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ABSTRACT
Motivation: Overlapping gene coding sequences (CDSs)
are particularly common in viruses but also occur in more
complex genomes. Detecting such genes with conventional
gene-finding algorithms can be difficult for several reasons. If
an overlapping CDS is on the same read-strand as a known
CDS, then there may not be a distinct promoter or mRNA. Fur-
thermore, the constraints imposed by double-coding can result
in atypical codon biases. However, these same constraints
lead to particular mutation patterns that may be detectable in
sequence alignments.
Results: In this paper, we investigate several statist-
ics for detecting double-coding sequences with pairwise
alignments—including a new maximum-likelihood method. We
also develop a model for double-coding sequence evolu-
tion. Using simulated sequences generated with the model,
we characterize the distribution of each statistic as a func-
tion of sequence composition, length, divergence time and
double-coding frame. Using these results, we develop several
algorithms for detecting overlapping CDSs.

The algorithms were tested on known overlapping CDSs and
other overlapping open reading frames (ORFs) in the hepatitis
B virus (HBV), Escherichia coli and Salmonella typhimurium
genomes. The algorithms should prove useful for detecting
novel overlapping genes—especially short coding ORFs in
viruses.
Availability: Programs may be obtained from the authors.
Contact: chris.brown@otago.ac.nz
Supplementary information: http://biochem.otago.ac.nz/
double.html

1 INTRODUCTION
Overlapping gene coding sequences (CDSs) occur where
a nucleotide sequence codes for two different amino acid
sequences in different read-frames. There are five possible
read-frames for a ‘secondary’ open reading frame (ORF)
relative to a ‘primary’ ORF that we label −3, −2, −1, +1
and +2 (Fig. 1). In terms of nucleotide mutation patterns, +1
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and +2 are equivalent upon interchanging the primary and
secondary ORFs.

Overlapping CDSs occur frequently in viruses (Normark
et al., 1983), where they serve as a mechanism for fitting
more genetic information into a small genome and for core-
gulating gene expression. In the hepatitis B virus (HBV), for
example, ∼50% of the genome comprises overlapping CDSs
(Mizokami et al., 1997). Overlapping CDSs also occur in
prokaryotes (Rogozin et al., 2002; Fukuda et al., 2003) and,
more rarely, in eukaryotes (Sharpless and DePinho, 1999;
Poulin et al., 2003). Ribosomal frameshifting (Farabaugh,
1996) can also lead to partially overlapping CDSs in the +1
and +2 frames.

The majority of current gene-finding algorithms are optim-
ized for finding non-overlapping protein-coding genes. Such
methods are well-developed and generally make use of
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Fig. 1. Naming convention for the different possible read-frames of
a secondary ORF relative to a frame = 0 primary ORF. In this paper,
we use the terms ‘primary’ and ‘secondary’ to clarify which read-
frame we are referring to; it does not imply that one ORF is more
important than the other.

282 Bioinformatics vol. 21 issue 3 © Oxford University Press 2004; all rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/3/282/237775 by guest on 24 April 2024

http://biochem.otago.ac.nz/


Detecting overlapping coding sequences

combinations of the following signatures of protein-coding
genes: (1) signal (e.g. splice sites, ORFs), (2) content (e.g.
codon bias), (3) similarity to known sequences or conserva-
tion between species and (4) expression in cDNA/expressed
sequence tag (EST) libraries (Stormo, 2000; Snyder and
Gerstein, 2003).

Although standard gene-finding algorithms can also be used
to find overlapping CDSs, there are a variety of problems
which can lead to a decrease in sensitivity. Owing to the
double-coding constraints, overlapping CDSs often display
an atypical codon bias (Pavesi, 2000). Extending training set
methods, such as hidden Markov models (HMMs), to overlap-
ping CDSs is made difficult by several different frames (each
requiring its own model) and limited training data. Similar-
ity to known sequences or conservation between species may
only point to the existence of one of an overlapping pair. Fur-
thermore, overlapping genes on the same read-strand (e.g. at
ribosomal frameshifting sites) may have the same promoter
and mRNA, so that looking for promoters or expression may
only identify one of the two genes.

