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ABSTRACT

Motivation: Maximum likelihood (ML) methods have become very

popular for constructing phylogenetic trees from sequence data.

However, despite noticeable recent progress, with large and difficult

datasets (e.g. multiple genes with conflicting signals) current ML pro-

gramsstill require huge computing time andcan become trapped in bad

local optima of the likelihood function. When this occurs, the resulting

trees may still show some of the defects (e.g. long branch attraction) of

starting trees obtained using fast distance or parsimony programs.

Methods:Subtree pruning and regrafting (SPR) topological rearrange-

ments are usually sufficient to intensively search the tree space. Here,

we propose two newmethods to make SPRmoves more efficient. The

first method uses a fast distance-based approach to detect the least

promising candidateSPRmoves,which are then simply discarded. The

second method locally estimates the change in likelihood for any

remaining potential SPRs, as opposed to globally evaluating the entire

tree for each possible move. These two methods are implemented in a

new algorithm with a sophisticated filtering strategy, which efficiently

selects potential SPRs and concentrates most of the likelihood com-

putation on the promising moves.

Results:Experiments with real datasets comprising 35–250 taxa show

that, while indeed greatly reducing the amount of computation, our

approach provides likelihood values at least as good as those of the

best-knownMLmethods so far and is very robust to poor starting trees.

Furthermore, combining our new SPR algorithmwith local moves such

as PHYML’s nearest neighbor interchanges, the time needed to find

good solutions can sometimes be reduced even more.

Availability: Executables of our SPR program and the used datasets

are available for download at http://atgc.lirmm.fr/spr

Contact: gascuel@lirmm.fr; wim@santafe.edu

1 INTRODUCTION

Maximum likelihood (ML) methods have become very popular for

constructing phylogenies from sequence data. Felsenstein brought

this framework to nucleotide-based phylogenetic inference

(Felsenstein, 1981), and it was later also applied to amino acid

sequences (Kishino et al., 1990). Several variants were proposed,

including the widely used Bayesian methods (Rannala and Yang,

1996; Simon and Larget, 2000; Huelsenbeck and Ronquist, 2001).

A number of computer studies (Kuhner and Felsenstein, 1994;

Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez and

Gascuel, 2002; Guindon and Gascuel, 2003) have shown that

ML programs can recover the correct tree from simulated datasets

more frequently than other methods can, which supported numerous

observations from real data and explains their popularity.

However, the disadvantage of ML methods is that they require

much computational effort. Tree inference in the ML setting is

computationally hard (Chor and Tuller, 2005), and all practical

approaches rely on heuristics. The main idea behind those heuristics

is that the space of possible tree topologies is searched for an

optimal topology, optimizing edge lengths along the way. But

even computing the optimal values of edge lengths on a single

tree is not an easy task. This requires heavy numerical optimization

techniques (reviewed in Bryant et al., 2005), simply because of the

number of parameters (2n�3 edges, where n is the number of taxa),

and local optima are still possible (Chor et al., 2000).
Despite these computational difficulties, ML methods have

become faster and faster. We distinguish three main components

in recent approaches:

(1) Simultaneous optimization of tree topology and edge lengths.
The first hill climbing algorithms that were introduced iterate the

following steps: (1) choose a neighboring topology of the current

one; (2) optimize the edge lengths of this new topology to obtain its

likelihood and (3) if this new topology is better than the current one,

then it becomes the new current topology, else the current topology

is unchanged. Owing to the size of the topology space and the

computational intensity of edge length optimization, this approach

becomes impractical for even moderate numbers of taxa and

limited topological rearrangements. Stochastic approaches based

on MCMC (Simon and Larget, 2000; Huelsenbeck and Ronquist,

2001), simulated annealing (Salter and Pearl, 2001; Stamatakis,

2005) or genetic optimization (Lewis, 1998; Lemmon and

Milinkovitch, 2002) simultaneously change edge lengths and tree

topology, while recent deterministic methods (Guindon and

Gascuel, 2003; Vinh and von Haeseler, 2004; Stamatakis et al.,�To whom correspondence should be addressed.
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2005) estimate the likelihood of the new topology using approx-

imate edge lengths, which provides lower bounds of its (fully optim-

ized) likelihood. In all cases, likelihood approximations become

more and more precise as the algorithm proceeds and as edge

lengths become more accurate. This way expensive computations

are avoided and the algorithm converges toward a local (or global in

favorable cases) optimum of the likelihood function.

(2) Local moves. Nearest neighbor interchange (NNI) is the

simplest topological move: it exchanges two subtrees that are con-

nected by a single edge. Using NNIs, as implemented in PHYML

(Guindon and Gascuel, 2003), is fast as the change in likelihood for

each move can be calculated locally. Moreover, it is shown by

Guindon and Gascuel (2003) that the likelihood improving NNI

moves, although evaluated independently, can be performed all

at once in most cases. Even though NNI moves do not allow the

tree space to be searched intensively, this approach is usually suf-

ficient to greatly improve starting trees, such as those obtained by

fast distance-based or parsimony programs, and to get high topo-

logical accuracy and satisfactory likelihood values (Guindon and

Gascuel, 2003).

