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ABSTRACT
Motivation: Our goal was to develop a normalization
technique that yields results similar to cyclic loess normaliza-
tion and with speed comparable to quantile normalization.
Results: Fastlo yields normalized values similar to cyclic loess
and quantile normalization and is fast; it is at least an order of
magnitude faster than cyclic loess and approaches the speed
of quantile normalization. Furthermore, fastlo is more versatile
than both cyclic loess and quantile normalization because it is
model-based.
Availability: The Splus/R function for fastlo normalization is
available from the authors.
Contact: ballman@mayo.edu

1 INTRODUCTION
High-density gene expression array technology allows
investigators to obtain quantitative measurement of the
expression levels for tens of thousands of genes in a biological
specimen. There are two major types of microarray technolo-
gies: spotted cDNA and oligionucleotide arrays. Expression
data obtained from either type of microarray technology has
measurement error or variation. One type of variability is due
to biological differences between specimen samples. This
is what is of interest to the investigator; the investigator
would like to know which genes are differentially expressed
among different biological samples (e.g. between cancer-
ous and normal kidney tissues, among B-cells challenged
with different agents in culture.). Systematic variation also
affects the measured gene expression level. Many sources
contribute to this type of variation and are found in every
microarray experiment. Sources include, but are not lim-
ited to, the array manufacturing process, the preparation of
the biological sample, the hybridization of the sample to the
array, and the quantification of the spot intensities. (Hartemink
et al., 2001) provide a more complete discussion of the
sources of systematic variation in the microarray experimental
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process. The purpose of normalization is to minimize the
systematic variations in the measured gene expression levels
among different array hybridizations to allow the compar-
ison of expression levels across arrays and so that biological
differences can be more easily identified.

There are numerous methods for normalizing gene expres-
sion data. Generally, normalization methods use a scaling
function to correct for experimental variation. These functions
are applied to the raw intensities of the spots (gene sequence
on spotted arrays or oligonucleotide probes on the Affymetrix
GeneChip array) on the microarray to produce normalized or
scaled intensities. Types of normalization techniques include
mean correction (Richmond and Somerville, 2000), non-
linear models (Yang et al., 2002), linear combination of
factors (Alter et al., 2000), and Bayesian methods (Newton
et al., 2001). There is compelling evidence that non-linear nor-
malization methods, which are not dependent upon the choice
of a baseline array, perform the best (Bolstad et al., 2003). We
tend to favor two commonly used non-linear methods: cyclic
loess normalization and quantile normalization. Both tech-
niques are non-linear and perform normalization on the set of
arrays as a whole without specifying a reference array. Over-
all, we prefer cyclic loess because it is not as aggressive in
its normalization as is quantile normalization; however, cyc-
lic loess is relatively slow for even a moderate sized set of
arrays. Quantile normalization, on the other hand, is very
fast for even large sets of arrays. The goal of our invest-
igation was to develop a method that produced normalized
values similar to that of cyclic loess but would be considerably
faster—on the order of the speed of quantile normalization.
The result is a new normalization method called fastlo. Since
normalization is performed on the raw intensity values of the
spots on the arrays, the methods discussed here are applic-
able to both major types of array technology: spotted cDNA
and oligonucleotide. However, our focus is on data arising
from GeneChip arrays and it should be noted that there are
additional considerations when normalizing two-color spotted
cDNA arrays (Yang et al., 2002).

In the next section we discuss cyclic loess normalization
and useful insights that can be gained from viewing it as a
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Fig. 1. MA plot for 10 000 randomly selected probes.

parallel algorithm. Section 3 describes a new type of normal-
ization, fast linear loess (fastlo), arising from the observation
that cyclic loess is essentially a smoothing function coupled
with a very simple linear model. In Section 4, we review
quantile normalization. The performances of the three dif-
ferent normalization techniques are compared in Section 5.
Comparisons are made using simulated data and real data,
one of the benchmark sets for Affymetrix GeneChip expres-
sion measures (Cope et al., 2003). The simple linear model
underlying the fastlo method is extended in Section 6. We
close with a discussion of our findings in Section 7.

2 CYCLIC NORMALIZATION
Most methods of normalization, including the methods dis-
cussed below, assume that the vast majority of the genes do not
change expression levels under the conditions being studied.
In other words, they assume that the average (geometric mean)
ratio of expression values between two conditions is one or
equivalently, the average (arithmetic mean) log ratio of expres-
sion is zero for a typical gene. This is biologically plausible
for many studies. However, if there is good reason to believe
this assumption is not true for a particular study, then the
normalization methods described here are not appropriate.