Nonetheless overlapping CDSs have their own signatures
resulting from the mutational constraints imposed by the
requirement of simultaneously maintaining protein function
in both genes. For example, previous studies have investig-
ated (1) relative substitution rates in N1, N2 and N3, i.e. the
1st, 2nd and 3rd nucleotide positions in each codon (Bilsel
et al., 1990); (2) information theory indices (Pavesi et al.,
1997); (3) low rate of synonymous mutations relative to other
sites (Mizokami et al., 1997; Pavesi, 2000); and (4) codon
usage (Pavesi et al., 1997; Pavesi, 2000). Perhaps the simplest
method is to measure the mutation frequency in N3 relative to
N1 and N2. In single-coding sequences, many N3 mutations
give rise to synonymous amino acids and so N3 is relat-
ively unconstrained. In contrast, in double-coding sequences
(except the −2 frame) N3 is generally constrained since it
corresponds to N1 or N2 in the alternative frame.

Given a known CDS in a sequence alignment and a potential
overlapping CDS (i.e. a conserved or semi-conserved ORF),
one may proceed to measure the conservation in N1, N2, N3

within the overlap region and compare it with the background
(i.e. single-coding) statistics measured in the non-overlap
region of the known CDS. However, it is not clear how the
results should be interpreted. For example: How significant
are any observed deviations? What are the dependences on
sequence divergence, composition and double-coding frame?
What if the non-overlap region of the known CDS is too short
to calculate background N1, N2, N3 statistics?

In this paper, we investigate several simple statistics that
may be used on pairwise alignments, namely the mutation
rate in N1, N2, N3 (N123) and the rate of synonymous and
non-synonymous mutations (NsNn). We also develop a more
sensitive and less frame-dependent, maximum-likelihood
statistic (MLOGD) that makes use of a nucleotide substitu-
tion matrix, a codon usage table (CUT) and an amino acid

substitution matrix. We develop a Monte Carlo sequence
evolution algorithm that can produce simulated sequence
alignments subject to either single-coding or double-coding
constraints. Then we use the simulated sequences to char-
acterize the distributions of the N123, NsNn and MLOGD
statistics, as a function of sequence divergence, composition,
length and frame, for both single-coding and double-coding
sequences. By comparing observations for a real sequence
alignment with such simulations, we may attempt to determine
whether a potential overlapping CDS is real (i.e. function-
ally constrained) or not. We find that the new MLOGD
statistic, �s,d, is the most sensitive statistic for detecting
overlapping CDSs.

2 METHODS
In Section 2.1, we describe the various statistics that we use
to test for double-coding. In Section 2.2, we describe the
Monte Carlo sequence evolution algorithm. In Section 2.3, we
describe how we combine the two to classify a given sequence
alignment as single-coding or double-coding. Further details
are given in the Supplementary Material.

2.1 Double-coding test statistics
We investigate three test statistics designed to detect the muta-
tion signature of overlapping CDSs in pairwise alignments of
two sequences, S1 and S2.

2.1.1 N123: mutation rate in N1, N2, N3 For the N123
method, we simply count the number of nucleotide differences
between S1 and S2 in each of N1, N2 and N3 (i.e. the 1st, 2nd
and 3rd nucleotide positions in codons in the primary read-
frame) and express each count as a fraction of the total number
of N1, N2 and N3 loci. We label these statistics fN1, fN2 and
fN3, respectively.

2.1.2 NsNn: Synonymous and nonsynonymous mutation
rates For the NsNn method, we step through aligned codon
pairs in the primary read-frame of S1 and S2 and count which
codon pairs are identical, non-identical but synonymous and
non-synonymous. The numbers of synonymous and non-
synonymous codon pairs are expressed as a fraction of the
total number of codon pairs. We label these statistics fsyn and
fnon, respectively.

2.1.3 MLOGD: maximum-likelihood method The MLOGD
(Maximum -Likelihood Overlapping Gene Detector) method
is an attempt to estimate the relative probabilities of S1 mutat-
ing to S2 under single-coding and double-coding models.

The evolution of a single-coding sequence is often mod-
elled as a Markov process (Goldman and Yang, 1994).
The probability of S1 mutating to S2 after time t may be
expressed as

log P(S1 → S2; t) =
Ncodons∑
k=1

log pCk
1 Ck

2
(t), (1)
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where Ck
1 , Ck

2 are the k-th codons of S1, S2 and [pij (t)] =
P(t) = exp(Qt), where Q is a 64 × 64 matrix of ‘instantan-
eous’ codon mutation probabilities.

