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ABSTRACT
Motivation: A major challenge of systems biology is to
infer biochemical interactions from large-scale observations,
such as transcriptomics, proteomics and metabolomics. We
propose to use a partial correlation analysis to construct
approximate Undirected Dependency Graphs from such large-
scale biochemical data. This approach enables a distinc-
tion between direct and indirect interactions of biochemical
compounds, thereby inferring the underlying network topology.
Results: The method is first thoroughly evaluated with a large
set of simulated data. Results indicate that the approach has
good statistical power and a low False Discovery Rate even in
the presence of noise in the data. We then applied the method
to an existing data set of yeast gene expression. Several
small gene networks were inferred and found to contain genes
known to be collectively involved in particular biochemical
processes. In some of these networks there are also unchar-
acterized ORFs present, which lead to hypotheses about their
functions.
Availability: Programs running in MS-Windows and Linux for
applying zeroth, first, second and third order partial correlation
analysis can be downloaded at: http://mendes.vbi.vt.edu/tiki-
index.php?page=Software
Contact: alf@vbi.vt.edu
Supplementary information: Supplementary information
can be found at: URL to be decided

INTRODUCTION
Inferring the topology of biochemical networks, including
metabolic networks and gene networks, rests mainly on the
ability to distinguish direct from indirect interactions. Several
methods for inference of such networks from experimental
data have been proposed in the recent literature (Brazhnik
et al., 2002). Some require very specific experimental designs
(de la Fuenteet al., 2002; Gardneret al., 2003), others are less
stringent on experiments but rely on very specific assumptions
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about the underlying network topology; e.g. sometimes it is
assumed that biochemical networks can be modeled as dir-
ected acyclic graphs (Friedmanet al., 2000; Wagner, 2001).
However, cyclic network structures, such as feedback loops,
are ubiquitous in biology and are associated with many of the
specific properties of living systems, and therefore analyses
should be independent of such assumptions.

We propose a method to construct approximate undirec-
ted dependency graphs (UDGs) from large-scale biochemical
data using partial correlation coefficients. UDGs are graphs
in which pairs of vertices are connected by undirected edges
if there is a direct dependence between them (Shipley, 2002).
Because the graphs constructed by this method are undirec-
ted, many of the problems that arise in inferring networks
with cycles are circumvented. Previously, methods based on
the same framework have been proposed (Spirteset al., 1993;
Pearl, 2000; Shipley, 2002) but which are computationally
intractable for large-scale data sets. The present method is
simpler than those, but is able to efficiently analyze genome-
sized data sets, such as from microarray experiments. The
method starts by constructing networks based on correlations,
where vertices are biochemical species and edges corres-
pond to their correlation; an edge is present if the correlation
between any two biochemical species is higher than a cer-
tain threshold. Since correlation is symmetrical, edges are
undirected. In a second step edges for which partial correla-
tion coefficient falls below a certain threshold are eliminated,
resulting in an undirected dependency graph.

SYSTEM AND METHODS
The Pearson product moment correlation coefficient is a
widely used measure of association between continuous ran-
dom variables. As is well known, correlation should not be
confused with causality, since many different causal relation-
ships can correlate the same pair of variables. The use and
interpretation of zero-order correlation networks in ‘omics’
studies has been discussed thoroughly earlier (Eisenet al.,
1998; Steueret al., 2003a,b). Although it is clear that cor-
relation networks are not the same as the underlying causal
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networks, correlation is still informative about the underlying
system. What causal properties can be inferred from study-
ing correlations has been well investigated before (Spirtes
et al., 1993; Pearl, 2000; Shipley, 2002). In this paper, we
explore what can be gained from studying correlations in gen-
omic data sets. The most important concept in this study is
the partial correlation coefficient. A partial correlation coef-
ficient quantifies the correlation between two variables (e.g.
gene activities) when conditioning on one or several other
variables. For example, what exactly is the correlationrxy.z

between variablesx andy conditioning onz? It is the correla-
tion between the parts ofx andy that are uncorrelated with
z. To obtain these parts ofx andy, they are both regressed
on z. The residuals of the regression are then the parts ofx

andy that are uncorrelated withz. The correlation between
these residuals ofx andy is the partial correlation betweenx
andy when conditioning onz. The order of the partial cor-
relation coefficient is determined by the number of variables
it is conditioned on. For example,rxy.z is a first-order partial
correlation coefficient, because it is conditioned solely on one
variable (z). Partial correlation can be calculated to any arbit-
rary order. Equations (1)–(3) allow the calculation of partial
correlation coefficients of orders 0–2 and similar equations
exist to calculate higher-order coefficients.

