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ABSTRACT
TGICL is a pipeline for analysis of large Expressed
Sequence Tags (EST) and mRNA databases in which
the sequences are first clustered based on pairwise
sequence similarity, and then assembled by individual
clusters (optionally with quality values) to produce longer,
more complete consensus sequences. The system can
run on multi-CPU architectures including SMP and PVM.
Availability: http://www.tigr.org/tdb/tgi/software/
Contact: johnq@tigr.org; gpertea@tigr.org

Expressed Sequence Tags (ESTs) have provided insight
into transcribed genes in a variety of organisms and are
widely used for gene discovery and expression analysis.
However, identifying encoded genes from ESTs presents
a number of challenges. ESTs represent large numbers
of redundant, typically partial, transcript sequences from
diverse biological sources, low quality sequences often
without quality scores, relatively frequent chimaerism,
and a moderate rate of vector and adapter contamination.
Most sequence assembly programs developed for genomic
applications are not well adapted for ESTs. Further, the
distribution of ESTs can conspire to produce incorrect
and chimaeric assemblies (Liang et al., 2000). Careful
partitioning of sequences prior to assembly is essential
for faithful transcript reconstruction. TGICL uses strin-
gent pairwise comparisons between input sequences to
group those sharing significant regions of near identity.
Individual assembly of each cluster has the advantage of
producing larger, more complete consensus sequences
while eliminating potentially misclustered sequences.

In its simplest application, TGICL takes a single pa-
rameter: an input multi-FASTA file. TGICL’s final output
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is one or more ACE files containing CAP3 assemblies
(Huang and Madan, 1999) and a list of singletons. Prior to
running TGICL, the input dataset should be cleaned to re-
move contaminating sequences, including vector, adapter,
and bacterial sequences, which can lead to misclustering
and misassembly. This can be done using either a stringent
program such as Lucy (Chou and Holmes, 2001) or a
sequence trimming script such as SeqClean (http://www.
tigr.org/tdb/tgi/software) with filtering databases such as
NCBI’s UniVec. Known repeats should also be masked
using RepeatMasker (Smit and Green, unpublished) with
the lower-case masking option; TGICL excludes masked
regions during its initial word-hashing phase.

Known full-length transcripts can be used for ‘seeded
clustering’, which helps create smaller, better partitioned
clusters and avoids chimeric assemblies. Seeded clustering
assumes that a complete gene transcript has nearly perfect
identity with all ESTs from that gene; lateral extension
of seeds is limited to nearly perfect alignments. Seeded
clustering uses a reserved prefix for full-length transcript
names in the input FASTA database (i.e. ‘et|’) and takes
as a parameter the minimum number of sequences in a
single-linkage cluster that define ‘seeded re-clustering’.
One should be cautious in using seeds, as partial sequences
mislabeled as complete can prevent cluster extension
beyond the seed.

Clustering first indexes the input file and then performs
all-versus-all pairwise similarity searches using mgblast,
a modified version of megablast (Zhang et al., 2000). mg-
blast differs from original in that it allows specific output
filtering options including minimum overlap length and
identity, uses a dynamic offset within the database when
performing incremental searches, and produces a tab-
delimited output with one line for each identified overlap.
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Large databases can be partitioned into separate files
(slices) that are searched against the entire database.
This allows for parallel processing as multiple slices can
be searched with independent mgblast processes; both
SMP and PVM architectures are supported. Results from
each search are sorted and compressed after all slices are
processed. Results are merged and sorted into incremen-
tally numbered, compressed files. The criteria for initial
sorting and subsequent merges is decreasing pairwise
alignment score. This global sorting uses a ‘greedy’
approach to controlled clustering: the best alignments
are encountered first and both initiate and direct cluster
formation. When seeded clustering is used, overlaps with
full-length mRNAs are processed first and constitute the
cluster ‘seed’. Sequence overlaps in the sorted results
files are filtered using user-defined criteria: the minimum
length of the overlap (default 40 basepairs), the minimum
percent of identity for the overlap (default 95%), and the
maximum mismatched overhang (dynamically adjusted
for long sequences and overlaps; the default starts at
30 nucleotides).

Three clustering utilities in TGICL, tclust, sclust, and
nrcl, use internal graph representations where sequences
represent nodes and filtered alignments represent edges.
As overlaps are processed, clusters are formed incre-
mentally through transitive closure, resulting in a set
of connected sub-graphs representing clusters. These
are written to a file with the largest clusters first; each
cluster represented by a list of component sequences. For
seeded clustering, overlaps involving known full-length
transcripts are assessed differently as the coverage of
other sequences in the cluster should be nearly complete.
If a seeded cluster does not meet minimum coverage
standards, the seed is ignored.

For assembly, a multi-FASTA file is built from each
cluster and passed to CAP3 (or a user-specified assembler)
for multiple alignment and consensus building. As clusters
are independently assembled, this can be executed in
parallel using multiple CPUs. Quality values are not
required, but if used, quality values for sequences in
each cluster are collected simultaneously with the FASTA
sequences and submitted to the assembler. CAP3 produces
both consensus sequences and ACE files that can be used
for further analysis. A list of sequences not falling into
any assembly is written as a ‘singleton’ file. A graphical,
interactive ACE file viewer (clview) is available (http:
//www.tigr.org/tdb/tgi/software/).

TGICL was developed and tested under Linux on
single and dual-CPU machines and on a Linux PVM
cluster. The main program is a perl script that provides
brief instructions when run without parameters. Parallel
processing utilities called by the main program, psx and
pvmsx, are written in C: psx uses ‘fork’ call to spawn
multiple processes, while pvmsx uses the PVM API

to distribute work over independent PVM nodes. The
clustering programs, the merge utility, and the FASTA
record indexing/retrieval programs are written in C++.
Pairwise searches are performed by mgblast, written in
C. As source code is provide, all programs in TGICL can
be recompiled on other Unix systems. CAP3 is distributed
only as executables for Linux and Sun platforms; other
binaries can be requested from the program author (Huang
and Madan, 1999).

Clustering is very fast due to the modified megablast
engine used for pairwise searches and distributed process-
ing makes TGICL even faster: on a PVM cluster with 20
Pentium III nodes, an input file of 1 700 000 entries was
clustered in approximately one hour and assembly was
completed the following day. Sets of 150 000 sequences
can be fully clustered and assembled overnight on a single
CPU.

TGICL has difficulty with highly expressed genes that
have several thousand ESTs in a single cluster. For these,
CAP3 or other assemblers generally run out of memory.
TGICL does not yet deal with such clusters automatically,
but the command line clustering utilities sclust and nrcl
can offer insight into the structure of large clusters and
can enable development of customized assembly solutions
such as an iterative (two-step) assembly, or the use of
containment clustering to determine the representative
sequences to create a scaffold on which unassembled
sequences are mapped.

TGICL is used to generate the TIGR Gene Indices (TGI;
Quackenbush et al., 2001; http://www.tigr.org/tdb/tgi/),
representing independent analyses for nearly 60 species
with EST collections of fewer than 10 000 to more than
4 000 000 sequences. These databases have demonstrated
their utility through annotation of eukaryotic genomes and
cDNA collections, identification of orthologous genes,
and annotation of microarray resources. TGICL updates
will be available as they are developed.
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