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ABSTRACT

Motivation: Thousands of proteins are known to bind to DNA; for

most of them the mechanism of action and the residues that bind to

DNA, i.e. the binding sites, are yet unknown. Experimental identifica-

tion of binding sites requires expensive and laborious methods such

as mutagenesis and binding essays. Hence, such studies are not

applicable on a large scale. If the 3D structure of a protein is known, it

is often possible to predict DNA-binding sites in silico. However, for

most proteins, such knowledge is not available.

Results: It has been shown that DNA-binding residues have distinct

biophysical characteristics. Here we demonstrate that these char-

acteristics are so distinct that they enable accurate prediction of the

residues that bind DNA directly from amino acid sequence, without

requiring any additional experimental or structural information. In a

cross-validation based on the largest non-redundant dataset of high-

resolution protein–DNA complexes available today, we found that

89% of our predictions are confirmed by experimental data. Thus, it is

now possible to identify DNA-binding sites on a proteomic scale even

in the absence of any experimental data or 3D-structural information.

Availability: http://cubic.bioc.columbia.edu/services/disis

Contact: yo135@columbia.edu

1 INTRODUCTION

1.1 Protein–DNA interfaces are important but not easy

to identify experimentally

Interactions between DNA and proteins are at the heart

of many biological processes including transcription and

transcriptional regulation, recombination, replication, DNA

repair, viral infection, DNA packing and DNA modifications.

However, the biophysical underpinnings of these interactions

are not entirely clear. Studies of the molecular mechan-

isms of protein–DNA interaction often focus on protein–

DNA interfaces, i.e. the surface residues that bind DNA.

Such residues can be identified from 3D structures

of protein–DNA complexes (Siggers and Honig, 2007).

Unfortunately, 3D structures of such complexes are available

for less than 5% of all known DNA-binding proteins. In

the absence of a 3D structure of the complex, various

biochemical approaches are employed to identify binding

residues. There is no standard high-throughput protocol

for the identification of DNA-binding sites. Methods

such as protein-binding microarrays (Bulyk, 2006) identify

DNA-binding proteins on a large scale. However, they do not

reveal which residues actually bind the DNA in a straightfor-

ward manner.

1.2 Interface residues can be predicted from 3D

structures

Studies of protein–DNA interfaces suggest that the amino

acids at the interface possess characteristics that distinguish

them from the rest of the protein (Lejeune et al., 2005;

Mandel-Gutfreund and Margalit, 1998; Mandel-Gutfreund

et al., 1995; Nadassy et al., 1999; Pabo and Sauer, 1984).

Jones et al., 2003 did not only point out electrostatic differences

between DNA-binding patches and the rest of the protein

surface, but have also demonstrated that these differences

may suffice for the prediction of interaction sites from the

coordinates of the 3D structure of a protein (Shanahan et al.,

2004). Other studies have demonstrated that different combina-

tions of electrostatic, biophysical and structural features can

predict DNA-binding sites, given the structures of the unbound

protein (Ahmad et al., 2004; Ahmad and Sarai, 2004; Keil et al.,

2004; Kuznetsov et al., 2006; Tsuchiya et al., 2004; Tsuchiya

et al., 2005); such predictions exploit details about protein

surfaces that are not available from the sequence alone, but do

not require a structure of the protein-DNA complex. These

ground-breaking studies have opened the door for the detailed

experimental study of DNA-binding proteins for which

unbound 3D structures are available but structures of the

protein–DNA complexes are not. Since there are 3D structures

for only a small fraction of the known DNA-binding proteins

(bound or unbound), it was suggested that computational

models of 3D structures could be used to predict binding

residues; in fact, such models can succeed very well (Szilagyi

and Skolnick, 2006). Yet, for over 40% of known DNA-

binding proteins, there are no known homolog that allow for

reliable models. Methods that predict binding sites for unbound

structures have another potential shortcoming: they are

typically trained (and tested) on interfaces obtained from

experimentally determined protein–DNA complexes. Then,

unbound structures are searched for surface patches that are

similar to those observed in the protein–DNA complexes.