(3) Global moves. Not surprisingly, NNIs can be trapped in

(bad) local optima, and this seems to happen frequently with dif-

ficult datasets, e.g. those obtained from multiple genes with con-

flicting signals. In those cases, it occurs that some of the defects of

the starting tree (e.g. long branch attraction) are still present in the

resulting tree, even when this does not correspond to the likelihood

optimum (H. Philippe and J. Pons, personal communication). In a

subtree pruning and regrafting (SPR) move, a subtree is pruned and

then regrafted at a different position in the remaining tree.With such

moves, getting trapped in bad local optima can often be avoided,

resulting in a better and more exhaustive search (Felsenstein, 1989;

Swofford, 1996). However, SPRmoves are much more expensive in

terms of computation, as the likelihood has to be re-evaluated over

the entire tree for each potential move. Recently, Stamatakis (2005)

showed that the amount of computing time for performing an

SPR-based search can be reduced by a combination of an efficient

implementation of the actual likelihood computations, lazy subtree

rearrangements (i.e. pre-evaluating potential moves by some fast

likelihood estimate), and by carefully ordering potential SPRs,

starting from the regraft positions that are close to the original

pruned edge, before evaluating unlikely distant positions.

To improve current likelihood-based search methods even more,

and most notably to make them less prone to starting tree defects, it

is desirable to combine the advantages of both types of moves: the

efficiency of local moves and the more elaborate search of global

moves. We propose two methods to make SPR moves more effi-

cient. The first method uses a fast distance approach based on the

minimum evolution principle (Desper and Gascuel, 2002). Candid-

ate SPR moves that are unpromising in terms of the minimum

evolution criterion are simply discarded, which acts as a first fil-

tering stage. The second method involves updating a limited number

of partial likelihoods along the path between the prune and regraft

positions [similar to what is done in RAxML (A. Stamatakis, per-

sonal communication)] and estimating edge lengths by distance-

based analytical formulae; this enables a local approximate (but

accurate) calculation of the change in likelihood for candidate

SPR moves as opposed to a global (and expensive) computation.

This approximate likelihood value is often sufficient to detect truly

improving SPRs and, when none are found, is used to filter again

potential SPR moves before full likelihood calculations are per-

formed. Our experiments with real datasets indicate that, while

indeed greatly reducing the amount of computation, the results of

this approach are at least as good as those of the best-known ML

methods so far and show excellent robustness to poor starting trees.

The remainder of this paper is organized as follows. The next

section will review the basic mathematical notation and equations

involved in likelihood computations and the minimum evolution

principle on phylogenetic trees, in particular in the context of SPR

moves. Section 3 shows how the minimum evolution criterion can

be used efficiently to filter out unpromising SPR moves. Section 4

then describes how updating only relevant partial likelihoods on the

path between the prune and regraft positions and estimating relevant

edge lengths suffice for enabling a fast but accurate estimation of the

change in likelihood for an SPRmove. Our complete SPR algorithm

is presented in Section 5, and Section 6 shows the results of this

algorithm, including the achieved reduction in computation time.

Finally, Section 7 summarizes the main results and conclusions.

2 NOTATIONANDMATHEMATICALCONCEPTS

Consider a phylogenetic tree as shown in Figure 1. The triangles

attached to nodes a, b, c and d represent (possibly empty) subtrees.

The half-circles on the edge (v,w) connecting nodes v and w rep-

resent partial likelihoods. For example, the half-circle next to node v
represents the partial likelihood Lkp of the subtree rooted at node v
with child nodes a and b. The likelihood Lk(T, i) of the complete

tree T at site i can be calculated locally on the edge (v,w) given these
partial likelihoods and the edge length:

LkðT‚ iÞ ¼
X
x‚ y2s

pxLkpðiðvÞ ¼ xÞLkpðiðwÞ ¼ yÞPxyðlÞ‚ ð1Þ

where s ¼ {A,C,G, T}, px is the a priori probability of observing

nucleotide x, i(v) is the state (nucleotide) at site i at node (taxon)

v and Pxy(l ) is the probability of a substitution from nucleotide x to y
given a time period l, which is the length d(v, w) of edge (v, w). The
tree likelihood is then equal to the product of the likelihoods of the

sites, as induced by the site independence assumption (Felsenstein,

1981):

LkðTÞ ¼ PiLkðT‚ iÞ: ð2Þ

Note that Equation (1) is given for nucleotide sequences, but

of course holds for protein sequences as well by replacing the

db

ca

v w

Fig. 1. An example of a phylogenetic tree. Triangles represent (possibly

empty) subtrees, and the half-circles on the edge (v, w) represent the two

partial likelihoods associated with this edge.
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alphabet s over which the sum is taken. This equation is also easily

adapted to incorporate site-to-site variation using a discrete rate

(e.g. gamma) distribution. The full likelihood of a given site is

then obtained by summing, over the rate categories, the likelihoods

of the site according to each rate, weighted by the probability of

each rate category (Yang, 1994). Finally, every edge defines two

partial likelihoods (one in each direction), and all partial likelihoods

within the tree can be calculated and updated efficiently (in linear

time per site) by performing a pre-order [analogous to Felsenstein’s

pruning algorithm (Felsenstein, 1981)] and then a post-order depth-

first traversal (Berry and Gascuel, 2000) of the tree, starting from the

leaf partial likelihoods that are equal to 0 or 1 depending on the site

value for the given taxon [see Bryant et al. (2005) for more on

likelihood calculations in phylogenetics]. Note that these partial

likelihood calculations (based on double tree traversals), along

with the data structure of Figure 1 (which involves two partial

likelihoods per edge), are important implementation features of

MOLPHY (Adachi and Hasegawa, 1996) and PHYML (and pos-

sibly of other programs, but implementation descriptions are usually

sparse). Themost standard approach [e.g. FastDNAML (Olsen et al.,
1994) and RAxML] involves rooting the tree and having partial

likelihoods only for the subtrees not containing the root, i.e. one per

edge. The standard approach is then more economical in terms of

memory space; but the likelihood of the full tree can be computed

with the tree root only, using classical Felsenstein’s pruning

(Felsenstein, 1981). The ‘double’ approach requires twice as much

memory, and partial likelihood calculations are twice as long com-

pared with running pre-order search only, but after these calcula-

tions the tree likelihood can be computed locally and quickly on any

branch of the tree using Equations (1) and (2). This makes branch

length optimization and NNI local moves much faster, and we shall

see that this also accelerates SPR computations.