2.1 Cyclic loess
A fundamental graphical tool for the analysis of gene expres-
sion array data is the M versus A plot (MA plot); here M is
the difference in log expression values and A is the average
of log expression values (Dudoit et al., 2002). Figure 1 con-
tains an MA plot for a random sample of 10 000 probes from
two (unnormalized) GeneChip arrays with a loess smoother
superimposed. The MA plot for ideally normalized data would
show a point cloud scattered about the M = 0 axis. In other
words, the loess smoother would be a horizontal line at 0 for
ideally normalized data.

Cyclic loess normalizes two arrays at a time by applying a
correction factor obtained from a loess curve fit through the
MA plot of the two arrays, call the curve f (x). For example,
consider the circled point in Figure 1. This point corresponds

to a spot i on each array. On one array, the observed expression
level at this spot would be reduced by 1/2 the distance of
f (x) from the y = 0 line; in other words, f (x)/2 would be
subtracted from the expression level of this spot on one of the
arrays. The expression value for this spot on the other array
would be increased by f (x)/2. After correction, the MA plot
for this particular pair of arrays would be horizontal. One
pass of the cyclic loess algorithm consists of performing this
pairwise normalization on all distinct pairs of arrays. Passes
of the algorithm continue until the computed corrections of a
completed pass are essentially zero.

In summary, to perform the cyclic loess algorithm begin
with the log2 of the spot expression intensities arranged as a
matrix with one column per array and one row per array spot
and proceed through the steps below.

(1) Choose two arrays and generate an MA plot of the data.
The x-axis is the mean probe expression value of the
two arrays and the y-axis is the difference (one point
for each spot).

(2) Fit a smooth loess curve f (x) through the data.

(3) Subtract f (x)/2 from the first array and add f (x)/2 to
the second.

(4) Repeat until all distinct pairs have been compared.

(5) Repeat until the algorithm converges.

In practice, the pairs of arrays are chosen by a method that
systematically cycles through all pairs. A drawback of cyclic
loess is the amount of time required to normalize a set of
data; the time grows exponentially as the number of arrays
increases. Typically, two or three passes through the complete
cycle are required for convergence. Likely, cyclic loess would
converge faster if pairings went in a more balanced order.
However, the time savings would not be considerable because
a loess smooth would still be required for a relatively large
number of array pairs.

Further examination of the cyclic loess algorithm reveals
some interesting facts. First, the algorithm preserves the row
means of the data matrix, Y . At any given step, one number in
a row is increased by f (x)/2 and another is decreased by the
same amount. Second, if all the values in one of the columns
are increased or decreased by a constant, the final results of the
algorithm (the scaled intensities on each array) are changed
only by the addition of a constant. This is because any one of
the plots on which the smooths are based is identical but for
the labeling of its axes, and thus any given smooth is changed
only by a constant. One pass through the algorithm requires
Cn

2 loess smooths on all the spots on the array.

2.2 Parallel loess
Cyclic loess is inherently parallel in nature. Viewing it in this
manner may provide insights that allow computational time
savings. Imagine that we had a parallel machine, so that all the
pairwise normalizations could be done simultaneously. Once
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each of the pairwise corrections is obtained, then the correc-
tion for spot i on array j would be the ‘average’ correction for
this spot across all array pairs containing array j . Essentially,
the correction to the spots on array j would be the average of
all computed corrections of the spots for pairs containing array
j . To simplify the logic, we consider the pairing of each array
with itself, as well as both orderings of the pairs. This means
that for n arrays, there are n2 pairings. Here, and throughout
the remaining text, Y is used to denote the matrix of the log2
intensity values where the column j corresponds to an array
and row i corresponds to a spot.

As the simplest example, consider the noiseless case where
each column of Y , corresponding to an array, differs from any
other by a constant and array ‘0’ is an imaginary reference
representing the true expression level. In other words, the
intensity of the spot i, j , yij , can be expressed as yij = yi0 +
cj . The ideal correction of all spots for a given chip is cj − c̄

(a horizontal loess curve) and the average correction for array
1 from the parallel algorithm is

(1/n)

n∑
j=1

(c1 − cj )/2 = (c1 − c̄)/2.