In the case of overlapping CDSs, cross-talk between adja-
cent codons prevents the factorization-by-codon seen in (1).
In theory, instead of a 64 × 64 codon matrix Q, we must
define a single 4N × 4N matrix (where N is the sequence
length in nucleotides) that describes the entire sequence at
once. Clearly, for typical values of N , this is computation-
ally impractical. Instead, we use the following simplified
approach.

For each nucleotide pair Nk
1 , Nk

2 in S1, S2, we estimate
the probability that Nk

1 mutates to Nk
2 for each of the single-

coding and double-coding models. Specifically, we first define
b(Nk

1 → i; t , m), i = U, C, A, G, by

b(Nk
1 → i; t , s) = P(Nk

1 → i; t) × C(X2)

× A(X1 → X2)
(2)

for the single-coding (m =‘s’) model, and

b(Nk
1 → i; t , d) = P(Nk

1 → i; t) × C(X2)

× A(X1 → X2) × C(X′
2)× A(X′

1 → X′
2)

(3)

for the double-coding (m = ‘d’) model. Here X1 and X2 are
the original and final amino acids or codons in the primary
read-frame and X′

1 and X′
2 are the original and final amino

acids or codons in the secondary read-frame for the nucleotide
mutation Nk

1 → i. Also P(t) = exp(Qt), and Q, C and A
are nucleotide, codon and amino acid substitution matrices,
respectively (described in Section 2.2).

The probability that Nk
1 mutates to Nk

2 , after time t , is then
given by

P(Nk
1 → Nk

2 ; t , m) = b(Nk
1 → Nk

2 ; t , m)∑
i=U,C,A,G b(Nk

1 → i; t , m)
. (4)

As in (1), we sum over the sequence alignment as follows:

log P(S1 → S2; t , m) =
Nnucleotides∑

k=1

log P(Nk
1 → Nk

2 ; t , m).

(5)
We maximize (5) with respect to t for each of the single-coding
and double-coding models, giving t s and td, respectively.
Then the log-likelihood ratio of the two models is

�s,d = log P(S1 → S2; td, d) − log P(S1 → S2; t s, s). (6)

If �s,d is positive, then the observed mutations between S1

and S2 are more consistent with double-coding. If �s,d is
negative, then the observed mutations are more consistent with
single-coding.

The above methodology involves several approximations.
For each component of the probability sum (5), we con-
sider only a single nucleotide and the single codon in

each of the primary and secondary read-frames containing
that nucleotide; longer-range dependences are ignored. In
addition, as far as codon and amino acid weightings are
concerned, we consider only the start and end points of
the unknown mutation pathway connecting an aligned codon
pair in S1 and S2. It seems reasonable that these simplifica-
tions are justified provided S1 and S2 are not too divergent
(so that mutation pathways are short and inter-codon cross-
talk is low). Tests with simulated sequences (which are
not subject to these simplifications) show that the model
provides useful results over a wide range of circumstances
(see Sections 3.1.1–3.1.4).

2.2 Monte Carlo sequence evolution model
The problems outlined above do not arise when generating
simulated sequences. Random nucleotide mutations may be
applied sequentially and the neighbourhood of any mutating
nucleotide is known at the time of mutation, thus allowing
appropriate amino acid and codon substitution weights to be
applied.

Given a starting sequence, a frame, a mutation rate, a 4 × 4
nucleotide mutation matrix Q, a 64-entry CUT C and a 20×20
amino acid substitution matrix A, our Monte Carlo simulation
applies nucleotide mutations one-by-one until the required
total number of mutations have occurred. Nucleotide muta-
tions are chosen randomly with probabilities determined by Q
and are accepted or discarded with probabilities determined
by C and A (for full details see Supplementary Material).
Under the double-coding model, the codon and amino acid
weights are applied in both read-frames. In order to match the
simulations to real sequence data, the mutation rate λ is tied to
the number of observed mutations rather than the number of
accepted mutations (e.g. A → C → G counts as two accepted
mutations but only one observed mutation).

By default, we use a κ = 3 Kimura (1980) nucleotide mat-
rix, null CUT (i.e. equal codon frequencies) and the Henikoff
and Henikoff (1992) BLOSUM40 amino acid substitution
matrix (for details see Supplementary Material).