zeroth-order correlation:rxy = cov(xy)√
var(x)var(y)

(1)

first-order correlation:rxy.z = rxy − rxzryz√
(1 − r2

xz)(1 − r2
yz)

(2)

second-order correlation:rxy.zq = rxy.z − rxq.zryq.z√
(1 − r2

xq.z)(1 − r2
yq.z)

(3)

Thus we can use partial correlation coefficients to distin-
guish between the correlations between two variables due to
direct causal relationships from the correlations between the
same two variables that originatevia intermediate variables
(sequential pathways) or directly due to other variables (com-
mon causes). Although partial correlation analysis still does
not infer causal relationships, it excludes many of the possib-
ilities, and thus is a step in the direction of causal inference.
We propose to calculate up to second-order partial correlation
coefficients to infer significant interactions from biochemical
data sets, including those containing transcriptomics, proteo-
mics and metabolomics data. The correlation between two
variables is evaluated by conditioning on all possible pairs of
other variables. If any of these pairs yields a zero partial cor-
relation (or a correlation not significantly different from zero),
that edge is removed from the correlation network. Executing
this over all possible edges results in a network of putative
direct interactions. We refer to the graph obtained in this way
as a second-order UDG approximation. In order to obtain
the exact UDG forn variables, one would potentially need

to calculate all partial correlation for each order from 0 to
n − 2, i.e. one would need to calculate correlation coeffi-
cients conditioned on every possible subset of the set ofn−2
other variables (Shipley, 2002). This because there can be
more than two indirect paths between two variables resulting
in correlation. In order to do so, one needs at least as many
observations as there are variables. This is thus not possible
for existing data sets containing hundreds to tens of thousands
of variables but where there are only in the order of ten to hun-
dreds of observations—a well-known problem of genomics.
An alternative approach would be to subdivide the data set in
smaller subsets of variables and calculate the partial correl-
ations in these subsets conditioning on all other variables of
the subset, yielding many different sub-networks (Kishino and
Waddell, 2000; Shinoharaet al., 2000; Waddell and Kishino,
2000). This approach, however, suffers from yet another
problem: How to reconstruct the entire network from these
sub-networks? Another approach would be to cluster the genes
in a small number of clusters and find the network between the
clusters (Toh and Horimoto, 2002). The resolution of the latter
approach is low, since clusters can consist of many genes. Fur-
thermore, in these approaches (Kishino and Waddell, 2000;
Shinoharaet al., 2000; Waddell and Kishino, 2000; Toh and
Horimoto, 2002) the conditioning is done only on the full sets,
and lower-order partial correlations are not considered—but
two variables may be independent when only conditioned on
a subset of the variables, while dependent when conditioned
on all other variables together. Therefore, these methods are
unlikely to discover all independencies in the network (see
below). We propose to ‘remove’ the two most active paths,
which we argue reduces the correlation sufficiently so that it
falls below the threshold of significance, and therefore the pair
will be seen as independent. This means that one only needs
to calculate up to second-order partial correlation coefficients.
In this case we favor a high threshold value, based on a high
significance level. Then, we expect only a few false positives
(Type I errors; connections inferred which do not correspond
to a connection in the real network) with the drawback of a
higher number of false negatives (Type II errors; connections
in the real network not inferred). With this approach one is at
least quite certain of the existence of the edges found, though
many can be missed. Accordingly, this should not be seen as a
‘network inference’ approach: the goal is not to infer the net-
work correctly, but instead to develop, with confidence, new
hypotheses of interactions between biochemical components.

