characters 1 through 16 are used to describe
the pedigree ID and other attributes of the individual;
character 17 indicates disease status (1 is unaffected, 2 is
affected). Note that this is more restrictive than makeped

in that the individual attributes in the data must be exactly
16 characters. The genetic variables are described in terms
of alleles with each allele separated by a space.

Datasets may contain up to 4000 individuals with up
to 500 factors or variables. Genetic and environmental
variables can have two or three levels (e.g. 0 and 1 or 0,
1 and 2) plus an additional level (e.g. 9) for missing data.
The order of the variables is not important unless MDR
discovers multiple models with the same misclassification
error. In the current implementation of MDR, only the
first model is reported when a tie between models occurs.
Reporting all tied models will be implemented in a future
version of the software.

Example run
To provide an example of data analysis using the MDR
program, we simulated a case-control sample dataset with
200 affected individuals (cases) and 200 unaffected in-
dividuals (controls) with 10 single nucleotide polymor-
phisms or SNPs for each individual. The goal of our simu-
lation was to create a dataset that represented a disease eti-
ology that was due to two interacting SNPs. Frankel and
Schork (1996) and Moore et al. (2002a) have described
a complex two-variable gene–gene interaction model in
which aaBB, AaBb, and AAbb are the high-risk genotype
combinations. When the allele frequencies are equal, there
is a strong interaction effect on disease risk in the absence
of any main or independent effect for either of the genetic
variations. This means that the genetic variations do not
independently affect disease risk. Thus, each genetic vari-
ation only has an effect on disease risk in the context of the
other genetic variation. Such gene–gene interactions are
believed to play an important role in determining an indi-
vidual’s risk for developing common diseases such as es-
sential hypertension (Moore and Williams, 2002) and spo-
radic breast cancer (Ritchie et al., 2001). The following
penetrance values were used to define the probability (P)
of disease (D) given each specific combination of geno-
types from the two functional SNPs: P(D|(AAbb) = 0.1,
P(D|AaBb) = 0.05, P(D|aaB B) = 0.1, P(D| others) =
0. The other eight SNPs in the simulated data are not func-
tional and therefore represent potential false-positives.

We analyzed the data using 10-fold cross-validation and
configured MDR to consider one through six variables
at a time. Table 1 describes examples of parameter
settings used by MDR. To ensure that the analysis was not
influenced by a chance division of the data (i.e. an order
effect) or by initial conditions, we ran the analysis 10
times using 10 different random number seeds. A portion
of an output file generated by MDR is shown in Figure 2.
The text in the figure was produced when two variables
were considered for a solution and the random seed three
was used. Only the last (i.e. 10th) cross-validation result
and the final result are shown. The tenth cross-validation
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Table 1. Descriptive list of MDR parameters

Parameter name Example value Parameter description

INPUTFILE SampleData.dat The data file to be analyzed
INDIVIDLIMIT 400 The number of individuals to be analyzed
INPUTTYPE 1 Data format (0 – text, 1 – pre-makeped)
AFFECTEDINPUTVALUE 1 Code for ‘Affected’ disease status
LEGALMAXGENOTYPE 2 Highest legal genotype value
LEGALMINGENOTYPE 0 Lowest legal genotype value
MDRRANDOMSEED 3 Random seed used for shuffling the data
RANDOMSHUFFLE OFF Randomly shuffle the data
LOCICONSIDERED 2 The number of loci considered when forming and evaluating a model.
FORCELOCI OFF Allows a user to force MDR to consider only user-specified loci.
THRESHOLDRATIO 1.0 Threshold for associating a ratio with high-risk status
NOTRECOGNIZEDRESPONSE -1 How should novel patterns be treated during testing? (-1 - unknown, 0 - as unaffected, 1

as affected).
TIECELLVALUE 1 How should ratios be labeled when they equal the threshold ratio? (-1 – unknown, 0 –

unaffected, 1 – affected)
SHOWBESTPARTITION OFF Display the components of the best model
SHOWCOMBOMISCLASS OFF Show all model misclassification rates.
SHOWMAINEFFECT OFF Display a table of the number of individuals grouped by locus and genotype
VERBOSE OFF Display statements about MDR progress
NUMBERCVINTERVALS 10 The number of cross-validation intervals

analysis found the two functional SNPs (one and six) as
the best two-factor model for the 360 individuals in the
training data with a classification error of 19.44%. This
model predicted a disease status for all 40 individuals
in the test dataset with a prediction error of 17.5%. In
some cases, individuals in the testing data may include
a multilocus genotype combination that has not been en-
countered in the training data. To deal with this possibility,
a parameter (NOTRECOGNIZEDRESPONSE) can be set
in the configuration file so that genotype combinations
not encountered during training are assigned ‘unaffected’
disease status during testing. As a result, all individuals
would be classified as either affected or unaffected. If the
parameter is set to assign an ‘unknown’ disease status to
patterns encountered during testing that were not encoun-
tered during training, then the number of individuals not
classified during testing can be greater than zero.

The final result includes a description of the model
from the ten cross-validation intervals with the lowest
prediction error and how well the model performs on
the whole dataset. Additional statistics reported are mean
classification and prediction errors across the ten best
models.