2.3 Classification
Having calculated the statistics �s,d, fN1, fN2, fN3, fsyn,
fnon for a particular pairwise sequence alignment S1 + S2,
as described in Section 2.1, we then wish to classify it as
either single-coding or double-coding according to which of
the two models is most consistent with the observed statistics.
For the MLOGD method, classification is straightforward:
if �s,d > 0 we classify S1 + S2 as double-coding, while if
�s,d ≤ 0 we classify S1 + S2 as single-coding. For the N123
and NsNn methods, we use the simulations to find out what
range of values we would expect to observe for the two models.
We may then find the log-likelihood ratios

�N123
s,d = log

[
P(fN1, fN2, fN3|d, λ)

P (fN1, fN2, fN3|s, λ)

]
(7)
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and

�NsNn
s,d = log

[
P(fsyn, fnon|d, λ)

P (fsyn, fnon|s, λ)

]
. (8)

We generate simulated sequences (Section 2.2), starting
with the sequence S1 and with the mutation rate fixed by the
total number of point differences between S1 and S2. We gen-
erate 100 simulated sequences each for the single-coding and
double-coding models. We then calculate fN1, fN2, fsyn, fnon

for each of the 200 sequence pairs comprising S1 and one
of the simulated sequences, and calculate the means and SD,
µm

x , σm
x , where m = ‘s’ or ‘d’ is the model, and x is one of

the statistics fN1, fN2, fsyn, fnon. Note that we omit fN3

since, having fixed λ = fN1 + fN2 + fN3, fN3 adds no new
information.

Assuming normal distributions and assuming independence
of fN1, fN2 and of fsyn, fnon, it is straightforward to calculate
�N123

s,d and �NsNn
s,d (see Supplementary Material). Since, in

fact, these two assumptions are only approximations, �N123
s,d

and �NsNn
s,d are not strictly speaking likelihood ratios, but may

still be used as classifiers: the sequence pair, S1 + S2, is clas-
sified as single-coding if �N123

s,d ≤ 0 or �NsNn
s,d ≤ 0 and

as double-coding if �N123
s,d > 0 or �NsNn

s,d > 0. The mag-

nitudes of �s,d, �N123
s,d and �NsNn

s,d also give a measure of the
confidence of classifications (see Supplementary Material).

3 RESULTS
In Section 3.1, we use simulated sequences to character-
ize the statistics introduced in Section 2.1. We investigate
their dependence on sequence divergence, double-coding
frame (Section 3.1.1) and sequence length (Section 3.1.2).
We also investigate how robust the statistics are with
respect to choice of input nucleotide, codon and amino acid
matrices (Section 3.1.3) and with respect to sequencing errors
(Section 3.1.4). In Sections 3.2 and 3.3, we test the algorithms
on real sequence data.

3.1 Tests on Monte Carlo simulations
3.1.1 Dependence on frame Simulated sequences
(Section 2.2) were generated from initial random nucleotide
sequences with a range of mutation rates 0 ≤ λ ≤ 0.5, where
λ is the number of observed mutations per nucleotide. Each
simulated sequence S2, together with the corresponding ini-
tial sequence S1, makes an aligned sequence pair for which
the statistics �s,d, fN1, fN2, fsyn, fnon of Section 2.1 may be
calculated.

Figure 2 shows the distribution of the MLOGD statistic,
�s,d, as a function of λ, for the different frames. MLOGD
clearly separates the single-coding from the double-coding
simulations, except at the smallest λ values (see Section 3.1.2),
irrespective of frame. Figures 3 and 4 show the distri-
bution of the N123 and NsNn statistics, fN1, fN2, fsyn,
fnon, for the different frames. Here the distinction between
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Fig. 2. Plots of the MLOGD statistic �s,d (per nucleotide) for simu-
lated single-coding (triangles) and double-coding (circles) sequences
of length 300 codons. Each symbol represents one sequence pair,
S1 + S2, with the divergence between S1 and S2 measured on the
x-axis. The four panels show the distribution of�s,d values for single-
coding sequences and the five possible read-frames of an overlapping
secondary ORF relative to a primary ORF. �s,d < 0 ⇒ single-coding
while �s,d > 0 ⇒ double-coding. In contrast to Figures 3 and 4,
where the single-coding fN1, fN2, fsyn, fnon values can be dis-
played in a separate panel, the single-coding �s,d values depend
on which potential secondary read-frame the single-coding model is
being tested against.

single-coding and double-coding is often less clear, and much
more frame-dependent.

