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ABSTRACT

Motivation: A common problem in the emerging field of metabolomics

is the consolidation of signal lists derived from metabolic profiling of

differentcell/tissue/fluidstateswhereanumberof replicateexperiments

was collected on each state.

Results: We describe an approach for the consolidation of peak

lists based on hierarchical clustering, first within each set of replicate

experiments and then between the sets of replicate experiments. The

problems of finding the dendrogram tree cutoff which gives the optimal

numberofpeakclustersand theeffectofdifferentclusteringmethodswere

addressed. When applied to gas chromatography-mass spectrometry

metabolic profiling data acquired on Leishmaniamexicana, this approach

resulted in robust datamatriceswhich completely separated thewild-type

and two mutant parasite lines based on their metabolic profile.

Contact: vlikic@unimelb.edu.au

1 INTRODUCTION

Metabolomics is an emerging tool of functional genomics that is

increasingly being used to identify new protein functions and to

model whole cell metabolism (Fernie et al., 2004; Fiehn, 2002;
Goodacre et al., 2004; Sumner et al., 2003). Two approaches are

commonly associated with metabolomics: metabolic fingerprinting

andmetabolicprofiling (Fiehn,2002).Metabolicfingerprinting refers

to the analysis of patterns in themolecular response profiles (detected

byNMR,MSorotherspectroscopic techniques),withoutanattempt to

resolve individual analytes. In contrast, metabolic profiling aims to

resolve, identify and quantitate individual analytes. In non-targeted

profiling all metabolites resolved by a particular analytical technique

are quantitated, even those of unknown chemical structure.

Metabolomic studies frequently utilize gas chromatography mass

spectrometry (GS-MS) (Fiehn et al., 2000; Roessner et al., 2001;
Urbanczyk-Wochniak et al., 2003), liquid chromatography

mass spectrometry (LC-MS) (Allen et al., 2003; Tolstikov et al.,
2003), capillary electrophoresis mass spectrometry (CE-MS)

(Guillo et al., 2004; Sato et al., 2004), direct infusion electrospray

ionization mass spectrometry (ESI-MS) (Castrillo et al., 2003;

Goodacre et al., 2002) and NMR (Choi et al., 2004; Raamsdonk

et al., 2001). Irrespective of the technique, the analytical instru-

mentation produces signal which consists of informative peaks

embedded in a continuum of background noise. Signal peaks are

associated with individual analytes (metabolites) and provide a

quantitative measure of the concentration of individual analytes.

A common problem in metabolic profiling is the correlation of

signal peaks from two ormore cell/tissue states (i.e. wild-type versus

mutant, healthy versus diseased, etc.). For example, if two cell/tissue

statesAandBareexamined,withobserved signalpeaksA1,A2, . . .,AN

and B1, B2, . . ., BM, it is important to establish the correspondence

between these signals, i.e. which signals in A and B refer to the same

analyte or metabolite. Furthermore, some signals in Amay not have

the corresponding signal in B because of the metabolites produced in

onestatebutnot theother.ThecorrespondencebetweenA1,A2, . . .,AN

and B1, B2, . . ., BM leads directly to the data matrix, whose rows

represent individual experiments and columns represent unique ana-

lytes observed in the two sets of experiments. The generalization to

more than two experiments is straightforward.

Metabolic profiling experiments are relatively rapid and inex-

pensive, with typically multiple replicates are recorded for each

cell/sample state (Allen et al., 2003; Fiehn et al., 2000;

Urbanczyk-Wochniak et al., 2003). Multiple replicate experiments

facilitate robust statistical analysis, and have also been used to

explore the inherent biological variability in metabolomic studies

(Fiehn et al., 2000; Sumner et al., 2003). If replicate experiments are

to be explicitly included in the data matrix, the correspondence

between signals observed in different replicates must be established.