That is, the average correction is 1/2 of what it should be.
As a result, we define the correction step for the i-th chip in
parallel loess to be (2/n)

∑
j fij , where fij is the smooth for

the plots of chips i and j .
Now consider a simple simulation where each column of

the data matrix (each array) differs from any other by a con-
stant plus a symmetrically distributed noise term. Array ‘0’ is
the set of 5000 true intensities, which were randomly selected
from a uniform distribution with range from 0 to 10. The
log2 intensity levels for the four arrays in the experiment, yij ,
are derived from array ‘0’ as follows: yij = yi0 + j + eij ,
where eij ∼ t8 (i = 1, 2, . . . , 5000 and j = 1, 2, 3, 4). A
t-distribution was selected for the error term (noise distribu-
tion) because it is symmetric and produces more outliers than
a normal distribution. In this case, the true correction for array
j is j −j̄ = j −2.5. The four pairwise corrections for a partic-
ular spot involving array 1 have expectations of 0, −1.0, −2.0
and −3.0. The average of the four corrections for a particular
spot is −1.5. Figure 2 shows the four computed corrections
for each spot from parallel loess involving array 1 as well
as the average of the corrections across arrays. This suggests
averaging the corrections to get an overall update, rather than
applying each of the separate corrections to the data in turn.
Figure 2 also includes the corrections for array 1 after applying
cyclic loess. For this case performing the smooths cyclically
or in parallel produces equivalent results. For this figure, and
all remaining figures, a subset of randomly selected points are
plotted to thin the plot and better display the relevant structure.

Using the parallel version would probably be faster than cyc-
lic loess. However, we did not intend to obtain computational
speed savings by developing a parallel version of cyclic loess.
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Fig. 2. The computed corrections for array 1 from the 4 pairwise
smooths for a parallel loess (1v1, 1v2, 1v3, 1v4), for the average of
the pairwise corrections (avg), and the for cyclic loess (cyclic).

Rather, we used this construct to gain insight into how cyclic
loess works and how it might be made faster for non-parallel
machines.

Parallel loess can be shown to be unbiased for this simple
case. Let yij = αi + βj + εij ; αi are the true probe values
(yi0 in the simulation), βj the simple array effects, and εij

the error. Assume that a, b are two vectors of constants, and
a smooth of Yb on Ya is to be used to estimate the correc-
tion. Since the correction should be constant, we want Ya and
Yb to be uncorrelated, i.e. that there be no linear bias in the
smooth. The covariance matrix of Y has elements of σ 2

α + σ 2
ε

on the diagonal, and σ 2
α off the diagonal, where these are the

variances of α and ε above. Simple algebra shows the cov-
ariance of Ya and Yb to be σ 2

ε

∑
ajbj + σ 2

α

(∑
aj

) (∑
bj

)
.

Since σ 2
α and σ 2

ε are unknown for a given problem, linear bias
in the plot is avoided by choosing a and b so that both terms
are zero. For parallel loess, the plot for arrays 1 and 2 has
a = (1/2, 1/2, 0, . . . , 0) and b = (1, −1, 0, . . . , 0), clearly
satisfying the criteria, and likewise for any other pair of arrays
i, j . Other choices of a and b will be explored below.

2.2.1 Parallel loess variant one An obvious variant of
the parallel cyclic loess algorithm is to replace the n loess
smooths, each on p points, with a single loess smooth on np

points. In other words, the corrections to be applied to spots
on array j would be obtained by placing all the points in the
MA plots containing array j (n of them) into a single plot and
performing a single loess smooth on this plot. Recall, the cor-
rections for array j are obtained in parallel loess by averaging
the n pairwise corrections, obtained from the n MA plots; and
recall that the corrections are just twice the smooth value. So
if the smoother is a linear operator, which loess is other than
outlier rejection passes, then the average of the smooths will
be equal to a single smooth applied to a plot with all the derived
data points, i.e. the points from the n MA plots involving array
j all placed on a single plot. Because of the very large amount
of data on microarray gene expression arrays, outlier rejection

2780

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/16/2778/236958 by guest on 25 April 2024



Fastlo normalization

0

–1.0

–8.0

–6.0

co
m

pu
te

d 
co

rr
ec

tio
n

–0.4

–0.2

–0.0

0.0

0.2

0.4

co
m

pu
te

d 
co

rr
ec

tio
n

0.6

0.8

1.0

2 4 6 8 10 0 2 4 6 8 10

#   parallel variant 1
x   parallel
O  cyclic

Fig. 3. The computed corrections for arrays 2 and 3 from the example of 4 arrays. The corrections are from a single smooth on all the derived
20 000 data points (parallel variant 1), from parallel loess (parallel), and from cyclic loess (cyclic).

is not normally an important issue. Specifically, when there is
a large quantity of data over a given range, no point, even if
extreme, can exert much influence.