3.1.2 Dependence on sequence length It is apparent that
the ability of any method to distinguish single-coding from
double-coding regions will decrease for lower mutation rates
λ and for shorter sequence lengths. Figures analogous to
Figures 2–4 for sequence lengths 300, 50 and 20 codons
are given in the Supplementary Material. Figure 5 shows the
variation in the spread of �s,d values for sequence lengths
1000, 300, 50 and 20 codons for the +2 frame (e.g. the frame
of the P, C and X genes relative to the S, P and P genes,
respectively, in HBV and also the frame of −1 ribosomal
frameshifts). The longest overlap in HBV is ∼440 codons,
though overlap regions are generally much shorter. Even for
a sequence length of 20 codons, �s,d performs fairly well for
λ ≥ 0.2. In contrast fsyn, fnon and, to some extent, fN1, fN2,
are much less useful for such short sequences (see below for
details).

It is difficult to tell from such plots which statistics
are most useful—especially for small λ, where identifying
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Fig. 3. Plots of the 1st and 2nd codon position mutation rates, fN1 and fN2, as a function of λ for simulated sequences of length 300 codons.
Each symbol represents one sequence pair, S1 + S2, with the divergence between S1 and S2 measured on the x-axis. The 12 panels show
the fN1 and fN2 values for single-coding sequences and the five possible read-frames of an overlapping secondary ORF relative to a primary
ORF. The line—marking the median values for single-coding sequences (first panel)—is included in each plot for reference. Note that the
plots are highly frame-dependent and in some frames fN1 or fN2 taken alone is insufficient to distinguish double-coding from single-coding
sequences.

double-coding regions is most challenging. To more precisely
quantify the utility of the three methods of Section 2, we
use the procedure described in Section 2.3 to classify each
of 100 single-coding and 100 double-coding simulations (for
a particular initial sequence, frame and mutation rate λ),
calculating µm

x , σm
x , from the other 99 single-coding and

99 double-coding simulations. The number of single-coding
simulations correctly classified as single-coding and the
number of double-coding simulations correctly classified as
double-coding give a measure of the power of each method.

These values are summarized in Figure 6 for the +2 frame
(see Supplementary Material for other frames). For long
sequences, MLOGD and N123 give good results. For short
sequences, NsNn becomes unusable. The MLOGD statistic,
�s,d, is consistently the most discriminating classifier, espe-
cially for small λ. For a sequence of 300 codons, MLOGD
has a mean success rate (averaged over all five frames) of
97% for λ as low as 0.03 (cf. 74% for NsNn and 88% for
N123). For a sequence of 20 codons, MLOGD has a mean
success rate of 83% for λ = 0.2 (cf. 66% for NsNn and 77%
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Fig. 4. Plots of the synonymous and non-synonymous mutation rates, fsyn and fnon, for simulated sequences of length 300 codons,
double-coding in different frames (see caption to Fig. 3 for details). Note that in some frames it is often difficult to distinguish double-coding
from single-coding sequences on the basis of fsyn and fnon. The −2 frame stands out as favouring synonymous mutations relative to
non-synonymous mutations even more than single-coding regions. This is because in the −2 frame, N3 in the primary CDS is opposite N3 in
the secondary CDS so this position is relatively unconstrained, whereas N1 and N2 are opposite N2 and N1, respectively, so these positions
are highly constrained.

for N123). The NsNn results are little better than a random
classifier (success rate 50%). These results are summarized in
Figure 7.

3.1.3 Effect of model parameters We tested how robust
the algorithms are with respect to the choice of input nucle-
otide, codon and amino acid matrices (Section 2.2). Simulated
sequences were generated with (1) the default 50% GC-
content nucleotide matrix replaced with a 70% GC matrix,
(2) the default null CUT replaced with a human CUT or
(3) the BLOSUM40 amino acid matrix replaced with the

BLOSUM62 matrix. These sequences were classified as
in Section 3.1.2, with the µm

x , σm
x model values derived

from simulated sequences using the default matrices. Figures
analogous to Figure 6 for (1), (2) and (3) are available in
the Supplementary Material. MLOGD, NsNn and N123 are
all robust with respect to reasonable changes in the model
matrices.