However, in many cases, proteins undergo substantial changes

upon binding DNA. Hence, the unbound and the bound

structures often differ. Thus, structure-based prediction

methods that are trained on known complexes might fail to

identify the binding sites in many unbound structures.*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i347/227121 by guest on 24 April 2024

http://cubic.bioc.columbia.edu/services/disis
http://creativecommons.org/licenses/


1.3 First successes in predicting protein–DNA interfaces

from sequence alone

Similar problems and challenges exacerbate the attempt to

predict other types of interfaces from structure (Jones and

Thornton, 2004). For example, pioneering methods for

predicting protein–protein interaction sites relied on structural

information (Chung et al., 2006; Fariselli et al., 2002;

Fernandez-Recio et al., 2004; Jones and Thornton, 1997b;

Neuvirth et al., 2004). However, several methods have

demonstrated that protein–protein interaction sites could be

predicted directly from sequence (Koike and Takagi, 2004;

Ofran and Rost, 2006; Res et al., 2005; Wang et al., 2005).

This is because interface residues have very unique traits

(Ofran and Rost, 2003a, b) and are often organized in

groups along the sequence (Ofran and Rost, 2003a).

The predictability of interface residues is particularly

surprising given the diversity of protein–protein interfaces in

structure, size, electrostatic and other physicochemical

characteristics (Jones and Thornton, 1997; Lo Conte et al.,

1999; Ofran and Rost, 2003; Sheinerman et al., 2000).

Protein–DNA interfaces, on the other hand, may be less

diverse in their features since the different DNA segments

are more similar to each other than different surface

patches on proteins. Thus, it may be possible to identify

DNA-binding residues from sequence alone with even greater

accuracy than predictions of protein–protein interfaces.

Ahmad et al., 2004 have used (NN) to predict DNA-binding

residues based on their sequence environment and their

solvent accessibility, derived from experimentally determined

3D structures. Although the method still relies on experi-

mental 3D structures, its success has demonstrated that

some of the characteristics of DNA-binding residues can be

identified from sequence alone. In a subsequent study the

same group has shown that position specific scoring matrices

(PSSMs) alone can predict binding residues with some

accuracy. Similarly, Yan et al. (2006) have trained naı̈ve

Bayes classifiers using sequence neighborhood and evolution-

ary conservation; they report their method to perform

substantially better than simple PSSMs. Despite this success,

the performance is still substantially worse than that of

methods that benefit from 3D information.
Here, we introduce a novel method that uses only protein

sequence information to predict whether or not and with

which residues a protein binds DNA. The method relies on

sequence environment, evolutionary profiles and predicted

structural features (secondary structure, solvent accessibility,

globularity). These features were combined through machine

learning algorithms, namely through NN and SVM.

The algorithms were trained to distinguish between residues

that are in contact with DNA and those that are not. Figure 1

sketches the different analyses that were integrated to

yield the final prediction. The method that we present here

is based on a similar approach to the approach we

implemented in our method ISIS (Interaction Sites

Identified from Sequence) for predicting protein–protein

binding sites (Ofran and Rost, 2006). Thus, we called this

new method DISIS—DNA interaction sites identified from

sequence.

2 METHODS

2.1 Dataset: definition of protein–DNA interfaces

For training and testing we used a non-redundant subset (below) of all

protein–DNA complexes in the PDB (Berman et al., 2000). For each

complex, we defined the protein–DNA interface as all the residues on

the protein that were in contact with the DNA. Amino and nucleic acids

were considered in contact if any of their atoms were closer than 6 Å.

Previous studies used distances from 4 Å to 12 Å between C-alpha or

between C-beta atoms. However, the variations in the size of side chains

might result in an under-representation of large residues in the data, as

their side chain themselves can extend over several Ångstrøms. Hence,

we defined contacts based on the distance between the closest pair of

atoms. While this definition is not biased by amino acid size, it is

slightly more permissive than some other definitions, i.e. it tends to

define more residues as DNA binding. Thus, rather then biasing the

data towards some residues, our permissive definition introduced some

white noise (Ofran and Rost, 2003).