Figure 3 compares the computed corrections for the array
spots on two arrays from our four array example introduced
above: true expression values for the array shifted by a con-
stant plus symmetrically distributed error. The computed
corrections displayed are those obtained from cyclic loess,
from the pure parallel version of cyclic loess, and from a
single loess smooth on the plot containing all the points from
the four MA plots involving the array to be normalized (par-
allel variant 1). Recall that for the pure parallel version of
cyclic loess, the correction for a particular point is found by
averaging the corrections obtained from the n MA plots. As
expected, all three methods produced equivalent results.

This parallel variant 1 reduces the number of loess smooths
that are computed. One pass through the data with parallel
variant 1 requires only n loess smooths compared to Cn

2 loess
smooths required by cyclic loess. However, each smooth for
this parallel variant 1 is performed on np versus p points.
Whether this version of parallel loess is faster than cyclic
loess likely depends on the implementation details of each
algorithm.

2.2.2 Parallel loess variant two The next idea is to reduce
the number of points in the plot containing all the points from
the MA plots of parallel loess involving array j from np to p.
Since there are p spots on an array, the intent is to replace each
collection of n points per spot i (one per each pairwise MA
plot—array j with array 1, array j with array 2, . . . , array
j with array n) with a single point, which summarizes the
collection of n points for spot i. The new plot would contain
p ‘summary’ points and we would perform a smooth on this
plot to obtain the spot corrections for array j .

A way to produce a point for spot i that summarizes the n

points for spot i that involve array j is to set the x-coordinate
equal to the average of the n x-coordinates:

1

n

[
(yi1 + yi1)

2
+ (yi1 + yi2)

2
+ · · · + (yi1 + yin)

2

]
= yi1 + ȳi·

2

Here ȳi· is the row mean for the ith row of the data, which is
equal to the mean expression value of spot i across the arrays.
The vertical position for spot i on array j is the average of the
y-coordinates:

1

n
[(yi1 − yi1) + (yi1 − yi2) + · · · + (yi1 − yin)] = yi1−ȳi·.

The next step is to determine corrections for the spots on
chip j by fitting the loess smooth on this set of p points. This
would be repeated for each of the n − 1 other chips; a total of
n smooths need to be computed for one pass through all the
data, similar to the parallel loess variant 1 above. However,
the number of points for each loess smooth is p for this variant
compared to np for variant 1.

Repeating the bias computation found in Section 2.2, the
plot for array 1 versus array 2 has vertical and horizontal axes
aY andbY , respectively, witha = (1−1/n, −1/n, . . . , −1/n)

and b = (1 + 1/n, 1/n, . . . , 1/n)/2. This yields
∑

aj = 0,∑
bj = 1 and

∑
ajbj = (n−1)/n leading to positive correla-

tion between aY and bY and a potentially biased correction.
Figure 4 compares the computed corrections produced by this
variant of parallel loess (parallel variant two), parallel loess,
and cyclic loess for two of the four arrays in our simple data
example. Clearly, the bias is severe. In the next section we use
a linear models argument to motivate a similar plot, but with
x-coordinate of ȳi·, leading to b = (1/n, . . . , 1/n) and∑

ajbj = 0 and an unbiased estimate.
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Fig. 4. The computed corrections for arrays 2 and 4 of the simulated example of 4 arrays. The corrections are from the smooth of the 5000
derived points (parallel var 2), from parallel loess (parallel), and from cyclic loess (cyclic).

3 FAST LINEAR LOESS
Cyclic loess can be conceptualized as a smooth (loess),
coupled with a very simple linear model. Consider the case of
two arrays, 1 and 2, with gene expression levels represented
by yi1 and yi2 for i = 1, . . . , p, and the simplest possible
linear model for the data yij = αi + εij , an intercept for each
spot. The solution is of course α̂i = ȳi·. In the MA plot for
the two arrays, the x-coordinate is (yi1 + yi2)/2 = ȳi· = ŷi·,
the y-coordinate is yi1 − yi2 = 2(yi1 − ŷi·), and the adjust-
ment to spot i on the the first chip is 1/2 the height of the
loess smooth on this plot at the x-coordinate corresponding
to spot i.