By taking the previous example of two cell states A and B, and
assuming that P replicate experiments of A and Q replicate experi-

ments of B were performed, the two sets of experiments may be

represented by a series of signals A11, A12, . . ., A1N, A21, A22,

. . ., A2N, AP1, AP2, . . ., APN and B11, B12, . . ., B1M, B21, B22,

. . ., B2M, BQ1, BQ2, . . ., BQM, respectively. The resulting data matrix

will have P + Q rows. The number of columns will depend on the

correspondence between signals observed in the two sets of experi-

ments, but cannot exceed N +M.

The problem of peak consolidation in multiple experiments has

been addressed recently with the program MSFACTs (Duran et al.,
2003). Here we further explore the idea of peak clustering for the

consolidation of signal lists. Specifically, we propose a two-step

hierarchical clustering of peak signals, first within each set of rep-

licate experiments and then between the sets of replicate experi-

ments. We apply this approach to gas chromatography-mass

spectrometry (GC-MS) metabolic studies of Leishmania mexicana.�To whom correspondence should be addressed.
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Leishmania is a sandfly-transmitted parasite endemic throughout

the tropic and subtropics which infects around 12 million people

worldwide (Davis et al., 2004). The proposed approach resulted in

robust data matrices which completely separated the wild-type and

two mutant parasite lines based on their metabolic phenotypes.

2 METHODS

Metabolic profiles of wild-type and two mutants of L.mexicana were ana-

lyzed. The wild type strain (wt), and two mutant strains deficient in the three

functional glucose transporters (Dgt) or the enzyme phosphomannose

isomerase (Dpmi) were derived from the same parental strain M379 and

displayed very similar growth rates in rich medium (Burchmore et al., 2003;

Garami and Ilg, 2001). Parasites were cultivated in RPMI medium contain-

ing 10% fetal calf serum and harvested at day 6 in stationary growth phase.

Parasite metabolism was quenched by immersion of the culture flask in

ethanol–dry ice bath, and chilled parasites harvested by centrifugation of

1 ml culture medium in a microfuge (15 000 rpm, 20 s, 0�C). Metabolites

were extracted with chloroform:methanol:water (1:3:1 v/v) and polar and

apolar metabolites were separated by phase partitioning. Following deriv-

atization (methoximation and trimethylsilylation, TMS) the polar metabolite

extracts were analyzed by GC-MS (Roessner, et al., 2000). For each

genotype eight replicate experiments were prepared. One Dpmi replicate
experiment was contaminated and was not included in the analysis. The

final data set consisted of eight replicate experiments for wt and Dgt mutant

each, and seven replicate experiments for the Dpmi mutant.

Thetotalion-chromatogram(TIC,Fig.1)wasintegratedinChemStation(MSD

Chemstation D.01.02.16, Agilent Technologies) by using the default integrator.

Resulting peak tables were exported to external files for further processing.

3 RESULTS

InitiallytheTIC(Fig.1)wasexaminedvisuallyforeachexperiment,and

peak lists were edited to mark the reference peak and uninformative

peaks originating from thederivatizing agent (TMS).Subsequently, the

areas of all peaks were normalized with the area of the reference peak,

and the reference peak was removed from each peak list.

3.1 Peak clustering within each set of replicate

experiments

For the purpose of clustering all peaks from a single set of replicate

experiments were pooled together, and hierarchical clustering was

performed to create a complete dendrogram tree. The distance

between two peaks was defined as the absolute difference between

the retention times recorded at peak apexes. In general, the details of

the dendrogram tree depend on the clustering method used to gen-

erate the tree. Furthermore, once the method has been chosen and

the dendrogram tree created, cutting the tree at any definite height

would produce a certain number of peak clusters (Fig. 2). This

suggests that at least two questions must be answered for successful

application of this approach to peak clustering: (1) how to choose a

dendrogram tree cutoff to obtain the optimal number of peak clus-

ters and (2) how the results depend on the clustering method.