As an alternative to Pearson correlation, this analysis could
employ Spearman rank correlation in Equations (1)–(3) [see
section 3.9 in Shipley (2002)] for justification of evaluating
conditional independence with test based on Pearson partial
correlation, but replacing these with Spearman partial cor-
relations). Spearman rank correlation does not depend on
normality and linearity of interactions, and might therefore
be better suited for biochemical networks. The accompany-
ing software has the ability to carry out the analysis based
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Fig. 1. Stepwise description of the method. (a) The actual causal
network. (b) The UDG based on zero-order correlation. (c) Edges
with zero partial correlation coefficients are eliminated. (d) The
resulting UDG.

on Pearson or Spearman rank correlations, at the user’s
choice.

ALGORITHM
As an explanatory example we consider a simple gene network
model, whose dynamics are described by the following system
of simultaneous ordinary differential equations:

dT1

dt
= V1

(1 + KT1/T4)
− k1T1 + θ1T1,

dT2

dt
= V2

(1 + T1/KT1)
− k2T2 + θ2T2,

dT3

dt
= V3

(1 + KT2/T2)
− k3T3 + θ3T3,

dT4

dt
= V4

(1 + T2/KT2)
− k4T4 + θ4T4,

dT5

dt
= V5

(1 + T3/KT3)(1 + KT4/T4)
− k5T5 + θ5T5

(4)

ParametersVi are maximal transcription rates,ki are degrad-
ation rate constants and theKi are inhibition or activation
constants; all parameter values are set to unity. TheTis are
transcript levels (gene activities) and theθi are error terms
designed to simulate biological variance. The error terms are
initialized by sampling from a normal distribution with zero
mean and a standard deviation of 0.01, and then a steady state
is calculated numerically with the software Gepasi (Mendes,
1993, 1997). We generated 1000 steady states, which differ
only due to the random values ofθi . Figure 1a depicts the
network structure.

First the sample correlation matrix is calculated and a net-
work is drawn in which the variables that have significant
correlation are connected. In this example all variables are
significantly correlated (given 1000 observations and using
an alpha value of 0.01; see the supplementary information
for details on how the minimum significant correlation was
determined), giving rise to a totally connected graph (Fig. 1b).

Testing the correlation betweenT1 andT2 by conditioning on
all other variables individually, and on all combinations of
two variables, shows that this correlation remains significant
and so corresponds to a direct dependency and its edge is
therefore not removed. AlthoughT1 andT3 are not adjacent
in the original network (Fig. 1a), they are highly correlated.
This is caused by the path betweenT1 andT3 through T2.
Calculation of the partial correlation betweenT1 andT3 con-
ditioning onT2(rT1T3.T2) shows that this correlation vanishes
below significance (it has a value of−0.0316). This prompts
the removal of the edge betweenT1 andT3 from the inferred
network, and one does not continue conditioning this correl-
ation on any other variables. In a similar way we test all other
correlations, find that some are not significant, and remove the
corresponding edges from the graph (Fig. 1c). AlsoT2 andT5

are correlated. There are two paths running fromT2 toT5, one
throughT3 and the other throughT4. If we condition only on
T3 the correlation is reduced to−0.314, which is still signific-
ant. Conditioning onT4 yields a reduction to−0.164, but this
is also still significant. In this case calculation of a second-
order partial correlation coefficient is necessary to find that
this pair is independent, i.e.rT2T5.T3T4, which has a value of
−0.0194, which is no longer significant.

Systematically testing all pair-wise correlations by con-
ditioning first on all other variables individually and sub-
sequently on all possible pairs, and removing edges as soon as
they have non-significant partial correlation (Fig. 1c) results
in the undirected dependence graph depicted in Figure 1d. It
must be noted that, even for this simple example, conditioning
on all other genes together as in previous approaches (Kishino
and Waddell, 2000; Shinoharaet al., 2000; Waddell and
Kishino, 2000; Toh and Horimoto, 2002) will not discover the
independence betweenT3 andT4. This is because of the fact
thatT2 is a common ancestor ofT3 andT4, whileT5 is a causal
descendent ofT3 andT4. Conditioning on any common causal
descendent introduces a correlation between two variables
that are independent conditional on their causal ancestors.
Therefore, conditioning on all variables simultaneously can
introduce some dependencies, which are not due to direct
causal effects or common ancestors. The correlation mat-
rix analyzed above was processed at the ASIAN (Aburatani
et al., 2004)) website (http://eureka.ims.u-tokyo.ac.jp/asian/),
at which the algorithm of (Toh and Horimoto, 2002) is imple-
mented. The results were similar to those of Figure 1d,
but with an additional incorrect edge betweenT3 and T4.
This emphasizes the need to consider lower-order partial
correlations first.