Extending this idea to the n array case suggests creating a
modified MA plot for each array j . The modified MA plot con-
sists of array j and a constructed ‘average’ array; the intensity
level of spot i on the ‘average’ array is equal to the average
intensity of spot i across all arrays for i = 1, . . . , p. The com-
puted corrections for array j would be obtained from the loess
smooth on the points of this plot. This would be done for each
of the j = 1, . . . , n arrays. This variant of cyclic loess, called
fastlo, requires n loess smooths each on p points for one pass
through the data. Obviously, this is considerably faster than
cyclic loess, which requires Cn

2 loess smooths.
The steps of fastlo given below are done on the log2 of the

spot intensities:

(1) Create the vector ŷi· = the row mean of Y . Note that
this is the same as creating an ‘average’ array.

(2) Plot ŷ versus (yi − ŷ) for each array j . This plot has
one point for each spot (modified MA plot).

(3) Fit a loess curve f (x) through the data.

(4) Subtract f (x) from array j .

(5) Repeat for all remaining arrays.

(6) Repeat until the algorithm converges.

A further interesting aspect of fastlo is that it requires only
1 or at most 2 iterations to converge. If there is no outlier
down weighting, then the loess smoother will be a linear oper-
ator and the average of the smooths will be the smooth of all
the points:

1

n

∑
Sm(yn − ȳ) ≈ Sm

(∑
n

y − ȳ

)
= Sm(0) = 0

where Sm is the smoother. If this holds, then for any given
row of Y , some elements increase and some decrease, but the
mean stays the same. If the row means do not change, the
algorithm has converged.

4 QUANTILE NORMALIZATION
Quantile normalization makes the overall distribution of
values for each array identical, while preserving the overall
distribution of the values. It consists of two steps.

(1) Create a mapping between ranks and values. For rank
1 find the n values, one per array, that are the smallest
value on the array, and save their average. Similarly for
rank 2 and the second smallest values, and on up to the
n largest values, one per array.

(2) For each array, replace the actual values with these
averages.

As mentioned, this produces identical distributions of val-
ues on each array; quite an aggressive normalization process.
On the other hand, quantile normalization is extremely fast—
it only requires a sort of the arrays and a computation of
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Fig. 5. The computed corrections for array 8 of simulated dataset 2. The corrections are from cyclic loess (cyclic), quantile (quantile) and
fastlo (fastlo). The dashed line represents the true correction value for each spot.

means across sorted rows. It completes in a single pass through
the data.

5 RESULTS
As a final step, we compare the performance of the three
normalization algorithms: cyclic, quantile and fastlo. Results
of applying these algorithms to a simulated and real dataset
are presented. Descriptions of the datasets and a comparison
of the results follow below.

5.1 Simulated dataset
For the simulated data introduced in Section 2.2, we
assumed that the spot intensities were uniformly distributed
and the non-systematic errors were symmetrically distrib-
uted. Both assumptions are arguably unrealistic and were
relaxed. The simulated data in this section were generated
from a set of five human liver tissue (total cRNA concen-
tration of 5 µg) arrays from the GeneLogic dilution experi-
ment (www.genelogic.com/media/studies/dilution.cfm); this
set will be denoted as liver5. The simulated dataset has 10
arrays and each array has 20 000 spots. The 20 000 spots were
randomly selected from among the PM spots on the Affymet-
rix U95Av2 GeneChip. The spot i intensity on array j was
generated as yij = yi,rand(liver5)j

+j/2. The value yi,rand(liver5)j

is randomly selected from among the group of five spot i

values from the arrays in the liver5 set. A constant, j/2, is
added to spot i on array j for all i = 1, 2, . . . , 20 000 spots
and all j = 1, 2, . . . , 10 arrays.

