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ABSTRACT

Motivation:Remotehomologydetectionbetweenproteinsequences is

a central problem in computational biology. The discriminative method

such as the support vector machine (SVM) is one of the most effective

methods. Many of the SVM-based methods focus on finding useful

representations of protein sequence, using either explicit feature vector

representations or kernel functions. Such representations may suffer

from the peaking phenomenon in many machine-learning methods

because the features are usually very large and noise data may be

introduced. Based on these observations, this research focuses on

feature extraction and efficient representation of protein vectors for

SVM protein classification.

Results: In this study, a latent semantic analysis (LSA) model, which

is an efficient feature extraction technique from natural language pro-

cessing, has been introduced in protein remote homology detection.

Several basic building blocks of protein sequences have been invest-

igatedas the ‘words’of ‘proteinsequence language’, includingN-grams,

patterns and motifs. Each protein sequence is taken as a ‘document’

that is composed of bags-of-word. The word-document matrix is con-

structed first. The LSA is performed on the matrix to produce the latent

semantic representationvectorsofproteinsequences, leading tonoise-

removal and smart description of protein sequences. The latent

semantic representation vectors are then evaluated by SVM. The

method is tested on the SCOP 1.53 database. The results show that

the LSAmodel significantly improves the performance of remote homo-

logy detection in comparison with the basic formalisms. Furthermore,

the performance of this method is comparable with that of the complex

kernelmethodssuchasSVM-LAandbetter than thatofothersequence-

based methods such as PSI-BLASTand SVM-pairwise.

Availability:Thesource codesare freely available at http://www.insun.

hit.edu.cn/news/view.asp?id=413 or upon request from the authors.

Contact: qwdong@insun.hit.edu.cn

INTRODUCTION

A central problem in computational biology is the classification of

proteins into functional and structural classes given their amino acid

sequences. Through evolution, structure is more conserved than

sequence. Therefore, detecting very subtle sequence similarities,

or remote homology, is important for predicting the functions of

proteins. Most methods can detect homology with a high level of

similarity, while remote homology is often difficult to be separated

from pairs of proteins that share similarities owing to chance.

Detecting homology in the so-called ‘twilight zone’ remains chal-

lenging nowadays (Saigo et al., 2004).
The major methods for homology detection can be split into three

basic groups (Li and Noble, 2003): pairwise sequence comparison

algorithms, generative models for protein families and discrimin-

ative classifiers. Early methods looked for pairwise similarities

between proteins. Among those algorithms, the Smith–Waterman

dynamic programming algorithm (Smith and Waterman, 1981) is

one of the most accurate methods, whereas heuristic algorithms

such as BLAST (Altschul et al., 1990) and FASTA (Pearson,

1990) trade reduced accuracy for improved efficiency. The methods

afterwards have obtained higher rate of accuracy by collecting

statistical information from a set of similar sequences. PSI-

BLAST (Altschul et al., 1997) used BLAST to iteratively build

a probabilistic profile of a query sequence and obtained a more

sensitive sequence comparison score. Generative models such as

profile hidden Markov models (HMM) (Karplus et al., 1998) used
positive examples of a protein family, which can be trained iterat-

ively using both positively labeled and unlabeled examples by pull-

ing in close homology and adding them to the positive set (Qian and

Goldstein, 2004). Finally, the discriminative algorithms such as

support vector machine (SVM) (Vapnik, 1998) used both positive

and negative examples and provided state-of-the-art performance

with appropriate kernel. Many SVM-based methods have been

proposed such as SVM-fisher (Jaakkola et al., 2000), SVM-k-

spectrum (Leslie et al., 2002), Mismatch-SVM (Leslie et al.,
2004), SVM-pairwise (Li and Noble, 2003), SVM-I-sites (Hou

et al., 2003), SVM-LA and SVM-SW (Saigo et al., 2004). A com-

parison of SVM-based methods has been performed by Saigo et al.
(2002).