There are ways to direct some of the edges of this graph
(Spirteset al., 1993), but these are limited and we will not
pursue this here. In this example, calculating two orders of
partial correlation suffices to detect all independencies. For
more complicated networks, higher-order correlations may
be necessary. We expect that in general conditioning on two
variables (disrupting two paths of influence) should be enough
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Fig. 2. Average False Discovery Rate (FDR) and power found with partial correlation analysis of different orders. r0 is zero-order partial
correlation (Pearson correlation), r1, r2, and r3 are first-, second- and third-order partial correlations, respectively. Results are given at different
threshold values for three different network topologies. For each topology 50 networks of 100 genes and 200 connections were analyzed.

to reduce most indirectly caused correlations below the sig-
nificance threshold. By selecting a high confidence level, we
ensure that conditioning on only two variables is enough to
reduce the correlation below the significance threshold, but
with the drawback of losing those direct connections that are
weak. Controlling for more than two variables at a time would
also dramatically increase the computation time and limit the
application to small networks.

The theoretical basis of the present approach rests on the
operation of d-separation (Pearl, 2000). In simple terms, two
variables are said to be d-separated if there exists a condition-
ing set of variables that prevents a flow of information between
the two. The definition of d-separation was originally made
by Pearl (Pearl, 2000), while Shipley provides a more access-
ible explanation (Shipley, 2002). It has been mathematically
proven for Directed Acyclic Graphs that d-separation implies
statistical independence (Spirteset al., 1993). In cyclic
networks this might not always hold (Spirtes, 1995).

RESULTS
Results from artificial data
We evaluate the performance of the algorithm on simulated
data from large artificial gene networks (Mendeset al., 2003).
Although recently arguments were presented in support of
the view that biochemical networks follow a ‘scale-free’
(Barabasi and Albert, 1999) topology, the actual global net-
work architecture of biochemical networks is still largely
unknown. In order to show that the present method is robust
toward network topology, we tested it on different simulated
network architectures. We tested 50 networks of 100 genes

and 200 connections for each of three different topologies:
‘random’ (Erdös and Rényi, 1960; Kauffman, 1969), ‘scale
free’ (Barabasi and Albert, 1999) and ‘small world’ (Watts
and Strogatz, 1998). Note that these networks contain an arbit-
rary number of cycles. These models were constructed with
the system previously described by one of us (Mendeset al.,
2003), which is based on ordinary differential equations with
non-linear kinetics similar to Equation (4). Details of the net-
works can be found in (Mendeset al., 2003) and on the web at:
http://mendes.vbi.vt.edu/AGN/Century/index.html. For each
gene network, mutant experiments were simulated by setting
each gene’s transcription rate to 50% of its original value (one
at a time), so the sample size for each network is 100 (corres-
ponding to 100 single gene perturbations). This mutant pool
represents the necessary biological variance needed to apply
this method. The interactions in these models are defined with
non-linear kinetics (Mendeset al., 2003), so in this exercise
we also test the performance of the method on non-normal
data. For correlation of order 0, 1, 2 and 3, the False Discov-
ery Rate (FDR) is calculated at different threshold values as
well as the power. The FDR is expressed as the number of
wrongly predicted edges divided by the total number of pre-
dicted edges, and the power is defined as the number of edges
correctly inferred as a fraction of the total number of edges in
the network.