There are various ways of estimating or optimizing the edge

lengths of a given tree. The distance between nodes v and w can

be optimized accurately using the partial likelihoods Lkp(i(v) ¼ x)
and Lkp(i(w)¼ y) and Equations (1) and (2) above so that the overall
likelihood Lk(T) is maximal [an iterative optimization method such

as, e.g. Newton–Raphson or Brent (1973) can be used for this].

Another, much faster but less optimal, way (providing a lower

bound of tree likelihood) of estimating d(v, w) is based on the aver-

age subtree distance [reviewed in Desper and Gascuel (2005)].

The average subtree distance Dv|w between two (non-overlapping)

subtrees rooted at nodes v and w, respectively, is the average dis-

tance between all taxa in the first subtree and all taxa in the second

subtree, and is recursively defined as (referring to Fig. 1):

Dvjw ¼ 1

2
ðDvjc þ DvjdÞ ¼

1

2
ðDajw þ DbjwÞ‚ ð3Þ

where Dv|w is the actual distance if both v and w are taxa. Note that

this definition is the balanced version of average subtree distance,

where each subtree has equal weight regardless of the number of

taxa it contains. Given the matrix of pairwise evolutionary distances

(as obtained by any model, e.g. K2P or HKY), the average subtree

distance between all pairs of non-overlapping subtrees can be

calculated in O(n2) time, where n is the total number of taxa

(Desper and Gascuel, 2002). The length of edge (v, w) can now

be estimated as

dðv‚wÞ ¼ Dvjw � 1

2
Dajb �

1

2
Dcjd: ð4Þ

An example of an SPR move of (topological) distance s is shown
in Figure 2. The subtree indicated in bold is pruned at node vp, and
nodes v0 and v1 will now be connected by a new edge (indicated by

the dashed line between them), while the edges originally connect-

ing node vp with nodes v0 and v1 will be removed. Next, the pruned

subtree is regrafted at a distance s from its original position, between

nodes vs and vs+1. This new situation is indicated with the dashed

subtrees (one for s¼ 1 and one for general values of s). The original
edge between nodes vs and vs+1 is removed, and two new edges

connecting node vp with nodes vs and vs+1 are inserted. An SPR

move of distance s ¼ 1 is, in fact, equivalent to an NNI move.

Since an SPR move changes the topology, and thus the relative

subtree positions, many average subtree distances as calculated

before the SPR move are not correct anymore. However, in most

cases they can be updated in constant time to reflect the new topo-

logy, without having to recalculate them all (which would take

quadratic time). In particular, two average subtree distances at the

Fig. 2. Anexample of an SPRmoveof distance 1 (equivalent to anNNImove) and of distance s in general. The subtree indicated in bold is pruned (at node vp), and

regrafted between nodes vs and vs+1 (dashed subtrees). The nodes v0 and v1 (at the prune position) will now be connected, indicated with a dashed edge.
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regraft position that will be useful later on, Dvsjwp
and Dvs�1jws

, can be

updated recursively as follows:

D�
vs jwp

¼ 1

2
ðD�

vs�1jwp
þ Dwsjwp

Þ‚

with

D�
v0jwp

¼ Dv0 jwp
‚ ð5Þ

and

D�
vs�1jws

¼ Dvs�1jws
� 1

2

� �s

Dwpjws
þ 1

2

� �s

Dv0 jws
:

Since D�
vsjwp

is defined recursively in s, in our SPR algorithm

(presented in full in Section 5) we consider possible regraft posi-

tions, given a pruned subtree, recursively in (increasing) distance s.

3 SPR MOVES AND TREE LENGTH

A criterion in phylogenetic inference that is conceptually related to

parsimony, and based on average subtree distances, is the minimum

evolution principle. Several variants of this principle have been

proposed, but here we follow the definition and notation of

Desper and Gascuel (2002, 2005). In particular, we use the concept

of tree length L(T), which is defined as the sum of the edge lengths

of a tree T, and consider the balanced version, first introduced by

Pauplin (2000). The minimum evolution tree is then that tree T
which minimizes L(T).
Consider again an SPR move of distance s (as in Fig. 2). The

change in tree length dL1 resulting from an SPR move of distance

s ¼ 1 (i.e. an NNI move), is equal to [Desper and Gascuel (2002),

Equation 12]:

dL1 ¼
1

4
½ðDv0jwp

þ Dv2 jw1
Þ � ðDv0 jw1

þ Dv2 jwp
Þ�:

From this, a recursive formula dLs for the change in tree length for

an SPR move of distance s can be derived:

dLs ¼ dLs�1 þ
1

4
½ðD�

vs�1jwp
þ Dvsþ1jws

Þ

� ðD�
vs�1jws

þ Dvsþ1 jwp
Þ�:

where the D�s are as defined in equations (5).

As it turns out, there is a strong correlation between the change in

tree length and the change in likelihood for a given SPR move.