The success of a SVM classification method depends on the

choice of the feature set to describe each protein. Most of these

research efforts focus on finding useful representations of protein

sequence data for SVM training by using either explicit feature

vector representations or kernel functions. The features are usually

very large and noise data may be introduced. In contrast, this

research focuses on the feature extraction for SVM protein classi-

fication. Especially, a latent semantic analysis (LSA) model from

natural language processing (Bellegarda, 2000) has been introduced

to condense the original protein vectors. The length of the resulting

vector is much shorter than that of the original vector leading to

noise-removal and efficient description of the protein sequence.

As a proven method in the case of natural language processing,

LSA has been used to generate summaries, compare documents and�To whom correspondence should be addressed.
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retrieve further information (Bellegarda, 2000). Recently, LSA was

also introduced in computational biology and used to predict the

secondary structure of protein (Ganapathiraju et al., 2004). Further-
more, the similarity between biological sequence and natural lan-

guage has recently attracted much attention. Many methods of

natural language processing have been applied to biological

sequences. The N-grams of whole genome protein sequences have

been analyzed and some statistical features have been extracted

(Ganpathiraju et al., 2002). The probabilistic models from speech

recognition have been employed to enhance the protein domain

discovery (Coin et al., 2003). Protein classification based on text

document classification techniques has provided state-of-the-art

performance on GPCR classification (Cheng et al., 2005). The
protein sequence language has been discussed extensively by Gana-

pathiraju et al. (2005).
In this paper, the technologies of text categorization from natural

language processing have been used in protein classification. A

method by combining LSA with SVM has been presented for pro-

tein remote homology detection. Various ‘words’ of ‘protein

sequence language’ have been investigated, including N-grams

(Leslie et al., 2002), patterns (Dong et al., 2005) and motifs

(Ben-Hur and Brutlag, 2003). Experimental results showed that

the use of LSA technology significantly improves the performance

of protein remote homology detection.

SYSTEMS AND METHODS

Method overview

Protein classification is the task to separate the protein sequences into struc-

ture- or function-related classes, whereas text categorization is the problem

of assigning free text documents to predefined categories. In order to apply

text categorization techniques to protein sequences, first a suitable analogy

for words has to be identified. Here, three basic building blocks including

N-grams (Leslie et al., 2002), patterns (Dong et al., 2005) and motifs

(Ben-Hur and Brutlag, 2003) have been introduced as the ‘words’ of pro-

teins. The N-grams are the set of all possible subsequences of amino acids of

a fixed length N. In this study, the value of N is taken as 3, so the total words

of protein sequences are 8000 (20̂ 3). The patterns (Pisanti et al., 2002)

denote strings on the alphabet SU{‘.’}, where S is the set of the 20 amino

acids and {‘.’} can be any of the amino acids. The TEIRESIAS (Rigoutsos

and Floratos, 1998) algorithm is used to extract patterns in protein sequences

with parameters L ¼ 3, W ¼ 6, K ¼ 10 and totally 71 009 patterns are

extracted. Since many machine learning methods cannot perform well in the

high-dimensional feature space, it is highly desirable to reduce the native

space by removing non-informative or redundant patterns. After an effective

feature selection (x2 selection), 8000 patterns are selected as the character-

istic words. Motifs denote the limited, highly conserved regions of proteins.

The MEME/MAST system version 3.0 (Bailey and Elkan, 1994) is used to

discover motifs and search databases. Since motifs only exist in related

protein sequences, the training sequences of the same superfamily are

used to generate motifs. Totally, there are 3231 motifs extracted. For a

detailed description of these basic building blocks, please refer to the sup-

plement notes.

In order to apply LSA to protein remote homology detection, each protein

sequence that belongs to a particular class is treated as a ‘document’ that is

composed of bags-of-X, where X can be any basic building blocks of protein

sequences. The word-document matrix needs to be constructed by collecting

the weight of each word in the documents. Figure 1 presents an example of

such matrices. Singular value decomposition (SVD) is performed on the

word-document matrix to remove the noise from the data and to decrease the

dimensions of the protein vectors. The latent semantic representation vectors

are evaluated by support vector machine to train classifiers which are then

used to classify the test protein sequences.