2.2 Non-redundant subsets

In order to reduce bias from very similar sequences in the database, we

built sequence-unique subsets for all types of proteins under considera-

tion. Using the HSSP-value as a measure of sequence similarity (Mika

and Rost, 2003; Rost, 1999; Sander and Schneider, 1991), we built three

sets of sequences such that no two proteins from different sets had

HSSP-values40. For alignments over 250 residues, this translated to

less than 20% pair-wise sequence identity (PIDE), i.e. pairs with420%

PIDE were not included. Altogether, we had 127 064 residues in our

dataset, 23 862 were in contact with DNA and 103 202 were not (the list

of PDB files we used is available form our website). We used these three

sets for training (optimizing connections in NN/SVMs), cross-training

(optimizing additional parameters such as when to stop training) and

testing. We then rotated through the sets such that ultimately each

Fig. 1. Schematic description of DNA interaction sites identified from

sequence (DISIS) predictions. Given a query protein sequence, DISIS

performs the following procedures. First, a standard PSI-BLAST is

used to find all proteins related to the query. Then, MaxHom is used to

align all the sequences that were found and the alignments is sent to the

PROF server, which uses neural networks (NN) to predict the

secondary structure and the solvent accessibility of each residue. In

addition, for each residue the evolutionary profile and evolutionary

conservation are calculated (using MaxHom). Finally, all these features

are fed to support vector machines (SVM) to determine for each residue

whether it binds DNA or not.
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protein had been used for testing exactly once. We only reported

performance estimates for the test set.

2.3 Input features

We used the principle of sliding windows to capture the sequence

environment, i.e. when predicting whether or not residue k binds

DNA, we included the information of w consecutive residues:

k� (w� 1)/2, . . ., k, . . ., kþ (w� 1)/2. The features that were used for

training and testing included the evolutionary profile of each residue

and its neighbors (four on either side, i.e. w¼ 9), the level of

conservation of the residue and its neighbors (one on each side, i.e.

w¼ 3 for this feature), the predicted secondary structure of the residue

and the predicted solvent accessibility of the residue and its neighbors

(one on each side). We tried various numbers of neighboring residues

for each of these parameters and found the system to be rather robust

under such parameter changes. The combination mentioned earlier

yielded the best performance on a cross-training set (see in the following

text; note that no parameter was optimized to yield best performance on

the final test set).

2.4 Evolutionary profiles

To obtain evolutionary profiles, we first aligned each protein in our

dataset against a filtered version of all currently known sequences using

PSI-BLAST (Altschul et al., 1997) with three iterations (Przybylski and

Rost, 2002) (cut-off at 10�3). We then realigned the final set of proteins

suggested by PSI-BLAST with the dynamic programming algorithm

MaxHom (Sander and Schneider, 1991; Schneider and Sander, 1996);

MaxHom profiles were used as input both into the PROFphd series of

methods predicting secondary structure and solvent accessibility (Rost

et al., 2004) and to the method described here that predicted residues in

protein–DNA interfaces.

2.5 Machine learning algorithms

We used standard feed-forward NN as described in detail elsewhere

(Rost and Sander, 1993; Rost, 1996). We implemented SVM (Vapnik,

1995) by using the SVM-light package (Joachims, 1999) with the radial

kernel function.

2.6 Filter of SVM output and default prediction

threshold

The SVM assigns a score to each residue central in the sliding input

window. Our default threshold for translating an SVM score into a

prediction of DNA binding was defined as follows: if this score was

40.35, we predicted the residue to be DNA binding (at this level, 83%

of the predictions were confirmed experimentally); if the raw score

was between 0.35 and �0.3, we marked the residue as putative

DNA binding. For each putative DNA-binding residue, we then

scanned its eight sequence neighbors (four on each side), and counted

the number of residues that were predicted to be putative or positive

DNA binders. If there were five or more such residues we annotated the

putative residue as DNA binding; otherwise, we marked it as non-DNA

binding. This in-between mapping of predictions effectively corre-

sponded to filtering the output. All other residues were predicted as

non-DNA binding. Again, these parameter choices were found to be

about right with a broad stability when analyzing the cross-training

performance on a single data set split, i.e. these parameters were set

before we monitored the performance on the final test set.

2.7 Alternative decision thresholds

Changing the threshold used to translate from the SVM output into

DNA binding/non-binding enables dialing through different points in a

ROC-like curve (Fig. 2). Effectively this dial lets users of the method

focus on extreme ends of the tradeoff between accuracy and coverage:

they may focus on few very reliable predictions, or on many less reliable

ones. The same threshold can also be used to define a reliability index

that predicts the accuracy of a prediction.