Figure 2 summarizes the results at several threshold levels;
the exact numbers and standard deviations can be found in
Tables S1 and S2 in the supplementary data. Interestingly,
the method performed differently on each topology, having
more success with the Erdös-type random networks. A slightly
higher FDR was found for the scale-free topology, but fewer
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Fig. 3. Average FDR and power for three networks of different topologies, with different levels of added noise. One hundred data sets per
noise level per topology were generated and analyzed with partial correlation analysis up to second order.

edges were discovered, i.e. there were more false negatives.
The results for the small-world topology were not as good,
although even for these there is still a considerable improve-
ment compared to considering zero-order correlation only.
The method produces many false negatives, i.e. misses many
connections that exist in the network, but mostly because they
represent weak interactions. Only 20 to 40% of the total num-
ber of edges was retrieved in this exercise. Figure 2 depicts
the effect of increasing order in the partial correlations, and it
is evident that increasing the order from two to three improves
the discovery only slightly. This suggests that calculating up
to second-order partial correlation at an alpha level of 0.001
is a reasonable choice for confident inference of biochemical
interactions (networks).

To test the effect of experimental error on the performance
of the method, we selected one network from each topology
and added noise to their data sets. The method had not gen-
erated false positives without noise, so all false positives we
find in the presence of noise are due indeed due to the noise.
Since this method makes use of the information contained
in the biological variance and covariance in data sets, its
performance depends onhow large the experimental noise
is relative to the biological variance. Noise was added by
sampling from a normal distribution with zero mean and a
variance corresponding to 10, 25, 50 and 100% of the bio-
logical variance of each variable. A hundred data sets per
noise level per topology were generated, then the method
was applied with first- and second-order partial correlation,
and finally the FDR and power were calculated. Figure 3
summarizes the results at several threshold levels; the exact
numbers and standard deviations can be found in Tables S3

and S4 in the supplementary data. We observed that the higher
the proportion of experimental variance relative to the biolo-
gical variance, the more false positives the method produces.
However, the FDR remains quite acceptable even at higher
noise levels. This is due to the higher noise levels causing a
loss in correlations corresponding to real edges (resulting in
lower power), but also a similar rate of loss of false positives.
Inference on the scale-free and especially the small-world
topologies is quite robust to the noise level, both in terms
of the FDR as well as the power.

Results from Saccharomyces cerevisiae microarray
data
We combined budding yeast gene expression data from two
previous publications (Bremet al., 2002; Yvertet al., 2003).
In this data set, allelic polymorphism at multipleloci, res-
ulting from a cross of two inbred lines, causes variance of
expression levels. Two of us (N. Bing and I. Hoeschele, sub-
mitted for publication) have recently reanalyzed this data set
in a genetical genomics (Jansen and Nap, 2001) study. From
this study, based on 42 observations (Bremet al., 2002; Yvert
et al., 2003), candidate causal links between genes were iden-
tified from QTL analyses of expression profiles. The resulting
networks included a total of 781 genes, which form the set of
genes included in the present study. For the partial correlation
analysis, the data is augmented with 88 additional measure-
ments (Yvertet al., 2003), giving a total of 130 observations.
Each of these 130 observations corresponds to a particular off-
spring as a result of the cross between the two parental strains.
The parental strains are homozygous for different variants at
a number of sites throughout the genome. The offspring have
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Fig. 4. The Undirected Dependence Graph comprising 374 yeast genes and 258 direct relationships, resulting from a second-order partial
correlation analysis at confidence level alpha= 0.001. Black and gray edges correspond to positive and negative second-order partial
correlation, respectively. Figure created with the program Cytoscape (Shannonet al., 2003). Boxes indicate sub-networks of known function.
Box I contains mostly genes related to mitochondrial protein biosynthesis and respiration. Box II contains many genes involved in sterol and
lipid biosynthesis. Box III contains many genes involved in oxidative phosphorylation and nucleotide metabolism. Box IV contains genes
involved in the pheromone response pathway. Box V contains genes involved in amino acid biosynthesis, Box VI contains genes involved
in protein biosynthesis, Box VII contains genes involved in cell growth and Box VIII contains three genes that code for ATP-driven ion
transporters.