3.1.1 The dendrogram tree cutoff If the average number of

peaks in each replicate experiment is Naver we expect to observe

approximately Naver distinct chemical compounds in a set of rep-

licate experiments. Thus a reasonable initial assumption would be

that the dendrogram tree should be cut at a height to yield Naver peak

clusters. To investigate how this would perform in practice we

focused on the region between the 12.5 and 16.0 min in the wt
set of experiments (Figure 1, lower panel). In this region Chem-

Station peak finding algorithm identified between 31 and 36 peaks

(depending on the specific replicate experiment), with Naver ¼ 32.5.

To create an ‘ideal’ table of peak correspondence, manual analysis

of the region 12.5–16.0 min was carried out across all eight replicate
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Fig. 1. An example of total ion chromatogram (TIC) for wild-type

L.mexicana (upper panel). The TICs for eight replicate experiments overlaid

in the region of 12.5–16.0 min are shown in the lower panel.

Fig. 2. An example of a complete dendrogram tree created after peak cluster-

ing. This figure shows a dendrogram tree created from peaks found in the

region of 13.5–15.2 min of wild-type L.mexicana experiments. The cumu-

lative list of peaks from eight replicate experiments contained a total of 111

peaks. Peaks were clustered by the retention times with complete linkage

method. A hypothetical (non-optimal) cutoff is shown by the dashed line.
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experiments which included verification of mass-spectra at peak

apexes. Manual analysis revealed 41 unique analytes in the region

12.5–16.0 min. This result suggested that the optimal number of

peak clusters is greater than Naver. Inspection of individual peak

tables revealed that this effect occurred because some peaks of low

intensity were detected in some, but not all replicate experiments.

Moreover, different peaks fell into this category in different rep-

licate experiments. Although this effect was strictly verified only on

the data subset analyzed here, we expect it to apply more generally.

3.1.2 Errors in automated peak clustering Two types of errors

can occur in an automated peak clustering procedure: (1) given a

true peak group across the set of replicate experiments, one or more

peaks may be assigned to a different group and (2) a true peak group

may be split into two or more groups. The first case is likely to result

in one or more ‘peak collisions’, the effect whereby more than one

peak from the same experiment is joined into a single cluster (Duran

et al., 2003). The second case involves creation of one or more

artificial peak groups. Provided that some reasonable clustering is

performed errors of type (1) will predominate when the final number

of clusters is too small relative to the optimal number of clusters,

while errors of type (2) will predominate when the final number of

clusters is too large.

3.1.3 The effect of the clustering method Several well-

established clustering methods were tested, including single link-

age, complete linkage and centroid methods. The full dendrogram

tree was created by each clustering method, which was then cut to

yield the final peak clusters. To accommodate for the effect

described above (the optimal number of peak clusters being larger

than Naver) the tree was cut to yield Naver + FNaver peak clusters,

where Fwas an ‘expansion factor’ set empirically. The performance

of automated peak clustering was tested by comparing the results

with the manually generated table of peak clusters (the region

12.5–16.0 min, Fig. 1). Given the choice of F in the range

0–0.30 the total number of clusters was recorded, the number of

peak collisions, and the number of true clusters artificially split. The

last two parameters were obtained by comparing the clusters

obtained via hierarchical clustering with the manually generated

table of clusters. Figure 3 shows these three values as a function

of F when single linkage, complete linkage and centroid clustering

methods were used.

3.1.4 Accuracy peak clusters Analysis of the accuracy of final

clusters was carried out for the complete clustering method and

expansion factors of F ¼ 0, 0.1 and 0.2 by comparing the clustering

output with the manually generated table of clusters. Figure 4 shows

that as the expansion factor was increased from 0 to 0.2, peak

collisions were reduced while the accuracy of final clusters was

preserved. Specifically, automated clustering with the expansion

factor of 0.2 produced both a small number of peak collisions

and accurate clusters. The final table of clusters was comparable

in accuracy with the manually generated table produced by inspect-

ing mass-spectra.