As for the simulated data set in Section 2.2, the true
correction of the systematic bias is a constant for array j ,
j = 1, 2, . . . , 10. In this case, the constant for array j is equal
to j/2 − 2.75. Again, all three algorithms yielded similar res-
ults in terms of correcting for the known constant offset (Fig. 5,
arrays not shown yielded similar results). The distributions of
normalized values of the 10 arrays yielded by each of the three

Table 1. Means (x̄) and standard deviations (s) of the 20 000 spot intens-
ity corrections produced by each of the three normalization methods when
applied to the 10 arrays of simulated dataset 2

x̄ s

Quantile Cyclic Fastlo Quantile Cyclic Fastlo

Array 1 −2.25 −2.25 −2.25 0.007 0.002 0.002
Array 2 −1.75 −1.75 −1.75 0.008 0.003 0.003
Array 3 −1.25 −1.25 −1.25 0.008 0.003 0.004
Array 4 −0.75 −0.75 −0.75 0.006 0.002 0.002
Array 5 −0.25 −0.25 −0.25 0.009 0.005 0.004
Array 6 0.25 0.25 0.25 0.008 0.003 0.002
Array 7 0.75 0.75 0.75 0.009 0.005 0.004
Array 8 1.25 1.25 1.25 0.007 0.002 0.001
Array 9 1.75 1.75 1.75 0.007 0.004 0.003
Array 10 2.25 2.25 2.25 0.008 0.002 0.003

methods were also essentially equivalent (results not shown).
Quantile normalization was the fastest followed by fastlo and
the slowest was cyclic normalization; the ratios of CPU time
required were 1.0:1.1:16.1 for quantile:fastlo:cyclic loess.

For this simulated setting, we know the true amount of
systematic error needed to be removed from each array via
normalization. A normalization technique that performed well
would yield unbiased corrections and corrections with the
smallest standard deviation. The results in Table 1 reveal
all three methods to be unbiased. Fastlo appears to yield the
smallest standard deviations, in general, followed closely by
cyclic loess and quantile normalization having the largest. For
practical purposes, the differences are so small as not to matter.

5.2 GeneLogic dilution data
A final comparison of the three methods was done on real
data from the GeneLogic dilution experiment. The data
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Table 2. Five number summary plus the mean for the distribution of standard
deviations of 201 800 normalized PM spot intensity values across the 5 arrays
within each concentration level

Min Q1 Median Q3 Max Mean

1.25 quantile 0.0035 0.0797 0.1066 0.1377 4.0684 0.1135
cyclic 0.0052 0.0788 0.1055 0.1361 4.1000 0.1123
fastlo 0.0050 0.0794 0.1062 0.1370 4.2428 0.1129
fastlo2 0.0042 0.0797 0.1067 0.1377 4.3301 0.1135

2.5 quantile 0.0000 0.0802 0.1080 0.1406 2.6932 0.1172
cyclic 0.0030 0.0795 0.1071 0.1394 2.7350 0.1163
fastlo 0.0034 0.0797 0.1072 0.1394 2.6653 0.1162
fastlo2 0.0062 0.0798 0.1075 0.1397 2.7690 0.1166

5.0 quantile 0.0058 0.0774 0.1039 0.1352 3.6135 0.1121
cyclic 0.0046 0.0773 0.1037 0.1346 3.7939 0.1118
fastlo 0.0022 0.0774 0.1038 0.1348 3.6643 0.1119
fastlo2 0.0046 0.0773 0.1038 0.1349 3.6019 0.1120

7.5 quantile 0.0060 0.0845 0.1134 0.1479 3.5267 0.1234
cyclic 0.0009 0.0827 0.1115 0.1462 3.5527 0.1223
fastlo 0.0029 0.0835 0.1122 0.1466 3.6194 0.1229
fastlo2 0.0055 0.0829 0.1118 0.1470 3.7071 0.1233

10.0 quantile 0.0055 0.0744 0.1002 0.1302 2.8603 0.1062
cyclic 0.0035 0.0743 0.0998 0.1294 3.3200 0.1058
fastlo 0.0043 0.0743 0.0997 0.1292 3.3048 0.1058
fastlo2 0.0035 0.0743 0.0998 0.1296 3.3075 0.1061

20.0 quantile 0.0027 0.0822 0.1110 0.1457 3.0393 0.1199
cyclic 0.0038 0.0819 0.1105 0.1451 3.0374 0.1195
fastlo 0.0034 0.0820 0.1105 0.1447 3.0400 0.1191
fastlo2 0.0033 0.0820 0.1106 0.1447 2.9952 0.1191

The four methods compared are quantile, cyclic loess, fastlo, and a second version of
fastlo, which normalizes all 30 arrays simultaneously using a group variable (fastlo2).

consists of six groups of human liver cRNA at concen-
trations of 1.25, 2.5, 5.0, 7.5, 10.0 and 20.0 µg total
cRNA. Five replicate arrays were made for each concen-
tration level. See Irizarry et al. (2003) for more details;
the data can be obtained through the GeneLogic web-
site (http://www.genelogic.com/media/studies/dilution.cfm).
These data were normalized by each of the three normalization
methods under investigation: cyclic loess, quantile, and fastlo.
Each group of five arrays were normalized together. A com-
parison of the boxplots of the normalized values (data not
shown) revealed essentially equivalent distributions of the
normalized spot intensities generated by the three methods.