Figure 3 shows three typical cases. Each collection of dots of one

particular symbol represents data for one particular pruned subtree

and all its possible regraft positions (for some given tree). The data

shown here (using a real dataset of 55 taxa) are representative for

this type of data in general, i.e. when considering other trees or

datasets as well. Along the horizontal axis the change in tree length

(dLs) is shown, while the vertical axis shows the change in log

likelihood. Clearly, the regraft positions with the highest change

in likelihood for a given pruned subtree also have the highest change

in tree length values and vice versa. Of course, in most cases an

arbitrary SPR move will not improve the likelihood of a tree, as for

example the collection of stars shows that all possible regraft posi-

tions result in a reduction in likelihood (negative change). However,

if given a pruned subtree there are regraft positions that result in an

improvement in likelihood (as with the circles and triangles), they

always seem to be among the best ones in terms of change in tree

length.

Based on this observation, computing changes in likelihood can

be avoided altogether for the majority of potential regraft positions.

For a given pruned subtree, first the change in tree length dLs can be
calculated quickly for all potential regraft positions (recursively in

distance s), and the actual change in likelihood computations are
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Fig. 3. Correlation between change in tree length and change in log likelihood. Each symbol represents data for one particular pruned subtree and all its candidate

regraft positions.
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then done only for the most promising ones. This constitutes our first

efficiency improving method.

4 SPR MOVES AND LIKELIHOOD ESTIMATION

One of the main advantages of local moves like NNI is that the tree

topology is changed only locally, and the likelihood of the new tree

can be calculated efficiently based on Equations (1) and (2) (see

Guindon and Gascuel, 2003, for details). With SPR moves, on the

contrary, the tree topology is often changed significantly, and gen-

erally the whole tree has to be re-evaluated (including most or all

partial likelihoods). However, to estimate the change in likelihood

for a (potential) SPR move to see if it would result in an improved

tree, it actually suffices to only update a limited number of relevant

partial likelihoods.

To calculate the likelihood of the new tree locally at edge (vp, wp)

[using Equations (1) and (2)] after an SPR move, the partial like-

lihood Lkp(i(vp) ¼ x) [represented by the gray half-circle on the

edge (vp, wp) in Fig. 2] needs to be updated to reflect the new tree

topology [note that Lkp(i(wp)¼ x) is not changed by the SPRmove].

To update Lkp(i(vp) ¼ x), however, Lkp(i(vs) ¼ x) [represented by

the gray half-circle on the edge (vs, vs+1)] needs to be updated, and

so on, all the way back to node v1:

LkpðiðvkÞ ¼ xÞ ¼
� X

y2s
Lkpðiðvk�1Þ ¼ yÞPxyðdðvk�1‚vkÞÞ

�

·
� X

z2s
LkpðiðwkÞ ¼ zÞPxzðdðvk‚wkÞÞ

�
: ð6Þ

Moreover, wk is replaced by vs+1 and vk becomes vs when k ¼ p. So,
by updating the partial likelihoods on the path between the prune

and regraft positions (as indicated by the gray half-circles in Fig. 2),

the change in likelihood induced by the SPR move can now be

calculated locally. Consequently, for an SPR move of distance s,
only s + 1 partial likelihoods need to be updated, instead of having to
re-evaluate the entire tree. RAxML actually uses a similar approach

(Stamatakis, 2004, 2005) but in a rooted version, which implies that

more partial likelihoods might have to be computed depending on

the root position. As discussed earlier, RAxML stores fewer partial

likelihoods (one per edge, instead of two), which is more econom-

ical in terms of memory requirements but likely to be slower in

terms of CPU time. Moreover, this method of updating partial

likelihoods along the path between the prune and regraft positions

has (to our knowledge) not yet been described fully and explicitly

anywhere else.

Since updating partial likelihoods and estimating changes in

tree likelihood depend on edge lengths, accurate estimates for

the lengths of the relevant edges at the prune and regraft positions

are also needed (while all other edge lengths are kept constant, at

least during the first selection stages, see Section 5). An iterative

optimization method (as mentioned in Section 2) can be used for

this, but this is computationally expensive, especially if it has to

be performed for each candidate regraft position. Therefore, we

use estimates based on the average subtree distances as explained

in Section 2. Although slightly less accurate than the iterative

optimization estimates, they can be calculated much faster.

First consider the new edge connecting nodes v0 and v1 at the

prune position. A naive and straightforward estimation for the

length d(v0, v1) of this edge is to simply take the sum of the lengths

of the original edges (vp, v0) and (vp, v1) before pruning, i.e.

dðv0‚v1Þ ¼ dðvp‚v0Þ þ dðvp‚v1Þ:
An estimate based on the average subtree distances is obtained as

follows (neglecting taxa within the pruned subtree):

dðv0‚v1Þ ¼ Dv0jv1 �
1

2
Dv0a jv0b �

1

2
Dw1 jv2 ‚

where v0a and v0b are the subtrees rooted at the children of v0, unless
v0 is a taxon (leaf node), in which case Dv0a jv0b ¼ 0. Compared with

the (more accurate) iterative optimization method, one of these

values usually gives an overestimate, while the other usually

gives an underestimate. So, as a ‘compromise’, we actually take

the average of the two values to get a fairly accurate yet easy to

calculate estimate for the length of edge (v0, v1).
Next consider the regraft position. The relevant nodes and edges

are shown in Figure 4. The edges for which the lengths need to

be estimated are (vp, vs), (vp, vs+1) and (vp, wp). For d(vp, vs) and
d(vp, vs+1) we can compute a simple and naive estimate (similar to

the one used in RAxML) by taking half of the length of the original

edge (vs, vs+1) (indicated by the dashed line between vs and vs+1).
The length of edge (vp, wp) can then be estimated as

dðvp‚wpÞ ¼ dðvsþ1‚wpÞ � dðvp‚vsþ1Þ:
The calculation of d(vs+1, wp) (indicated by the dashed line between

vs+1 and wp) is given below.