3.2 Peak clustering between sets of replicate

experiments

In order to correlate peaks between different cell states or geno-

types, peak clusters from each set of replicate experiments were

pooled together and clustered. In this separate clustering step

the objects to cluster were peak clusters, and the outputs were

clusters of peak clusters (i.e. super-clusters, Fig. 5). Super-clusters

provided correlations between peak clusters, and therefore peaks

observed in different sets of replicate experiments. Super-clusters

correspond directly to the columns of the data matrix desired in the

output (Fig. 5).

In order to perform hierarchical clustering of peak clusters one

must define the distance measure. We chose the average distance

between all peaks from two clusters to represent the distance

between the two clusters, where the distance between the two

peaks was defined above.

As in simple clustering of peaks, clustering of peak clusters

produces a complete dendrogram tree. Cutting this tree at certain

height would result in a set of super-clusters. If the dendrogram tree

complete
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Fig. 3. The effect of the expansion factor (F) on the total number of clusters,

number of peak collisions and number of split clusters when the single

linkage, complete linkage, and centroid clustering methods were applied.

The analysis refers to the region 12.5–16.0 min in the wt set of experiments,

which contained eight replicate experiments (overlaid in Fig. 1, lower panel).

The true number of unique compounds observed in this region was 41, as

determined by manual analysis of mass spectra at peak apexes in eight

experimental replicates.
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is cut too high, two or more peak clusters belonging to the same

cell state (i.e. the same set of replicate experiments) may be joined

to the same super-cluster. By analogy with a peak collision, we

denote this effect a ‘cluster collision’. As the dendrogram cutoff is

lowered, the number of super-clusters will increase and the number

of cluster collisions will decline. If the dendrogram tree is cut too

low relative to the optimal cutoff, some true super-clusters will be

split to create two or more artificial super-clusters. When an

extremely low cutoff is applied each peak cluster will become a

super-cluster on its own.

In the clustering of peaks within a set of replicate experiments we

cut the dendrogram tree to produce a predefined number of clusters

related to the average number of peaks per replicate experiment

(Naver). A similar approach could not be applied to a dendrogram of

peak clusters: when two or more cell states are analyzed it is

unknown a priori how many super-clusters should be obtained.

For example, in the case of two cell states with N1 and N2 unique

analytes (metabolites) the final number of super-clusters could be

anywhere between the largest of N1 and N2 (all metabolites found

in one cell state found in the other) and N1 + N2 (none of the

metabolites found in one cell state found in the other).

To find the optimal cutoff for a cluster dendrogram tree a

radically different approach must be applied. We first note that

individual peaks are single observations and are expected to be

more prone to sampling variations relative to peak clusters,

because the latter are derived from the set of replicate experiments.

Furthermore, each peak cluster corresponds to a single chemical

compound detected in a set of replicate experiments. Thus in any

reasonable partitioning of peak clusters, cluster collisions must be

rare or non-existent. This in turn suggests that the optimal dendro-

gram tree cutoff should be as high as possible to minimize the

number of super-clusters, but not as high to produce cluster

collisions.
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Fig. 4. The accuracy of peak clustering (complete linkagemethod). Correctly

assigned peak clusters are shown above the zero line, with the number on

y-axis corresponding to the number of peaks in that cluster. Clusters plotted

below the zero line are those that involved either missing or erroneously

assigned peaks. When a peak is erroneously assigned from one cluster to

another, this affects two clusters from the viewpoint of an ideal answer.

Therefore clusters below the zero line occur in pairs, and such pairs are joined

by a line in the plot. In principle, such errors may involve more than two

clusters, but this was not observed in the data shown here. For clarity, for

clusters below zero the y-axis readout is shown next to each cluster point. The

top panel shows the hypothetical situation when all peaks are correctly

assigned to correct clusters. The three lower panels depict the actual results

when the expansion factor F was set to 0, 0.1 and 0.2 (from top to bottom).