As in the simulated data, we expect that the true spot intens-
ity levels should be equal across the replicate arrays for a given
dilution concentration. For this situation, a desirable quality of
a normalization technique would be one that yields the small-
est standard deviation at a spot i across the five arrays, for all i.
Table 2 summarizes the distribution of the standard deviations
of the PM spots. These summaries are remarkably similar for
all three methods. Quantile normalization tended to produce
the largest standard deviation on average (either measured by
the median value or the mean value) and cyclic loess and
fastlo having the smallest in many of the sets. Overall, the
differences in these distributions are probably not of practical

significance. Interestingly, the distributions of the standard
deviations did not appear to differ in identifiable ways among
the different concentration levels; specifically, the standard
deviations in spot intensities did not appear to increase as the
concentration levels of the total cRNA increased.

6 SIMPLE EXTENSION OF FASTLO
When normalizing arrays that are to be compared, a decision
is made as to whether to normalize the entire set or to nor-
malize separately within biologically identifiable subsets. For
example, consider a situation where expression levels are to
be compared between two distinct groups such as cancer-
ous tissues and normal tissues. In this case, the entire set of
arrays could be normalized together or separate normaliza-
tions could be done for the set of cancerous tissue arrays
and for the set of normal tissue arrays. Determination of
the most appropriate normalization approach depends upon
which process is responsible for most of the systematic vari-
ation in expression levels among the arrays: the biological
process of interest or the microarray experimental process.
For instance, assume that the global spot average was 12.0
in the arrays from cancer tissues and 11.4 from the normal
tissues. Do we ascribe this overall difference to the treatment
(e.g. more genes are expressed in the cancer tissues) or to
the arrays (variation in experimental conditions that produced
the arrays)? If most of the systematic variation is believed to
arise from biological mechanisms of interest, then it is reason-
able to perform a separate normalization for each group being
compared. On the other hand, if it is believed that most of
the systematic variability is due to the experimental processes
(and so not of interest), then it is reasonable to perform a
single normalization on the entire group. Unfortunately, it
is often not clear which normalization approach is the most
appropriate.

Both cyclic loess and quantile normalization require the ana-
lyst to decide whether the biologic mechanism or microarray
experimental process dominates the systematic variation in
spot intensity levels among arrays. On the other hand, fastlo
can be extended so that the analyst does not have to commit to
one or the other of these assumptions. This is a consequence of
the model-based nature of fastlo. Recall that the ideal plot for
performing normalization for an array would be one with true
spot intensity on one axis, say the x-axis, and the observed—
true spot intensity on the y-axis. Since we do not know the
true spot intensity, we could use a linear model to estimate it.
Fastlo uses the simplest linear model, the mean spot intensity
value across the arrays. Other linear models could be used
instead such as one that also incorporates a grouping variable,
which indicates the group to which an array belongs. This
allows the data to determine the relative contributions of the
biologic mechanisms of interest (represented by a grouping
variable) and of the microarray experimental process to the
systematic variation of spot intensity levels among the arrays.
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Fig. 6. Boxplots of the normalized spot intensity values for the five arrays of the GeneLogic dilution data at total cRNA concentration of
10 µg. The normalizations are from cyclic loess, quantile, fastlo, and fastlo2, which uses a linear model with spot and grouping variables.

Consider the set of GeneLogic liver dilution data
(Section 5.2). The grouping variable for this data represents
the concentration level of the liver tissue cRNA. It seems
reasonable to assume the systematic variability in spot intens-
ity levels among the 30 arrays is dominated by the grouping
variable or the concentration level. This suggests the best nor-
malization approach would be to separately normalize the six
sets of five arrays separately. This can be done with each
of the three normalization techniques: quantile, cyclic loess
and fastlo. Extending fastlo allows us to perform a single
normalization for the entire set of 30 arrays. There are three
basic models that could be used to accomplish this.