Estimates based on the average subtree distances are slightly

more complicated than at the prune position, but can be calculated

from estimates for the lengths of the dashed ‘edges’ in Figure 4, i.e.

d(vs, wp), d(vs+1, wp) and d(vs, vs+1). For the third one, d(vs, vs+1), we
can take the length of the original edge (vs, vs+1). The distance

between nodes vs+1 and wp can be directly estimated as

dðvsþ1‚wpÞ ¼ Dvsþ1jwp
� 1

2
Dvsþ2jwsþ1

� 1

2
Dwp1 jwp2

:

Finally, the distance between nodes vs and wp can be calculated

similarly as

dðvs‚wpÞ ¼ D�
vs jwp

� 1

2
D�
vs�1 jws

� 1

2
Dwp1jwp2

‚

where the D�s are again as defined in Section 2, and Dwp1jwp2
¼ 0 if

wp is a leaf.

wp1 wp2

wp

vp

vs1 vs

ws ws+1

vs+1 vs+2

Fig. 4. Local topology at the regraft position of an SPR move of

distance s.
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Once these three distances are calculated, the required edge

length estimates are simply

dðvp‚wpÞ ¼
1

2
½þdðvs‚wpÞ þ dðvsþ1‚wpÞ � dðvs‚vsþ1Þ�‚

dðvp‚vsÞ ¼
1

2
½þdðvs‚wpÞ � dðvsþ1‚wpÞ þ dðvs‚vsþ1Þ�‚

dðvp‚vsþ1Þ ¼
1

2
½�dðvs‚wpÞ þ dðvsþ1‚wpÞ þ dðvs‚vsþ1Þ�:

At the regraft position, as at the prune position, the naive estimates

and the average subtree distance-based estimates also tend to give

over- and underestimates compared with the more accurate iterative

edge length optimization. So here too, we take the average of both

estimates for each of the three relevant edges.

With these edge length estimates, and the updated partial likeli-

hoods along the path between the prune and regraft position, an

estimate for the change in likelihood of a given SPR move can be

obtained very quickly. This results in an underestimate, but in

practice it turns out that it is usually not too far off from the actual

change in likelihood (when edge lengths are fully optimized).

Moreover, this estimation method avoids a significant amount of

computation and constitutes our second efficiency improving

method.

5 THE SPR ALGORITHM

The main idea of our SPR algorithm is to consider candidate

SPR moves, accepting those that result in an improvement in like-

lihood, but using the methods introduced in the previous sections to

discard unpromising moves and to reduce the amount of com-

putation necessary for those moves that are not already filtered

out at the first stage. Briefly, each subtree t in the current tree T
is considered for pruning in turn. Given a pruned subtree t,
all potential regraft positions for t are considered recursively in

increasing distance s. The change in tree length dLs is calculated

for each candidate position (as explained in Section 3), and a list

rgrft_cand of the N_RGRFT best ones is maintained and

updated along the way.

Next, for each candidate in the rgrft_cand list (starting with

the best one in terms of the dLs value), the relevant edge lengths are

estimated (as explained in the previous section) and the partial

likelihoods along the path from the prune to the regraft positions

are updated. The change in likelihood is then estimated [locally

using Equations (1) and (2)], and as soon as an improvement is

found, this candidate regraft position is accepted and the remaining

ones are discarded. This procedure is then repeated for the next

subtree t (but now on a possibly improved and updated tree T ). So,

for each next pruned subtree t a new list rgrft_cand of regraft

position candidates is constructed.

During the estimation of the change in likelihood for the various

candidate SPR moves, a second list optim_cand is maintained

and updated with the N_OPTIM best candidate moves in terms of

these changes in likelihood. Thus, this second list is constructed

over all possible pruned subtrees t and their respective potential

regraft positions. If improvements were already found during the

previous stage (i.e. calculating dLs values and estimating changes in

likelihood), then the algorithm will exit and return true, indicating

that the tree was improved, and this second list is ignored. However,

if no improvement was found at all during the previous stage, the

optim_cand list (which now obviously contains only candidates

with negative changes in likelihood) is considered in the following

way. For each candidate in the list (starting with the best, although

negative, one), perform the SPR move as indicated by this candid-

ate, use an iterative method (Brent optimization in our implementa-

tion) to optimize the lengths of the three relevant edges at the regraft

position and calculate the new likelihood of the tree. If this results in

an improvement, accept the move, discard the remaining candid-

ates, exit and return true. Otherwise, try the next candidate in the

list. The idea behind this procedure is that an iterative optimization

method, although computationally expensive, usually gives slightly

better estimates for the relevant edge lengths than the fast average

subtree distance-based estimates. It can, and does, happen that with

these more accurate edge length estimates the change in likelihood

of one of these N_OPTIM candidates does indeed become positive,

and thus give rise to an improved tree after all.