2.8 Performance measures

As a single overall measure for performance, we used the two-state per

residue accuracy defined as follows:

Q2 ¼ 100�
TNþ TP

TNþ TPþ FNþ FP
ð1Þ

where TP are the true positives (residues correctly predicted to bind

DNA), TN the true negatives (residues correctly predicted not to

bind DNA), FN the false negatives (predicted not to bind, observed to

bind) and FP the false positives (predicted to bind but not observed).

Since our dataset contained more non-binding residues (81%) than

binding residues, methods that over-predict non-binding residues would

reach high values of Q2. In order to capture such over-predictions, we

also measured the positive accuracy (ACC; often referred to as

specificity or precision) and the positive coverage (COV; often referred

to as sensitivity) for the inference (‘prediction’) of interacting residues

by the standard formulae:

ACC ¼
TP

TPþ FP
; COV ¼

TP

TPþ FN
ð2Þ

3 RESULTS

3.1 Assessment on comprehensive non-redundant

high-resolution data

The search of protein–DNA complexes in the PDB yielded,
after reducing redundancy, 274 complexes with 693 chains and

127 064 residues. 23 862 of these residues (19%) were involved

in contacts (closest atom�6 Å) between amino and nucleic
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Fig. 2. Accuracy versus coverage: DISIS (green) and a random

assignment (red) using PDB interfaces as gold standard—the data

was compiled for a set of proteins that was not used for developing the

method. The stronger the confidence in our prediction, the higher the

accuracy and the lower the coverage, i.e. when we select the strongest

predictions, most of these are right. At accuracy of 0.7, DISIS correctly

predicted at least one residue in all the proteins in our data set.
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acid(s), i.e. bound DNA. We used this set in a 3-fold cross-

validation (one-third for training, one-third for cross-training,
one-third for testing; full rotation to ascertain that each residue
was used for testing exactly once). All results reported the

performance on all 274 protein chains in the test set. The SVMs
were trained to classify individual residues into two classes:

either DNA binding or non-DNA binding.

3.2 Raw SVM: high accuracy at low coverage

Our first observation was that the raw SVM already performed
significantly better than random. In particular, the raw output

yielded very high positive accuracy (Equation 2 correctly
predicted DNA-binding residues/all predicted to bind) but
fairly low positive coverage (Equation 2 correctly predicted

DNA-binding residues/observed DNA-binding residues). For
each residue, the SVM returns a number between �3 and 3. It

was possible to find a cutoff score such that 95% of the residues
with this score or higher were indeed observed in the complex to
be part of the interface. However, for this level of accuracy, the

coverage was below 5%, i.e. only 5% of the observed residues
were successfully identified at this level. We also observed that

accuracy dropped steeply below this cutoff score. For example,
raising coverage by only 3% points to 8%, dropped accuracy
by 30 points to 65%. Although the accuracy of the raw output

kept dropping when increasing coverage further, it remained
significantly higher than the level expected at random (observed

DNA-binding residues/total number of residue¼ 0.18). These
results indicated that the signal identified by the SVM was very
strong for some residues. However, for most of the DNA-

binding residues in the dataset the signal was less distinct.
Nevertheless, the observation that the accuracy remained

considerably above random at all levels of coverage suggested
that improving performance through postprocessing of the raw
SVM output may be possible.

3.3 Positive and two-state accuracy

Positive accuracy and coverage (Fig. 2) only reflect the

performance on DNA-binding residues. Other methods

typically also report performance for non-binding residues.

Usually, this is accomplished by simply quoting the two-state

per residue accuracy (which is biased by the correct prediction

of non-binding, Methods, Equation 1). The two-state accuracy
is the total number of correctly predicted residues, both positive

and negative, over the total number of residues. For our

method it is 89% (Table 1).

3.4 Example for DISIS performance

We illustrated the performance of DISIS for a particular

example (Fig. 3), namely that for the ternary complex of the

c-Myb protein, a regulator of proliferation and differentiation

of hematopoietic cells, and the C-terminal portion C/EBPb, a
CAAT-enhancer binding protein, both bound to DNA. All the

predicted binding residues (purple) fell within the patches that

bind DNA, although the predictions were not consecutive in
sequence.