In this study, the Gist SVM package implemented by Jaakkola et al.

(2000) is applied for protein remote homology detection. The parameters

of SVM are used by default of the Gist package except that the kernel

function i.e. the radius basis function (RBF) kernel. Figure 2 illustrates

the implementation of the method.

Latent semantic analysis

LSA is a theory and method for extracting and representing the contextual-

usage meaning of words by statistical computations applied to a large corpus

of text (Landauer et al., 1998). Here, we briefly describe the basic process

of LSA.

The starting point of LSA is the construction of a word-document matrix

W of co-occurrences between words and documents. The elements ofW can

be taken as the number of times each word appears in each document, thus

the dimension ofW isM · N, whereM is the total number of words and N is

the number of given documents. To compensate for the differences in docu-

ment lengths and overall counts of different words in the document collec-

tion, each word count can be normalized (Landauer et al., 1998).
In the word-document matrixW, each document is expressed as a column

vector. However, this representation does not recognize synonymous or

related words and the dimensions are too large. In the specific application,

singular value decomposition is performed on the word-document matrix.

Let K be the total ranks of W, W can be decomposed into three matrices:

W ¼ USVT ð1Þ

where U is left singular matrix with dimensions (M · K), V is right singular

matrix with dimensions (N · K) and S is (K · K) diagonal matrix of singular

values s1 � s2 � � � � sK > 0. One can reduce the dimensions of the solution

simply by deleting the smaller singular values in the diagonal matrix.

The corresponding columns of matrix U (rows of matrix V) are also ignored.

In practice only the top R (R � Min (M, N)) dimensions for which the

elements in S are greater than a threshold are considered for further

processing. Thus, the dimensions of matrices U, S and V are reduced to

M · R, R · R and N · R, leading to data compression and noise removal.

Values of R in the range [200, 300] are typically used for information

retrieval. In the present context, the best results are achieved when R
takes the value of �300.

By SVD, the column vectors of the word-document matrix W are pro-

jected onto the orthonormal basis formed by the row column vectors of the

Sample sequences:
s1: SVYDAAAQLT
s2: LSAAQKDNVK
s3: GLSAAQRQVI
s4: VLSEGEWQLV
s5: SLSAAEADLA

Sample words:
w1: LSA
w2: SAA
w3: AAQ
w4: EGE
w5: QLV

 0    1     1     0     1
 0    1     1     0     1
 1    1     1     0     0
 0    0     0     1     0
 0    0     0     1     0

s1   s2   s3   s4   s5

w1
w2
w3
w4
w5

Fig. 1. Sample construction of the word-document matrix with N-grams as

the words. The cell entries are the times of occurrence of a word (rows) in a

document (columns).
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left singular matrix U. The coordinates of the vectors are given by the

columns of SVT. This in turn means that the column vectors SvTj or, equi-

valently the row vector vjS, characterizes the position of document dj in the R

dimensions space. Each of the vector vjS is referred to a document vector,

uniquely associated with the document in the training set.

For a new document that is not in the training set, it is required to add the

unseen document to the original training set and the latent semantic analysis

model be recomputed. However, SVD is a computationally expensive pro-

cess, performing SVD every time for a new test document is not suitable.

From the mathematical properties of the matricesU, S and V, the new vector t
can be approximated as

t ¼ dU‚ ð2Þ

where d is the raw vector of the new document, which is similar to the

columns of the matrix W.