Finally, if this ‘local optimization’ procedure does not result in

any improvements either, the best N_GLOBL candidates from the

optim_cand list are considered for ‘global optimization’. For

each candidate in the list (again starting with the best one based

on the local optimizations from the previous stage), perform the

SPR move as indicated by this candidate, use an iterative method to

optimize the lengths of all the edges in the tree and calculate the new

likelihood of the tree. If this results in an improvement, accept the

move, discard the remaining candidates, exit and return true.

Otherwise, try the next candidate in the list. Here, again, the

idea is that an improvement might be found by doing an even

more elaborate and complete edge length optimization. However,

since this global edge length optimization is computationally very

expensive, it is only done for the N_GLOBL best candidates, where

usually N_GLOBL << N_OPTIM. If this last procedure does not

result in an improvement, then the algorithm will exit and return

false, indicating no improvements could be found. So, at each

next stage of the algorithm, fewer candidates are considered, while

the corresponding change in likelihood estimations become more

accurate but also require more intensive computation.

To perform an actual tree search, the algorithm can be performed

repeatedly until it returns false. Or, alternatively, it can be

combined with a local search method such as NNI, where rounds

of NNI moves and SPR moves are alternated, for example. The

complete SPR algorithm as described above is presented more

formally next.

SPR ()

(1) Calculate the average subtree distances for all pairs of

(non-overlapping) subtrees.

(2) For each next subtree t do:

(a) Clear the rgrft_cand list.

(b) Prune t and estimate d(v0, v1).

(c) Recursively consider potential regraft positions at increas-

ing distance s. At each recursion step do:

(i) Calculate the relevant D� values and compute dLs.

(ii) If dLs is within the N_RGRFT best ones so far, store

the current regraft position together with its dLs value,

the current path from the prune position, and the D�
values in the rgrft_cand list, sorted in decreasing

dLs values.
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(d) For each candidate in the rgrft_cand list (starting at

the first, or best, one) do:

(i) Update the partial likelihoods Lkp along the path

between the prune and candidate regraft positions.

(ii) Estimate edge lengths at the candidate regraft position

using the average subtree distances and stored D�
values.

(iii) Regraft t at the candidate regraft position, set the

relevant edge lengths, update the Lkp(i(vp) ¼ x)s
using Equation (6), and calculate the likelihood

Lk(T) using Equations (1) and (2).

(iv) If the new Lk(T) value is an improvement, accept the

current move, update the complete tree (partial like-

lihoods, edge lengths, average subtree distances, etc.),

discard the remaining candidate regraft positions and

go back to Step 2 to try the next subtree.

(v) If no improvement, undo the regraft operation and

reset the edge lengths and partial likelihoods. If the

change in likelihood (although negative) is within the

N_OPTIM best ones so far, store the current prune and

regraft positions together with other relevant data

(path, D�s, etc.) in the optim_cand list, sorted in

decreasing order.

(vi) Go to Step 2(d) and try the next candidate.

(e) Go back to Step 2 to try the next subtree.

(3) If an improvement was found in Step 2, exit and return true.

(4) Otherwise, for each candidate in the optim_cand list (start-

ing at the first, or best, one) do:

(a) Perform the SPR move as indicated by the current candi-

date and update the partial likelihoods along the path

between the prune and regraft positions.

(b) Optimize the relevant edge lengths at the regraft position

using an iterative optimization method.

(c) Calculate the new likelihood and if it results in an improve-

ment, accept the current move, update the complete tree,

exit and return true.

(d) If no improvement, update the likelihood of the current

move in theoptim_cand list, undo themove andgo back

to Step 4 to try the next candidate.

(5) For the best N_GLOBL candidates in the optim_cand

list do:

(a) Perform the SPR move as indicated by the current candi-

date.

(b) Update all partial likelihoods and perform global edge

lengthoptimizationusingan iterativeoptimizationmethod.

(c) If an improvement in likelihood results, accept the current

move, exit and return true.

(d) If no improvement, undo the move and go back to Step 5

to try the next candidate.

(6) Exit and return false.

Note that there are various parameters in the SPR algorithm, in

particular N_RGRFT, N_OPTIM and N_GLOBL. Of course the

performance of the algorithm depends largely on the chosen values

for these parameters. Currently it is not obvious what the best values

are, as this in turn depends on the datasets considered, and they will

have to be found by trial and error. The next section will show the

best results we have obtained so far, but more investigation needs

to be done in terms of finding good parameter values, or better yet,

a systematic way to set them depending on the given data.

6 RESULTS

In this section, we show results of applying our SPR algorithm

to some real datasets from the benchmark set used by Stamatakis

et al. (2005). In particular, datasets with a number of taxa of 101

(101_SC), 150 (150_ARB) and 250 (250_ARB) were considered.

Additionally, we considered the four datasets that were provided

with publications in a recent issue of Systematic Biology. These
datasets contain 132 (Vogler et al., 2005), 42 (Yuan et al., 2005),
39 (McCracken and Sorenson, 2005), and 35 (Winkworeth et al.,
2005) taxa, respectively.

Our SPR algorithm has been implemented in the PHYML pro-

gram (Guindon and Gascuel, 2003), in such a way that it can be used

either by itself or in combination with the NNI algorithm provided

by PHYML. In the latter case, the SPR algorithm is called once each

time the NNI moves are stuck on a local optimum. If the SPR

algorithm is able to improve the tree and get out of the local

optimum, the NNI algorithm is applied again until it is trapped

in another local optimum, etc. If the SPR algorithm cannot find

an improvement anymore either, the program terminates.