3.1.4 Effect of sequencing errors We also tested how
robust the algorithms are with respect to sequencing
errors. Random nucleotide substitution errors were added to
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Fig. 5. Range of the MLOGD statistic �s,d (per nucleotide) for sim-
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(upper bars) for sequences of various lengths. See caption to Figure 2
for details. The bars represent the central 68% of values (i.e. ±1σ

for normal distributions) based on 100 simulations at each of λ =
0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.4 and 0.5. Even for overlap regions
as short as 20 codons, MLOGD can often successfully distinguish
double-coding from single-coding.

simulated sequences at a rate of 0.3, 1 and 3% and the resulting
sequences were classified as in Section 3.1.2, with the µm

x ,
σm

x model values derived from simulated sequences without
errors. Figures analogous to Figure 6 for the different error
rates are available in the Supplementary Material. MLOGD,
NsNn and N123 are all similarly affected by sequencing
errors. Averaging over all five frames, the decrease in clas-
sification success is about 0.3 × error rate

mutation rate (e.g. for λ = 0.1
and a 1% sequencing error rate, the decrease in classification
success is typically 3%). When the error rate is of the order
of a third of the mutation rate, or greater, all methods are
significantly affected.

3.2 Tests on hepatitis B (HBV) genome
We have tested the algorithms on known overlapping CDSs
and non-coding overlapping ORFs in the HBV genome. HBV
has a circular partially double-stranded DNA genome. The
long strand comprises ∼3215 nt and encodes four genes (P, C,
S, X) read in the forward direction. The S gene is completely
contained in the P gene and read in the +1 frame relative to P,
while the C and X genes both overlap the ends of the P gene
and are read in the +2 frame (Fig. 8).

We used 10 human strains (GenBank accession numbers
NC_003977, X70185, D00329, X75665, AB074755, D50520,
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Fig. 6. Classification (Section 2.3) success as a function of mutation
rate λ and sequence length, for the +2 frame. In each panel, the upper
three lines show the fraction of single-coding simulations classified
as single-coding (1 ≡ perfect classification) while the lower three
lines show the fraction of double-coding simulations classified as
single-coding (0 ≡ perfect classification). Overall classification suc-
cess depends on the distance between the upper and lower lines. The
classifications use the MLOGD (solid lines), NsNn (dashed lines)
and N123 (dotted lines) methods (Section 2.1). Classification suc-
cess is reduced for short sequences and low λ. MLOGD consistently
gives the best classification. (Plotted points are averages for ∼ 2000

Ncodons
random initial sequences. The rms error is of the order 0.01–0.03.)

X02496, X75664, X75663 and AB056514), illustrating a
range of diversity [genotypes C2, A, B, C, C1, C2, D, E,
F and G; see Huy et al. (2004)], together with strains from
woolly monkey (AF046996) and woodchuck (J02442). A
phylogenetic tree is given in the Supplementary Material.

Multiple sequence alignments were made separately for
each of the P, C, S, X ORFs using CLUSTALW (Higgins et al.,
1994) on the translated sequences. In the interests of demon-
strating a fully automated approach, no manual adjustments
were made to the alignments. ORFs were detected in the
reference sequence NC_003977 using the EMBOSS program
getorf (Rice et al., 2000). For each potential overlap region
in the reference sequence, MLOGD, NsNn and N123 statist-
ics were calculated for each of the other 11 sequences paired
with the reference sequence.

3.2.1 Hepatitis B—known overlaps The results for the
overlap between the S and P genes are shown in Figure 9.
This overlap region contains ∼440 codons, providing a good
signal for all three methods. The overlaps between C and
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Fig. 8. Diagram of the circular HBV genome. P, C, S and X are
known protein-coding genes. Open boxes represent all other ORFs
in the reference sequence, NC_003977, that are 30 nt or longer. The
radial tickmarks on the dashed centre-line are at 500-nt intervals.