Data set and performance metrics

The standard evaluation data are the same as the one used by Li et al. (2003),

which is taken from the Structural Classification of Proteins (SCOP) data-

base (Andreeva et al., 2004) version 1.53. Sequences are selected from the

ASTRAL database (Chandonia et al., 2004). The dataset contains 54 families

and 4352 distinct sequences. Remote homology is simulated by holding out

all members of a target 1.53 family from a given superfamily. Positive

training examples are chosen from the remaining families in the same super-

family and negative test and training examples are chosen from outside the

fold of the target family. The held-out family members serve as positive test

examples. This process is iterated until each family has been tested. Details

of the datasets are available at http://www1.cs.columbia.edu/compbio/svm-

pairwise/

Two methods are used to evaluate the experimental results: the receiver

operating characteristic (ROC) scores (Gribskov and Robinson, 1996) and

the median rate of false positives (M-RFP) scores (Jaakkola et al., 2000).

An ROC score is the normalized area under a curve that is plotted with true

positives as a function of false positives for varying classification thresholds.

A score of 1 indicates perfect separation of positive samples from negative

samples, whereas a score of 0 denotes that none of the sequences selected by

the algorithm is positive. The median RFP score is the fraction of negative

test sequences that score as high or better than the median score of the

positive sequences. Obviously, the smaller the M-RFP is, the better the

results are.

Setup of competing method

Through the experiments reported here, the performances of the following

methods are compared: PSI-BLAST, SVM-pairwise, SVM-LA, three SVM-

based methods (including SVM-Ngram, SVM-Pattern and SVM-Motif) and

three SVM-based methods after latent semantic analysis (including SVM-

Ngram-LSA, SVM-Pattern-LSA, SVM-Motif-LSA). The setup procedures

of these methods are briefly described as follows.

The PSI-BLAST is probably the most widely applied protein homology

detection algorithm that only requires a single sequence as input. But for

better performance, multiple sequences are input to PSI-BLAST. First, a

random positive training sequence is selected as the initial query. The com-

plete positive training set is then aligned by the CLUSTALW method

(Thompson et al., 1994). Using the query sequence and the alignment as

inputs, PSI-BLAST is run with the test set as a database. The resulting E-

values are used to rank the test set.

For the SVM-based method, the key step is to express a protein sequence

as a vector or the calculation of kernels. In the SVM-pairwise method (Li and

Noble, 2003), the feature vector is a list of pairwise sequence similarity

scores, computed with respect to all of the sequences in the training set. In

the SVM-LA method (Saigo et al., 2004), the kernel is calculated by sum-

ming up scores obtained from the local alignments with gaps of the

sequences. Such kernel may not be a positive definite kernel and the authors

provided two solutions for this problem. Due to its performance and sim-

plicity, we have implemented one of the methods, namely, the LA-ekm

kernel. The parameters of LA-ekm kernel take the optimal values provided

by the authors (b ¼ 0.5, d ¼ �11, e ¼ �1). For the SVM method based on

three basic words, the length of the feature vector is equal to the number of

each type of words. A protein sequence is mapped to a high-dimensional

vector by the frequency of occurrence of each word. The protein vectors are

then input into SVM to train the classifiers and classify the test protein

sequences. Such representation is also used in related work (Ben-Hur and

Brutlag, 2003; Dong et al., 2005; Leslie et al., 2002). For the LSA-based

method, the word-document matrix is built by collecting the weight of each

word in the documents. LSA is then performed on this matrix to produce the

latent semantic representative vectors of protein sequences. The complete

pipeline is shown in Figure 2.

RESULTS AND DISCUSSION

Table 1 summarizes the performance of the various methods in

terms of average ROC andM-RFP scores over all 54 families tested.

The distributions of ROC and M-RFP scores are plotted in Figure 3.

In each graph, a higher curve corresponds to more accurate homo-

logy detection performance. As seen in the figure, the PSI-BLAST

Protein words

Word-document
matrix 

Training
sequences Testing

sequences

The representation vectors

Construction of
support vector

machine classifiers 

...