We applied both versions (SPR and PHYML+SPR) on the men-

tioned datasets and used both random trees and maximum parsi-

mony trees as starting points. Random trees are useful to check that

the algorithm is not affected by potentially poor starting trees, while

starting with parsimony trees corresponds to standard use, notably

regarding run time. The maximum parsimony trees were created

using RAxML (Stamatakis et al., 2005), and the results of our

algorithms are compared with this program. The HKY model of

nucleotide substitution was used in all cases, and the transition/

transversion parameter is estimated by all programs during the

search.

Table 1 shows the likelihood values found by the different pro-

grams. The results for random trees and parsimony trees are

averages over 10 trees each. The rows labeled ‘best’ shows the

best likelihood score found by each program over all 20 starting

trees (10 random + 10 parsimony). Since there is a difference in

the way likelihood values are calculated between PHYML and

RAxML, all final trees found by RAxML were re-evaluated

using PHYML (without doing any further optimization, but just

evaluating the likelihood of the given tree) to enable a direct

comparison.

As the table shows, there is not one program that is always the

best, but they are all able to find the same best solution (although not

necessarily on the same starting tree). The most striking difference

is that SPR and PHYML+SPR are more robust with poor (random)

starting trees than RAxML and should thus be more resistant to

artifacts (e.g. long branch attraction) that sometimes affect the fast

(distance-based or parsimony) methods being used to build initial

trees. For example, with 250 taxa SPR and PHYML+SPR are on

average about 400 log-likelihood points better than RAxML, which

is considerable. With less taxa, the difference is lower but still quite
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significant. Surprisingly, SPR and PHYML+SPR even seem to

perform somewhat better (on average) on random trees than on

parsimony trees, but more results are needed to confirm this

tendency.

Table 2 shows the running times of the different programs on

the random and parsimony trees (again averaged over the 10 trees).

The runs were performed on an unloaded linux PC with an Intel

Pentium 4 (3.0 GHz) processor and 512 MB of RAM. As the table

shows, the running times are of the same order of magnitude for

the different programs. However, a direct comparison of running

times between these two programs (although useful for practical

purposes) does not give much insight into the improvements in

efficiency that is achieved by our proposed two methods. For

example, the SPR algorithm in RAxML has a very efficient but

also very specific (nucleotide data only) implementation for

storing trees and calculating likelihoods (Stamatakis et al., 2002
and A. Stamatakis, personal communication), whereas PHYML

(and thus our SPR implementation) is more generic (both nucleotide

and protein data) and consequently less optimized for speed. So,

the efficiency of RAxML comes to a large extent from implementa-

tion optimizations, whereas here we focus more on algorithmic

aspects. In the end, of course, it would pay off to combine both

approaches.

Considering the results as presented in Tables 1 and 2, it can be

concluded that the search performance of our algorithm is at least

comparable with that of RAxML [which produced the best-known

trees to date on a benchmark set of real alignments (Stamatakis et al.,
2005)] with parsimony starting trees, and better with (poor) random

starting trees. However, the results do depend on the parameter

settings that were used. The results shown here were the best

ones obtained after trying a (limited) number of different parameter

settings. In all cases we used N_OPTIM ¼ 100, and for N_RGRFT

and N_GLOBL it seems that values of about 15–20% and 10%

(respectively) of the number of edges in the tree give the best results.

In practice, we also used a cutoff MAX_DIST for the potential

regraft positions considered: regraft positions more than a distance

MAX_DIST from the prune position were not evaluated at all. This

parameter (also used by RAxML, although slightly differently)

provides another way of reducing the total number of likelihood

computations performed by the algorithm. In our experiments this

parameter was set to 10% of the number of edges, which is a

relatively high value regarding the diameter of phylogenies

(Gascuel, 2000) and resulted in a low influence on the output

trees. However, as already mentioned, more tests need to be

done to find optimal parameter settings, or some systematic way

of setting these values.

Having verified that our SPR algorithm can live up to the best-

known performance so far, of course the main question is howmuch

the efficiency of the SPR search has been improved by our two

introduced methods. Table 3 shows to what extent likelihood com-

putations have been avoided and reduced in our experiments. The

second column in this table shows the (average) number of dLs
(change in tree length) computations performed during a search

of our SPR algorithm, averaged over the 10 parsimony starting

trees (results on random trees are similar). The third column

shows the number of actual change in likelihood estimations that

were computed by only considering the N_RGRFT best candidate

regraft positions for each pruned subtree. The fourth column shows

the number of times local edge length optimization (at the regraft

position) has been performed if no improvements could be found

with the analytical estimates. Finally, the fifth column shows the

Table 1. Search results of the different programs on the given datasets

#Taxa Start SPR PHYML+SPR RAxML

35 rnd/prs �1084/�1084 �1084/�1084 �1087/�1084

best �1084 �1084 �1084

39 rnd/prs �2947/�2946 �2946/�2946 �2953/�2947

best �2945 �2945 �2945

42 rnd/prs �5732/�5734 �5734/�5734 �5743/�5734

best �5731 �5731 �5731

101 rnd/prs �73 869/�73 874 �73 878/�73 869 �73 926/�73 870

best �73 862 �73 862 �73 862

132 rnd/prs �50 496/�50 539 �50 502/�50 539 �50 529/�50 530

best �50 477 �50 481 �50 477

150 rnd/prs �76 856/�76 856 �76 855/�76 858 �77 161/�76 853

best �76 849 �76 849 �76 849

250 rnd/prs �130 920/�130 940 �130 902/�130 920 �131 325/�130 897

best �130 894 �130 891 �130 889

Results for random (rnd) and parsimony (prs) trees are averages over 10 trees each. The ‘best’ score is the best likelihood value found over all (20) starting trees.