inherited different combinations of variants in their genomes,
leading to different expression levels. The variance of gene
expression among the offspring is then used to infer network
structures. Figure 4 shows the second-order correlation net-
work resulting from an alpha value of 0.001. At that threshold
level, and with 130 observations, second-order correlations
above the threshold of 0.348 (see supplementary information)
are considered to be non-zero. The resulting network is very
sparse with only 258 connections (from a total of 304,590
possible pair-wise interactions), and contains only 374 out of
the 781 genes that were included in the analysis (Figure 4).
The network obtained using an alpha value of 0.01 contains
more connections and variables and an alpha value of 0.0001 is
sparser and contains less variables (see supplementary inform-
ation). The network at an alpha value of 0.001 contains many
small sub-networks of just two and three genes, as well as
larger sub-networks. Verifying the biological relevance of
the recovered networks is difficult, since many interactions
between genes are currently unknown. These gene networks

are also phenomenological, i.e. many connections do not cor-
respond to direct physical interactions between gene product
and promoter elements, but to a complicated action through
more complex regulatory pathways involving the proteome
and metabolome (Brazhniket al., 2002; de la Fuente and
Mendes, 2002). One way to verify the biological relevance
of the inferred networks is by using the Gene Ontology Term
Finder of theSaccharomyces Genome Database (Christie
et al., 2004) at http://genome-www4.stanford.edu/cgi-bin/
SGD/GO/goTermFinder to investigate if the sub-networks
contain a high proportion of functionally related genes. We
found that most of the inferred networks had indeed high
significance scores, implying that the probability of group-
ing them by chance is very small, thus the method seems to
uncover relevant information. Most of the genes in the network
of Box I (Figure 4) are related to mitochondrial protein biosyn-
thesis and respiration. Interestingly, grouped with these genes
are two uncharacterized ORFs: YHR116W, whose knockout
mutant showed growth defects on non-fermentable carbon
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source, and YLR253W, whose knockout mutant showed
severe growth defects on minimal media or lactate. We hypo-
thesize that these genes are involved in mitochondrial protein
biosynthesis and/or respiration. The network in Box II of
Figure 4 contains many genes involved in sterol and lipid bio-
synthesis. There is one uncharacterized ORF in this group:
YLR050C. It is directly connected to ERG28/YER044C and
could thus be an unknown activator of ERG28. The cas-
cade in Box III contains many genes involved in oxidative
phosphorylation and nucleotide metabolism. The genes in the
network in Box IV are involved in the pheromone response
pathway. Included in this group are two uncharacterized
ORFs: YCR097W-A and YKL177W. Both these ORFs are
classified as ‘dubious’ in theSaccharomyces Genome Data-
base (Christieet al., 2004), but these results indicate that
they may be involved in the pheromone response. Many other
networks contain just few high-scoring genes grouped with
genes involved in distinct processes. There is some support
that the small sub-networks also depict potentially signific-
ant interactions; Box VIII contains three genes that code for
ATP-driven ion transporters, Box V contains genes involved
in amino acid biosynthesis, Box VI contains genes involved
in protein biosynthesis and Box VII genes involved in cell
growth. Many other sub-networks contain genes belonging
to unknown biological processes; our result indicates that
they may interact with each other or be co-regulated. This
method finds interactions between genes and is not neces-
sarily intended to group genes based on similar biochemical
function.

DISCUSSION
We propose a simple and efficient method to organize genes
in UDGs starting from large-scale biochemical data, such as
obtained from microarrays. This is based on partial correlation
coefficients up to order 2. These UDGs would ideally corres-
pond to the underlying network of direct interactions between
the biochemical compounds. Due to the limited amount and
low accuracy of the data being generated at present, the results
of this approach should be seen as an initial estimate of the
real underlying network, enabling us to develop new hypo-
theses for interactions between biochemical components. We
demonstrated the application of the method to gene expres-
sion data, but it is worth stressing that it would work equally
well on data from metabolomics or proteomics.