Homologous

Classifer 1

Classifer n

Classifer 2

Homologous Homologous

NoNo Yes

Testing
phrase

Training
phrase

Singular value
matrix 

Raw vectors

LSA

SVM

Collecting
weight

SVD

Collecting
weight 

Fig. 2. Overview of LSA-based SVM for protein classification. The word-

documentmatrix is constructed by the context of protein sequences. The latent

semantic analysis is then performed on the matrix to produce the latent

semantic representation vectors of protein sequences. The support vector

machine is used to evaluate the protein vectors. Such systems can use any

building blocks of proteins as the protein words.
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method achieves the lowest performance. The accuracies of the

SVM methods based on the basic words are lower than that of

SVM-pairwise except for the pattern-based SVM method. When

the LSA model is used, all the SVM methods based on the three

basic words get higher accuracies. The performance of LAS model

is comparable with that of the SVM-LA method and better than that

of the SVM-pairwise method. The SVM-pairwise is one of the state-

of-the-art methods and outperforms many other methods such as

FPS (Bailey and Grundy, 1999), SAM (Krogh et al., 1994) and

SVM-Fisher (Jaakkola et al., 2000), so the LSAmodel is an efficient

method for remote homology detection.

When the three basic words are considered, one can find that the

method based on patterns performs best whether the LSA model is

used or not. The reason may be that there are wildcard in patterns.

So patterns can match the protein sequences easily and describe the

components of protein sequences effectively.

To present a better illustration of the difference between the

methods with LSA and those without LSA, the family-by-family

comparison of the ROC scores between the two methods has been

plotted in Figure 4. Each point on the graph corresponds to one of

the 54 SCOP families. When the families are in the left-upper area,

it means that the method labeled by y-axis outperforms the method

labeled by x-axis on this family. Obviously, all the methods with

LSA can significantly outperform the methods without LSA.

The homology between the training samples and the test samples

is an important factor that influences the performance of various

methods. The contribution of homology to various methods is

evaluated at the family, the superfamily and the fold level respect-

ively. At the family level, the members of the target family are

divided into two parts, one for positive training, and the other for

positive test. At the superfamily level, the positive training samples

are taken from the same superfamily of the target family, but the

members from the family itself are excluded. At the fold level, the

positive training samples are taken from the same fold of the target

family, but the members from the superfamily of the target family

are excluded. The negative training and test samples are same as

those of previous experiments. Since many of the families contain

unsuitable positive samples, only one of the families (SCOP ID:

2.1.1.4) is selected as the target family. The number of samples is

listed in Table 2 and the results of various methods are listed in

Table 3. At the family level, all the SVM-based methods perform

equally well to PSI-BLAST. While at the superfamily level and the

fold level, the improvement of SVM-based methods in comparison

with PSI-BLAST is significant. So the discriminative methods are

more powerful than PSI-BLAST for the detection of remote

homology.

Computational efficiency is an important factor for any homology

detection algorithm. In this regard, the LSA approaches are better

than SVM-pairwise and SVM-LA but a little worse than the meth-

ods without LSA and PSI-BLAST. Any SVM-based method

includes a vectorization step and an optimization step. The vector-

ization step of SVM-pairwise takes a running time of O (n2l2),
where n is the number of training examples and l is the length

of the longest training sequence. The time complexity of calculation

of LA-ekm kernel matrix is same as that of SVM- pairwise (Saigo

et al., 2004). The time complexity of the vectorization step of the

method without LSA is O (nml), where m is the total number of

words. The main bottleneck of the LSA method is the additional

SVD process, which roughly takes O (nmt), where t is the minimum

of n and m. The optimization step of SVM-based method takes

O (n2p) time, where p is the length of the latent semantic repres-

entation vector. In SVM-pairwise, p is equal to n, yielding a total

time of O (n3). In the method without LSA, p is equal to m. While in

the LSA method, p is equal to R. Since R�Min(n, m), the SVM
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Fig. 3. Relative performance of homology detection methods. The graph plots the total number of families for which the method exceeds a given performance.

Each series corresponds to one of the homologydetectionmethods described in the text. The left part (a) uses theROCscores and the right part (b) uses theM-RFP

scores.