Table 2. Average running times of the three programs on the random (rnd)

and parsimony (prs) starting trees

#Taxa Start SPR PHYML+SPR RAxML

35 rnd/prs 0:02/0:02 0:02/0:01 0:04/0:04

39 rnd/prs 0:06/0:05 1:03/0:04 0:12/0:10

42 rnd/prs 0:13/0:10 0:16/0:06 0:15/0:11

101 rnd/prs 7:33/6:45 9:50/6:00 23:52/15:30

132 rnd/prs 14:39/16:00 10:19/5:13 20:56/9:31

150 rnd/prs 15:29/12:50 21:00/13:00 36:00/14:30

250 rnd/prs 2:10:00/2:00:00 1:25:00/1:21:00 2:16:00/0:51:44
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number of times global edge length optimization was performed if

no improvements in likelihood could be found with local optim-

ization. As the table clearly shows, our progressive filtering method

has an enormous impact.

To measure this impact on the actual running time of the SPR

algorithm, we compared the following variants of the algorithm on

two datasets of 55 and 101 taxa, respectively:

(1) The ‘regular’ algorithm as presented in Section 5, with

N_RGRFT¼15 (�15% of the number of edges) for the 55-

taxon dataset, and N_RGRFT¼40 (20% of the number of

edges) for the 101-taxon dataset.

(2) As variant 1, but with N_RGRFT¼100% of the number of

edges for both datasets. In other words, this variant

estimates the change in likelihood for all candidate SPR

moves considered.

(3) As variant 1, but performing global likelihood computations

(i.e. updating and re-evaluating the entire tree) instead of

updating only relevant partial likelihoods and performing a

local likelihood computation.

(4) A combination of variants 2 and 3, i.e. setting N_RGRFT¼
100% and performing global likelihood computations.

As starting trees we used the BIONJ tree as computed by PHYML

for the 55-taxon dataset and one of the 10 parsimony trees used

above for the 101-taxon dataset. All four variants of the algorithm

found the best-known likelihood values for these datasets (�24583

and �73862, respectively), and the times necessary to find these

solutions are presented in Table 4.

As the table clearly shows, the reduction in runtime is very sig-

nificant for both methods, while the algorithm is still able to find the

best-known solutions. Avoiding likelihood computations by only

estimating likelihood changes for the most promising candidate

moves based on the change in tree length (comparing variant 3

with variant 4) results in a decrease in runtime by a factor of

about 3. Reducing the amount of computation by estimating the

change in likelihood locally after updating only relevant partial

likelihoods and quickly estimating edge lengths (comparing variant

2 with variant 4) improves the runtime by a factor of about 10–20.

Combining the two methods together (comparing variant 1 with

variant 4) gives a factor of 36 and 60, respectively, in runtime

improvement. Finally, combining the SPR algorithm with local

(NNI) moves can sometimes provide even more of a speedup.

For example, on the 101-taxon dataset and the same parsimony

starting tree, the combination of PHYML+SPR found the best solu-

tion in just under 5 min.

7 CONCLUSIONS AND FURTHER WORK

We have introduced two methods that can be used to drastically

reduce or even avoid expensive likelihood computations in SPR-

based search algorithms on phylogenetic trees using ML. The first

method avoids likelihood computations altogether by only calcu-

lating changes in likelihood for the most promising SPR moves in

terms of the change in tree length, a statistic based on the minimum

evolution principle that can be calculated efficiently. The second

method reduces the amount of (remaining) likelihood computation

by updating only relevant partial likelihoods, estimating relevant

edge lengths using analytical formulae and then calculating the

change in likelihood for candidate SPR moves locally, instead of

having to re-evaluate the entire tree. Our results show that this

indeed gives rise to a significant reduction in both the number of

likelihood computations and the running time of the algorithm,

while maintaining a search performance comparable with that of

the best-known methods to date.

It is expected that even better results can be achieved by invest-

igating more thoroughly the various parameters that are involved

in the algorithm. The speed of the algorithm can possibly still be

improved by finding optimal parameter values, or better yet, a

systematic way of setting these values based on the input data.

Moreover, combining our (algorithmic) methods with a highly

optimized implementation for performing likelihood computa-

tions (such as RAxML) will most likely result in an extremely

efficient program for performing SPR searches on phylogenetic

trees using ML.
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Table 3. The reduction in likelihood computations achieved by our

algorithm

# Taxa Tree lengtha Likelihoodb Localc Globald

35 22 776 9878 291 6

39 28 382 12 619 291 10

42 28 185 8932 237 10

101 402 676 92 989 256 22

132 1 100 011 242 133 792 45

150 844 105 142 422 279 31

250 4 519 332 979 891 662 63

The columns show the number of candidate SPR moves.
aThe change in tree length is calculated.
bThe change in likelihood is estimated.
cLocal edge length optimization (at the regraft position) is performed to estimate the

change in likelihood.
dGlobal edge length optimization is performed.

Table 4. The running times for the four variants of the SPR algorithm on two

datasets of 55 and 101 taxa, respectively

# Taxa 55 101

Variant Running time Factor Running time Factor

1 0:00:26 36.0 0:07:42 60.3

2 0:01:13 12.8 0:30:13 21.6

3 0:05:06 3.1 2:46:15 2.8

4 0:15:36 1.0 7:44:21 1.0
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