The power of the method presented here is not very high.
From studies with simulated data we found that only 20–40%
of the total number of interactions were retrieved. This is
due to correlation not being an ideal way to quantify bio-
chemical interactions. Better measures for quantification of
genetic interactions exist and inference methods based on
these measures have higher power (de la Fuenteet al., 2002;
di Bernardoet al., 2004). However, these methods require
specific and complicated experiments (Gardneret al., 2003),

while the present method can be applied to a wider variety
of experimental data. The present method uses observational
data, which is an advantage over methods that require costly
and complicated experimental setups (e.g. de la Fuenteet al.,
2002; Gardneret al., 2003). Observational data is obtained
by measuring individuals in the same physiological state,
only different due to biological variance that distributes the
individuals around the mean state. Also, data obtained from
experimental interventions that are not too drastic (like small
temperature changes, small changes of medium) will still
allow the linear approximation of biochemical interactions
and can thus be used. The large set of simulated data analyzed
in this paper was generated in such experimental fashion,
by creating small perturbations of the expression of each
gene individually. The method discovers connections with
a low FDR, so although one can only find a proportion
of all interactions, one can be fairly confident about the
identified links.

Microarrays measure the gene expression of millions of
cells simultaneously, and what is measured is thus the average
(or aggregated) gene expression rather than the gene expres-
sion inside single cells (which represent the actual causal
process). It was shown that the independence relations hold
under aggregation for variables that interact linearly (Chu
et al., 2003). While gene networks, and biochemical networks
in general, are better characterized by non-linear kinetics, for
small deviations from the mean values one can expect that
the non-linear interactions can be validly approximated by
linear functions, as is commonly done in systems analysis
(Stucki, 1978). Therefore, we believe that the recent suc-
cess of application of methods based on finding independence
in gene expression data (e.g. Friedmanet al., 2000; Gardner
et al., 2003; Segalet al., 2003) (and the approach described
in this paper) can be attributed to the approximate validity of
the assumptions.

Similar algorithms to identify UDGs have been proposed
earlier (Spirteset al., 1993; Kishino and Waddell, 2000; Pearl,
2000; Shinoharaet al., 2000; Waddell and Kishino, 2000;
Shipley, 2002; Toh and Horimoto, 2002). The present method
is faster and able to deal with large data sets. The reason for this
scalability is that only up to second-order partial correlations
are calculated, while other algorithms proceed to complete
conditioning order if necessary. Although better, these other
algorithms cannot be applied to data sets as large as those
currently produced in ‘omics’ studies and as analyzed here.
Another reason for the increased speed of our algorithm is
that we calculate the matrix of second-order partial correla-
tions conditioned onp andq immediately after calculating
the matrix of first-order partial correlations conditioned on
p, thus using the first-order correlation coefficients recurs-
ively in the calculation of the second-order coefficients, using
Equation 3. Previously proposed algorithms (Spirteset al.,
1993; Kishino and Waddell, 2000; Pearl, 2000; Shinohara
et al., 2000; Waddell and Kishino, 2000; Shipley, 2002;
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Toh and Horimoto, 2002) compute partial correlation coeffi-
cients by creating many sub-covariance matrices and inverting
them or by first applying (multiple) regression and calcu-
lating correlation between residuals. Systematically using
Equations 2 and 3 prevents us from using computationally
expensive tasks such as matrix inversion.

The limitation of our method to correlations of up to order
two is justified on several grounds. The first reason is the
usually small sample sizes in functional genomics, making
higher-order coefficients unreliable. Second, our studies with
simulated data indicate that little is gained by increasing to
third order (Fig. 2). A practical reason is that for data sets
of about 1000 variables, as analyzed here, the computation
would become prohibitively intensive for higher orders. In the
worst case the computational complexity is aboutO(np+2),
where n is the number of variables andp the order of
the correlation used (see supplementary information). This
worst-case scenario would occur when the network is totally
connected, since it would test all conditionings to find inde-
pendence. Fortunately, biochemical networks are sparse and
thus most correlations will be close to zero. Once a certain
(partial) correlation is evaluated as zero, no further computa-
tions are performed for this pair of variables. The results on
the 781-gene data set were obtained with a Dell PC 1.90 GHz
running for slightly over 2 h, but when calculating all second-
order partial correlations it took almost 23 h. Supercomputing
facilities and parallel implementation of the algorithm would
perhaps enable extending the analysis to include higher orders
of partial correlation and to analyze larger data sets. But its
advantage is still put in question by our results that show little
gain in information when going from order 2 to 3 (Fig. 2).