The results of the MDR analysis for each number of fac-
tors considered are presented in Table 2. The model with
the lowest prediction error and highest cross-validation
consistency was selected for each number of factors
considered. The reported cross-validation consistency
is the number of cross-validation intervals (maximum
of 10) that a particular SNP combination was chosen

========================Subgroup # 10 of 10============

#10:Loci: [ 1   6 ] 
#10:                                              Training                Evaluating  
#10:                                          (1 group of 360) (1 group of 40) 
#10:Statistics describing the Best model found: 
#10: Misclassification Errors:                    19.44%           17.50% 
#10: # of Individuals that couldn't be classified:                    0 
========================Final Result ================= 
During model generation a threshold ratio of 1.000000  
was used (as specified in the configuration file.) 
During this final evaluation of the model and  
data set, 1.000000 was used as the threshold ratio. 
Final Loci:   1   6  
# 2:              Complete Dataset 
# 2:                  (400) 
# 2: Misclass:          19.25% 
                                                               Training      Evaluating 
Mean misclass across all best models:     19.25%         19.25% 

Fig. 2. This is the last of 10 cross-validation intervals and the final
result of an MDR analysis log file. The two-factor model with the
best evaluation performance included variables 1 and 6. The lowest
evaluation misclassification occurred in the second cross-validation
interval and the final misclassification for the two-factor model is
19.25% for the whole dataset.

by MDR averaged across the 10 runs. The average
classification and prediction errors are the averages
across all cross-validation intervals and all runs. The
model that minimized prediction error and maximized
the cross-validation consistency was the two-factor model
that included the correct functional SNPs, one and six.
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Table 2. Results of an MDR analysis of the example dataset

No. of factors Best candidate model Average cross-validation consistency Average classification error (%) Average prediction error (%)
considered

1 4 7.3 44.83 49.88
2 1, 6 10.0a 19.25a 19.25a

3 1, 2, 6 10.0 19.25 19.30
4 1, 3, 6, 7 3.4 17.74 24.08
5 1, 2, 3, 6, 7 4.6 14.24 25.37
6 1, 2, 3, 6, 7, 10 1.0 9.58 33.65

aP< 0.001.

Note that classification error decreases as the number of
factors considered increases. This is due to higher-order
models overfitting the data. Also note that as the model
size increases beyond two, the prediction error increases.
Thus, although the higher-order models are overfitting
the data, they do a worse job predicting. The permutation
testing indicated the cross-validation consistency and the
prediction error are statistically significant at the 0.001
level. This indicates that among 1000 permuted datasets,
no best models had a cross-validation consistency or a
prediction error of the same magnitude as was observed
for the original dataset. The configuration files, data files
and log files for this example analysis are available upon
request.

DISCUSSION AND CONCLUSIONS
We have developed a software package for implementing
the multifactor dimensionality reduction (MDR) approach
of Ritchie et al. (2001) for detecting and characterizing
gene–gene and gene–environment interaction effects on
risk of common complex multifactorial diseases. This im-
plementation of MDR can be used to analyze interactions
among up to 15 genetic and/or environmental factors in a
maximum of 4000 study subjects and up to 500 total vari-
ables. By allowing up to 15 variables to play a role in the
categorization, the model solution can contain all main ef-
fects and N -way interactions involving the 15 variables.

The greatest limitation of the MDR software is the com-
binatorial nature of the algorithm. Genetic datasets with
hundreds or thousands of variables for each individual
sample will quickly overwhelm MDR. Although, faster
computers will allow the analysis of a slightly larger range
of variables (greater than 100), novel approaches will be
required to analyze datasets with several hundred or more
variables. For example, analysis of a 50-variable dataset
using five variables at a time requires assessing over two
million variable combinations. Our Pentium III 600-MHz
PC took just under 6 hours to perform these computations.
If the dataset had contained 1000 variables instead, the
number of combinations would increase to over eight

trillion. Datasets of this magnitude will be available in the
near future, but the processing speed required to analyze
them will not.

Given the combinatorial limitations of MDR, we are
currently exploring machine learning strategies for select-
ing optimal combinations of genetic and environmental
factors from among an effectively infinite search space.
Evolutionary computation is a machine learning strategy
that we have used successfully in genetic epidemiology
(Moore et al., 2002a; Moore and Hahn, 2002a,b) and
genomics (Moore and Parker, 2001; Moore et al., 2002b)
and may be useful for optimizing MDR. Future enhance-
ments of the MDR algorithm and software will include
an evolutionary computing search algorithm for selecting
genetic and environmental factors.

Multifactor dimensionality reduction is currently appli-
cable only to case-control and discordant sib-pair study
designs. However, many genetic studies are carried out
using multigenerational family data. A future direction
is to modify MDR to identify gene–gene and gene–
environment interactions in large, complex pedigrees.
For example, it may be possible to merge MDR with the
pedigree disequilibrium statistic (PDT) of Martin et al.
(2000). The PDT was developed specifically to provide a
general test of linkage disequilibrium that can be applied
to complex pedigrees even in the presence of population
substructure.

Multifactor dimensionality reduction is a promising
new approach for overcoming some of the limitations of
logistic regression for the detection and characterization of
gene–gene and gene–environment interactions. Previous
empirical studies demonstrate that MDR has good power
for identifying high-order interactions in simulated data
(Ritchie et al., 2001, 2003). Further, MDR has played
an important role in the identification of gene–gene
interactions in real data from case-control studies of
sporadic breast cancer (Ritchie et al., 2001) and essential
hypertension (Moore and Williams, 2002). Additionally,
a theoretical study has provided a proof that MDR is
ideally suited for discriminating between binary clinical
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endpoints using multilocus genotypes (Hahn and Moore,
2003). The availability of an MDR software package will
enable this new method to be widely used for genetic
epidemiology studies of common complex multifactorial
diseases.
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