P and between X and P are shorter (∼45 and ∼80 codons,
respectively) and the signal is correspondingly reduced. All
three methods give incorrect classifications for some sequence
pairs, with the fraction of sequence pairs correctly classified
being 86, 59 and 77% for MLOGD, NsNn and N123, respect-
ively (see Supplementary Material). For MLOGD and N123,
nearly all the incorrect classifications have low confidence
(i.e. scores close to zero).

Note that the observed statistics are not infrequently out-
side the confidence limits predicted by the simulations. One
reason for this is that the mutational patterns in the compact

genomes of viruses are subject to many other constraints that
can produce deviations from the models.

Tests with known overlapping CDSs in Lentiviruses,
Luteoviruses and Poleroviruses produced similar results
(Firth A.E. and Brown C.M., manuscript in preparation).

3.2.2 Hepatitis B—potential overlaps We also tested the
algorithms on all other ORFs in NC_003977 that have at least
30-codon overlaps with one or more of the known P, C, S, X
genes (Fig. 8). There are 43 such overlaps, involving 29 new
ORFs. These ORFs are presumed to be non-coding, how-
ever short functional ORFs have been found in other viruses.
Unlike the four known genes, many of these ORFs are in
the reverse read-direction. Some are conserved in only a few
strains and, although we skip stop ↔ non-stop codon trans-
itions in the calculation of the MLOGD statistic, their presence
in an alignment would commonly be taken as an evidence that
an ORF is non-functional. Figures analogous to Figure 9 for
all 43 overlaps, together with a summary table of statistics,
are given in the Supplementary Material.

When scores are summed over all 11 sequence pairs,
MLOGD, NsNn and N123 identify 79, 77 and 74%, respect-
ively of the 43 overlaps as single-coding. One reason for the
∼21–26% failures may be due to the short length of some of
the overlap regions—giving a reduced signal. Another import-
ant factor is that in viruses there are often several constraints,
besides maintaining protein function, that contribute to the
pattern of sequence conservation at any site. In particular, a
large number of these ORFs overlap two known genes (e.g.
S and P) thus giving an extra frame-dependent constraint on
N1, N2, N3, which essentially invalidates the N123 method.
The MLOGD method is more robust with respect to this
effect and in fact there are only a few (namely 4 out of 20)
particular combinations of frames—easily determined from
simulations (see Supplementary Material)—that are liable to
give rise to a false double-coding signal in a tertiary ORF over-
lapping two coding sequences. In fact such a combination
of frames explains seven of the nine false positives identi-
fied by the MLOGD method. These false positives are easily
removed since all seven ORFs give a negative signal relat-
ive to the other of the two overlapping known genes. Taking
such double-overlaps into account, MLOGD has a 93% suc-
cess rate on the 29 (presumed) non-functional ORFs, many of
which are very short.

3.3 Tests on bacterial genomes
The much larger genomes of bacteria are not subject to the
same size constraints as virus genomes, and the vast majority
of short ORFs are expected to be non-coding. In addition, real
overlaps may often be the result of random events (e.g. stop
codon mutation) and may not be subjected to strong func-
tional constraints (Fukuda et al., 2003). Hence, testing the
algorithms on bacterial genomes can provide a good estimate
of the false positive rate.
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Fig. 9. The overlap between the S and P genes in HBV. Here P is taken as the primary ORF and S is in the +1 frame. The overlap region is
∼440 codons long, providing a good signal in all plots. The observed statistics for HBV pairwise alignments are represented by solid circles
while the dots correspond to simulations—single-coding on the left and double-coding in the +1 frame on the right. Error bars are each based
on 100 simulations with the same mutation rate λ as the corresponding sequence pair, and enclose the central 68% of values. MLOGD, NsNn
and N123 all clearly identify this region as double-coding.

We used a table of 3682 pairwise symmetrical best hits
between annotated protein-coding genes in Escherichia coli
(K12; NC_000913.2) and Salmonella typhimurium (LT2;
NC_003197.1), obtained from NCBI, as the set of primary

ORFs. The set of secondary ORFs was taken to be all
ORFs detected in E.coli. MLOGD scores were calculated
(using the alignment between the primary ORFs in E.coli and
S.typhimurium and an E.coli CUT) for all overlaps with length
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the positions of the three annotated overlaps that are conserved in
S.typhimurium. Except for the −2 frame, the false positive rate is
very low.

at least 20 codons and sequence identity within the overlap of
at least 70%. A total of 18 081 overlaps were analysed. Only
19 of these involved two annotated genes in E.coli, and only
three of these pairs were conserved as an overlapping pair in
S.typhimurium.