Increasing the expansion factor from 0 to 0.2 increased the accuracy of peak

classification into clusters.
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We used this approach to analyze the GC-MS profiles of polar

metabolite extracts of three strains of L.mexicana. After the peak

clustering was performed within each set of replicate experiments,

filtering was applied to remove spurious peak clusters. Because

there were eight replicate experiments for wt and Dgt, and seven

replicate experiments for the Dpmi genotype, any peak cluster that

contained less than four peaks (wt and Dgt) or three peaks (Dpmi)
was discarded. Remaining peak clusters from all three sets of rep-

licate experiments were pooled together and were subject to hier-

archical clustering. A complete dendrogram tree relating peak

clusters from wt, Dgt and Dpmi experiments was generated. To

obtain the final set of super-clusters the dendrogram tree was cut

as high as possible, with the requirement imposed to produce no

cluster collisions. This was achieved by cutting the dendrogram tree

in small but finite steps, starting from an initial value close to zero.

For each step the number of collisions was recalculated; when the

first collision was observed, the previous cutoff was taken as

optimal. Such scanning is very fast because it involves only cutting

the previously created dendrogram tree (i.e. the hierarchical clus-

tering is performed only once).

Finding the optimal dendrogram tree cutoff resulted in a unique

set of super-clusters which was then transformed into a data matrix.

The only empirically chosen parameter in this procedure was

the expansion factor F used in within-replicates peak clustering.

Table 1 summarizes the results for the expansion factors F ¼ 0.15

and F¼ 0.20. The final number of super-clusters was 109 (F¼ 0.15)

and 114 (F ¼ 0.20), and the resulting data matrices had dimensions

109 · 23 and 114 · 23. The linear discriminant analysis based on

these two data matrices are shown in Figure 6.

4 DISCUSSION

A common problem in the emerging field of metabolomics is the

consolidation of peak lists derived from metabolic profiling of dif-

ferent cell/tissue/fluid states (i.e. wild-type versus mutant, diseased

versus healthy, etc.), where a number of replicate experiments were

collected on each cell state. This problem arises because of various

experimental factors beyond the control of the experimentator;

e.g. in the case of hyphenated mass spectrometry methods

(GC-MS and LC-MS) the same analyte may elute at slightly

different retention times in different experiments.

A recently described program MSFACTs is an attempt to address

this problem (Duran et al., 2003). MSFACTs relies on the assump-

tion that there is one-to-one correspondence between the peaks of

any two peak lists (Duran et al., 2003). This assumption cannot be

made when two or more different cell/tissue states are analyzed.

Furthermore, the MSFACTs algorithm for peak classification

depends on the minimum/maximum retention time and user-defined

time interval. Here we propose to solve the overall problem sequen-

tially: first by clustering peaks within each set of replicate experi-

ments (within set of replicate experiments clustering) and then by

clustering resulting peak clusters (between sets of replicate experi-

ments clustering). This approach allows for signal peaks (i.e. meta-

bolites) to be present in one not be present in others, the situation of

central interest in practice. Furthermore, our approach relies on

hierarchical clustering and is therefore symmetrical with respect

to all peaks.

We analyzed polar metabolite extracts of three strains of L.mex-
icana parasites: a wild-type strain and two mutant strains with

defects in carbohydrate metabolism owing to loss of glucose trans-

porters or the enzyme phosphomannose isomerase (Burchmore et
al., 2003; Garami and Ilg, 2001). Total ion chromatograms were

integrated with a standard software package, and progressive clus-

tering was applied to derive the data matrix from resulting peak lists.
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Fig. 6. Linear discriminant analysis of the data matrix produced by progres-

sive clustering with F ¼ 0.15 (upper panel) and F ¼ 0.20 (lower panel).

For simplicity, the individual experiments are labeled as follows: ‘wt’ for

wild-type, ‘gt’ for glucose transporter mutant and ‘pmi’ for phosphomannose

isomerase mutant experiments.