Let k index the treatment group and g the genes; the array
index j is nested within k and the spot index i is nested within
g (11–20 PM spots per gene for the Affymetrix GeneChip
platform). Simple fastlo on all 30 arrays together corres-
ponds to the linear model yij = αi + εij . Conversely, the
model yij = αi + βk + (αβ)ik(j) + εij , containing all treat-
ment and spot interactions, is equivalent to separate fastlo
fits to each treatment group. Intermediate models include
yij = αi + βk(j) + εij , a simple main effect for treatment
or yij = αi + βk(j) + (αβ)g(i)k(j), which has a separate treat-
ment effect per gene. [In the model, k(j) is treatment k for the
sample hybridized to array j andg(i) is defined similarly.] The
latter model may be more plausible, in that treatment would
affect a gene, not an individual probe.

As proof of principle, we modified the fastlo algorithm to fit
this last model and applied it to all 30 arrays in the GeneLogic
liver dilution dataset. The modified fastlo algorithm is called
fastlo2. Figure 6 compares the normalized log2 spot intensity
values for the set of five arrays with a total cRNA of 10 µg
produced by four different normalization approaches: cyc-
lic loess, quantile, fastlo, and fastlo2. Cyclic loess, quantile,
and fastlo were done separately on each set of five arrays

corresponding to the six different concentration levels, and
fastlo2 was performed on the entire set of 30 arrays simul-
taneously. The distribution of the normalized spot intensities
produced by the four methods are essentially equivalent. Sim-
ilar results (data not shown) were observed for the five other
concentration levels. Table 2 summarizes the distribution of
the standard deviations of all the spots for the four methods.
The summary values for fastlo2 were remarkably similar to
the other three methods. In particular, the results produced
by fastlo2 were generally smaller than those of quantile but
larger than cyclic. As observed earlier, the differences in
these distributions are so small that they are not of practical
significance.

7 DISCUSSION
We have accomplished our goal of developing a method,
fastlo, that yields normalized values similar to those produced
by cyclic loess normalization but is considerably faster. Res-
ults from both the simulated data and the real data indicate that
cyclic loess and fastlo produced equivalent normalizations.
Fastlo only requires n loess smooths for one pass through a set
of n arrays compared to Cn

2 loess smooths required by cyclic
loess. This results in at least an order of magnitude in compu-
tational (and time) savings. In addition, fastlo appears to have
the same order of magnitude in computation (and run-time)
as quantile normalization; the relative speed depends on the
implementation details of fastlo and quantile normalization.

All three methods appear to yield similar normalized values.
It is worth noticing that the datasets used above were ideal for
quantile normalization; the true spot intensities (and so their
distributions) were identical across the arrays making this per-
fect for a method that forces the spot intensity distributions of
the arrays to be identical. In situations where spot intensities
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do differ among tissue initially thought to be similar, e.g. a
molecular subtype within brain cancer tissue, quantile nor-
malization may be too aggressive and attenuate differences of
interest. These issues are yet to be resolved.

An advantage of fastlo not shared by the other methods is
that it is model-based. As demonstrated above, this allows
us to normalize an entire set of arrays to be compared as
a group—i.e. no need to perform separate normalizations
for subgroups. This is useful in situations where it is not
clear to what degree the biological variation between the
groups and the microarray experimental process contribute
to the systematic variation among the arrays. This model
can be easily extended to incorporate other variables that
are part of the underlying experimental design such as sub-
ject demographic variables, time, dose level, etc. Other
estimation options are also open, e.g. shrinkage of the treat-
ment coefficients toward zero in an experiment where it was
felt that only a small percentage of genes are differentially
expressed.

Finally, a more robust estimator could be used to generate
ŷ. If the number of arrays to be normalized is relatively small,
the mean estimate can be significantly influenced by a single
outlier. We explored this using the median of spot i across
all arrays to generate the reference array. The results were
not promising; they resulted in a considerably biased estim-
ate. Recall the data to be normalized is a matrix of arrays as
columns and spot intensities as rows. Fastlo iterates between
fits to the rows (ŷ) and loess smooths on the columns of the
array. It appears that the same type of estimator must be used
for row and column operations in the algorithm. We have not
pursued this further.

Overall, fastlo (1) produces normalized results similar to
cyclic loess (as well as quantile) normalization, (2) is consid-
erably faster than cyclic loess, and (3) has added versatility

above quantile and cyclic loess normalization through its
connection with linear models.
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