Figure 10 shows the distribution of MLOGD scores for the
different frames. Except for the −2 frame, the number of
MLOGD scores greater than zero is very low: 2 and 0.5%
for overlap lengths ≥20 and 50 codons, respectively. Some
of these overlaps may be functional—e.g. the three conserved
annotated overlaps marked, plus possibly others which, even
if not conserved in S.typhimurium, may still have been sub-
ject to double-coding constraints over part of the evolutionary
divergence between the two species.

The false positive rate in the −2 frame is unacceptably high
if a threshold score of zero is used. In this frame, N3 in the
primary ORF opposes N3 in the secondary ORF, leaving N3

relatively unconstrained. Thus evolution mimics evolution in
single-coding sequences. Hence, a higher threshold needs
to be used—e.g. using the variation in calculated MLOGD
scores, as a function of overlap length, as a guide (see also
Supplementary Material). Note also that overlaps in the −2
frame are expected to be relatively rare (Rogozin et al., 2002).

4 DISCUSSION
We have presented a new algorithm (MLOGD) for predicting
whether or not a particular region in a pairwise sequence

alignment is likely to be double-coding. We have also used
simulations to formalize and put probabilities on two simple,
but rather ill-defined, previously used test statistics (N123 and
NsNn). All three methods have been fully characterized using
simulated data, and tested on viral and bacterial genomes.

We find that no method gives perfect predictions all the
time, but MLOGD consistently performs better than N123,
while NsNn performs rather poorly. MLOGD is particularly
useful when there are extra constraints on sequence evolution
(e.g. known double-coding with a potential tertiary ORF, or
known single-coding with two alternative potential secondary
ORFs). MLOGD also has the advantage that the distribution
of the �s,d statistic is relatively frame-independent and easy to
interpret (namely, �s,d ≤ 0 ⇒ single-coding and �s,d > 0 ⇒
double-coding). In contrast, the N123 and NsNn statistics
require time-consuming simulations to interpret their values.
Simulations suggest that MLOGD can identify double-coding
regions at ∼90% confidence for pairwise sequence alignments
that differ at just ∼20 nt sites (Fig. 7), though results with
complex real sequence data are less good (possibly due to
suboptimal alignments, Section 3.2).

Although MLOGD produced the best results, we suggest
using all three methods and comparing results. By doing this,
one can efficiently identify candidate overlapping CDSs for
further investigation. In addition, comparison with the model
simulations can provide valuable insights about the muta-
tional constraints operating within a given sequence. For an
input sequence alignment, our software package automatic-
ally produces plots similar to Figure 9 and a table of sequence
statistics, allowing a quick visual inspection of double-coding
constraints in any input primary ORF.

For many pairs of overlapping genes, one of the two is
fairly unconstrained, e.g. in viruses many code for structural
proteins whose primary sequence may not be highly con-
served. In evolutionary terms, such a situation is desirable,
since too many constraints can be a severe limitation on evol-
ution (Rogozin et al., 2002). Our software also produces
nucleotide-by-nucleotide plots for MLOGD. This allows
one to quickly identify particularly conserved regions in an
overlap. Such analyses can be useful for selecting targets for
vaccines or antiviral drugs since, if functional constraints are
important in both genes of an overlapping pair, then mutations
will be more restricted.

Although the statistics �s,d, �N123
s,d and �NsNn

s,d (Section 2.3)
may be summed along the branches of a phylogenetic
tree—for increased sensitivity—by calculating, for example,
maximum parsimony sequences at intermediate nodes,
we have preferred to display statistics for each pairwise
alignment. When only a small numbers of species are
available, it is informative to view each comparison indi-
vidually. Even when large alignments are available, certain
overlapping CDSs may exist in only some lineages, so again
it is important to view the pairwise, rather than summed,
statistics.
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The algorithms should prove useful for detecting novel
genes in viruses—where overlapping gene structures are
common and often conserved over large evolutionary dis-
tances. They are expected to be particularly useful for ana-
lysing short ORFs and ribosomal frameshift sites. In addition,
many overlapping CDSs have been annotated in yeast and
prokaryotic genomes, and these algorithms could be used to
test their functionality.
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