Table 1. The summary of clustering results with F¼ 0.15 and F¼ 0.20 used

for clustering of peaks within each set of replicate experiments

Naver #clusters #p.collisions #clusters (final)

F¼ 0.15

wt 100.0 115 48 100

Dgt 85.5 98 60 81

Dpmi 91.6 105 43 94

F¼ 0.20

wt 100.0 120 33 102

Dgt 85.5 102 38 85

Dpmi 91.6 109 29 98

The final number of super-clusters were 109 (F ¼ 0.15) and 114 (F ¼ 0.20), and the

corresponding linear discriminant analysis is shown in Figure 6. Naver denotes the

average number of peaks per replicate experiment, #clusters denotes the number of

peak clusters and #p.collisions denotes the number of peak collisions. The column

#clusters (final) shows the final number of peak clusters from the given set of replicate

experiments (wt, Dgt, or Dpmi, or Dpmi) that entered the second stage of clustering, after
filtering to remove spurious peak clusters (see main text).
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The only empirical parameter which entered this analysis was the

‘expansion factor’ F used in the within set of replicates clustering.

The optimal value of F was found empirically to be 0.15–0.25.

The progressive clustering approach yielded a robust data matrix

that completely resolved the three cell states in a discriminant

analysis (Fig. 6).

The distance measure must be defined for each of the two

clustering steps, i.e. (1) within a set of replicate experiments and

(2) between sets of replicate experiments clustering. For (1) objects

to cluster were peaks detected in individual replicate experiments,

and we defined the distance between two peaks as the absolute value

of the difference between their retention times. For (2) objects to

cluster were peak clusters, and the average distance between all

peaks from two peak clusters was used as the distance measure.

Another obvious choice for the distance between two peak clusters

is the distance between their peak centroids. In our preliminary

investigation centroid distance measure did not produce signific-

antly different results (data not shown).

Once the distance measure is defined, one can choose between

several well-established clustering methods to produce the dendro-

gram tree. For clustering within replicates we investigated single

linkage, complete linkage and centroid methods (Fig. 3), as well as

Ward and average methods (data not shown). Given the data at hand

all clustering methods performed reasonably well. Complete link-

age and centroid methods performed slightly better than the single

linkage method (Fig. 3). This was not surprising given that single

linkage tends to produce elongated clusters, while complete linkage

and centroid methods tend to produce compact, spherical clusters.

Our preference is for a complete linkage method which seems to

produce a minimal number of peak collisions when the dendrogram

tree cutoff is smaller than optimal (Fig. 3).

An important question is how reproducible the data needs to be

for the progressive peak clustering to be effective. The fundamental

premise of the proposed approach was that differences in retention

times of peaks originating from different analytes (metabolites)

are greater compared with random variations (i.e. differences in

retention times for the same peak observed in different replicate

experiments). This seems to be a reasonable assumption for the data

analyzed here (Figs 1 and 4). If the random variation approaches or

exceeds differences in retention times between peaks originating

from different analytes, the cluster analysis will be unable to

assign peaks to correct clusters. This was confirmed by computer

simulations based on synthetic datasets created by assuming

realistic peak distributions and varying noise levels.

The analysis of manually classified peaks in the region

12.5–16.0 min (Fig. 1) showed that the noise in peak retention

times is �0.004 min (based on 30 peaks with 7 or 8 observations

each). Other parts of the chromatogram showed poorer reproducib-

ility, especially the initial parts of the chromatogram (the noise level

of up to 0.014 min was observed for individual peaks in the region

6–9 min). In a typical wild-type experiment the minimum difference

in peak positions was found to be �0.020 min. This relationship

between the noise level and differences in peak positions is favor-

able for the type of analysis proposed here.

The simple retention time distance is attractive because of its

simplicity, speed of analysis and its ability to produce robust results

in the analysis presented here (Fig. 6). We are currently investig-

ating the inclusion of mass-spectra, which has the potential to

increase accuracy of peak classification in multiple experiments,

although at the cost of significant increase in the complexity of

calculations.
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