A non-zero partial correlation between two variables, X and
Y, can imply several causal mechanisms.

(1) X directly affects Y, or Y directly affects X, or both

(2) X and Y are both affected by a third ‘hidden’ variable,

(3) X becomes conditionally correlated to a hidden variable
affecting Y (or vice versa) (there is an inducing path
between them).

Based on partial correlation analysis alone it is not possible to
distinguish between these three possibilities. The existence of
hidden variables makes the interpretation of partial correlation
difficult and therefore one should include in the analysis as
many biochemical variables as possible. If a partial correlation
between two genes were due to mechanism 1, it would simply
imply that one of them is a direct effector of the other or that the
both directly affect each other. Mechanism 2 corresponds to
the case that both genes are co-regulated by a common factor,
which was not included in the measurements. In this case the
two genes are direct neighbors in the interaction graph, while
in reality they are neighbors of degree 2 in the real underlying
biological network. Mechanism 3 may lead to more severe
mistakes, since it can result in finding a connection between

two genes that are further removed from each other due to the
conditional correlation with a hidden variable.

The advantage of this method based on partial correla-
tions over Bayesian networks is that it is conceptually simpler
and requires less computational effort, when restricted to the
calculation of up to second-order partial correlation. Further-
more, in the process of distinguishing between direct and
indirect interactions, using the Bayesian network approach
one has to propose a causal structure in order to evaluate
its likelihood. This causal structure needs to be a Direc-
ted Acyclic Graph (DAG), which is in contradiction to the
known structure of biochemical networks, as feedback is
ubiquitous. A third advantage is that the partial correlation
approach is appropriate for continuous variables, while most
Bayesian network approaches require that the data be dis-
cretized, thereby losing information and posing a problem
of how the discretization should be made. On the other hand,
Bayesian network approaches generate directed graphs, while
the approach proposed here yields an undirected graph. While
there are ways to partially direct the undirected graph, these
are mostly dependent on the assumption that the graph is a
DAG (Spirteset al., 1993; Pearl, 2000) as well. One excep-
tion, able to deal with directions in cycles has been proposed
(Spirteset al., 1993; Shipley, 2002) but is limited to simple
cycles of two variables and yields equivalent classes of struc-
tures that cannot be distinguished based on this type of data.
Recently, a first application of Structural Equation Model-
ing (SEM) (Bollen, 1989; Xionget al., 2004) to microarray
data has been presented (Bollen, 1989; Xionget al., 2004).
Linear acyclic SEMs are equivalent to Bayesian networks,
but linear SEMs can handle cyclic structures, and non-linear
SEMs might be even more suitable for biochemical networks.

The most straightforward strategy to find out directions is
by studying time series (Chevalieret al., 1993; Arkinet al.,
1997; Díaz-Sierraet al., 1999; Vanceet al., 2002; Torralba
et al., 2003). Once we have obtained an UDG it is straightfor-
ward to propose specific time series experiments that would
help clarify the directions of the edges. Starting with the UDG
will greatly reduce the number of necessary time series exper-
iments, as compared to designing these experiments without
prior information (Torralbaet al., 2003). Similarly, the UDG
can assist in reducing the number of experiments needed in a
quantitative approach based on perturbation experiments and
measurements of steady state responses (de la Fuenteet al.,
2002). This approach can also be used for selection of sub-
sets of variables to include in further causal analysis, such as
Structural Equation Modeling and complete partial correla-
tion analysis, using software such as TETRAD (Spirteset al.,
1993).

CONCLUSION
The results obtained with the yeast data set show promise
that this method is indeed useful. Not only were we able to
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recover known biochemical interactions, but we were also
able to hypothesize that a number of genes with unknown
function could be related to specific biological functions. It
remains to be seen whether these hypotheses are correct, but
their generation allows one to design appropriate experiments
in order to confirm or refute them. Overall this information
is exactly what we need to obtain from large-scale functional
genomics studies.
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