Table 1. Average ROC and M-RFP scores over 54 families for different

methods

Methods Mean ROC Mean M-RFP

PSI-BLAST 0.675393 0.325322

SVM-pairwise 0.825928 0.1173329

SVM-LA 0.887124 0.0653927

SVM-Ngram 0.791415 0.144053

SVM-Pattern 0.835387 0.134893

SVM-motif 0.81356 0.124572

SVM-Ngram-LSA 0.859484 0.101688

SVM-Pattern-LSA 0.878926 0.070287

SVM-Motif-LSA 0.859193 0.0995269
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optimization step of LSA method is much faster than those of the

other two methods. The time complexity of running PSI-BLAST is

O (nN), where N is the size of the database. In the current situation,

N is approximately equal to nl.
The analysis presented here is based on sequences alone without

using any evolutionary or structural information. Three basic build-

ing blocks of protein sequences are investigated: the N-grams, the

patterns and the motifs. All of them show improved performance

when the LSA model is used. Obviously, the structural or evolu-

tionary information can further improve the performance of remote

homology detection. Han et al. (2005) used profile–profile align-

ment and SVM for fold recognition. Hou et al. (2004) used local

sequence–structure correlations for remote homology detection.

Multiple profiles have been used for effective detection of remote

homologues (Anand et al., 2005). Such evolutionary or structural

information can also be used in LSAmodel, so long as the structural

or functional building blocks of proteins are extracted. However, the

identification of functional equivalents of ‘words’ in protein

sequences is the major hurdle in the use of natural language tech-

niques for a variety of computational biology problems

(Ganapathiraju et al., 2005). In essence, the method presented

here provides a fertile ground for further experimentation with

dictionaries that can be constructed using different properties of

the amino acids and proteins.

CONCLUSION

In this paper, the LSA model from natural language processing is

successfully used in protein remote homology detection and

improved performances have been acquired in comparison with

the basic formalisms. Each document is represented as a linear

combination of hidden abstract concepts, which arise automatically

from the SVD mechanism. LSA defines a transformation between

high-dimensional discrete entities (the vocabulary) and a low-

dimensional continuous vector space S, the R-dimensional space

spanned by the Us, leading to noise removal and efficient repres-

entation of the protein sequence. As a result, the LSA model

achieves better performance than the methods without LSA.

Successful application of LSA to protein remote homology

detection is of great significance. There are many problems in

the biology domain that can be formulated as a classification

task. Most of them, like fold prediction, tertiary structure and

functional properties of proteins, are considered to be challenging

problems. Thus, these important classification tasks are potential

areas for applications of human language technologies in modern

proteomics.
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Table 2. The numbers of samples at different homology level

Positive train Positive test Negative train Negative test

Family 20 13 3033 1137

Superfamily 88 33 3033 1137

Fold 61 33 3033 1137

Thenumbers of samples of the target family (2.1.1.4) at different homology level is listed.

The selection of the samples for training and test is described in the main text.

Table 3. Comparative results of various methods at the family, the

superfamily and the fold level

Family Superfamily Fold

ROC M-RFP ROC M-RFP ROC M-RFP

PSI-BLAST 0.9874 0.00082 0.8424 0.0219 0.6568 0.6525

SVM-LA 0.9986 0.00084 0.9857 0.0042 0.8942 0.0937

SVM-Ngram 0.8829 0.03078 0.8712 0.0386 0.7875 0.1143

SVM-Pattern 0.9983 0.00096 0.9759 0.0007 0.8639 0.0836

SVM-motif 0.9998 0.00073 0.9885 0.0008 0.8503 0.0993

SVM-Ngram-LSA 0.8929 0.05628 0.8992 0.0659 0.8455 0.1116

SVM-Pattern-LSA 0.9964 0.00098 0.9925 0.0017 0.9127 0.0674

SVM-Motif-LSA 0.9995 0.00087 0.9867 0.0035 0.9084 0.0721

The family (2.1.1.4) is the target family.
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