4 DISCUSSION

4.1 Combining SVM and NN

DISIS is based on a combination of physicochemical features,

evolutionary information and predicted structural features.

Correlations between such features and binding are typically so

Table 1. Accuracy of predictions using different features

Method Q2

Sequence only 59

Evolutionary data 67

Evolutionþ sequence 78

ISIS (protein–protein interaction) 68

DISIS 89

Using the sequence environment of each residue alone, it is possible to predict

most residues correctly. Using evolutionary information alone (e.g. PSSM), the

performance is even better. The combination of the two, further improves the

performance. DISIS uses these two features but also adds predicted secondary

structure and predicted solvent accessibility. It is interesting to compare DISIS to

ISIS, which uses the same features to predict protein–protein interaction sites.

The accuracy of ISIS is much lower, suggesting that the similarities between

different protein–DNA interfaces are greater than the similarities between

protein–protein interfaces.

Fig. 3. Prediction of binding residues in c-Myb and C/EBPb, bound to

DNA—the ternary complex of the c-Myb protein, a regulator of

proliferation and differentiation of hematopoietic cells, and the

C-terminal portion C/EBPb, a CAAT-enhancer binding protein,

both bound to DNA, is used to demonstrate the predictions of

DISIS. The predictions were made based only on the sequence of

the two proteins and were later mapped to the structure. Note that the

residues predicted to bind DNA (purple) create a contiguous

patch on the surface of the protein (C). However, in the cartoon

representation (B), it is apparent that the predictions are not contiguous

in sequence.
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subtle that we cannot use simple linear statistics to predict
them. Therefore, we used a combination of artificial NN and
SVMs for this task. These algorithms implicitly, yet reliably,

identified common denominators between protein–DNA inter-
faces that have no sequence similarity. Thereby, we developed a
method that predicted residues in protein–DNA interfaces for

uncharacterized sequences.

4.2 Performance estimates provided lower bounds

The experimental data that we used was incomplete with

respect to the positives: the fact that a particular residue is not
observed to bind DNA in a particular complex does not prove

that it will not bind to DNA at all. Any 3D complex provides
only a snapshot of the interaction at a given moment.
Therefore, the treatment of FP is a crucial factor in the

assessment. Since it is common for DNA-binding proteins to
change their conformation during their interaction with DNA
(Richter and Eigen, 1974; von Hippel and Berg, 1989), the

missing data problem may not only affect surface but also
buried residues. Furthermore, a single protein can have several

alternative DNA-binding sites. Thus, when a method predicts
a certain residue as DNA binding, it may be correct although
the 3D complex does not support this prediction. Nevertheless,

we deemed all residues that were not observed in the PDB
complexes as negative examples (i.e. not DNA binding) and any

prediction that identified any of these residues as DNA binding
as incorrect (FP). This solution was conservative in the sense
that it clearly under-estimated the true performance, at least for

the major score that we reported, namely the accuracy in
predicting interaction residues. Note that the fact that a protein
may change its conformation upon binding to DNA did not at

all influence our prediction method, since we used no
information from the 3D complex other than the labels on

the residues (binding/non-binding) during training. All the
information that we used for testing would have been identical
between a bound and an unbound structure, as it was entirely

sequence-based.

4.3 DISIS succeeded in the absence of annotations as

well as for singletons

Several studies have suggested that evolutionary information

could help in predicting DNA-binding residues (Sarai and
Kono, 2005; Stawiski et al., 2003; Szilagyi and Skolnick, 2006;
Yan et al., 2006). However, 30–70% of known protein domains

have no annotated homologs (Fischer and Eisenberg, 1999).
The applicability of methods that exclusively use homology-
related information is therefore limited, particularly for

analyses on the scale of entire proteomes. Our approach relies
on a combination of features and is hence capable of providing

reliable predictions even in the absence of evolutionary
information. Furthermore, DISIS only used information
available for all unannotated sequences. About 10% of the

sequences in our test set had less than 10 family members, while
3% had no known family member in publicly available

databases. Conservation-based methods would not be able
to analyze these sequences. However, DISIS provides
predictions for these sequences with two state accuracy of

0.76—substantially higher than the expected at random.

The numbers for family sizes for complexes from the PDB
clearly over-estimated the situation for entire proteomes for
which we may observe 15–40% singletons (Liu and Rost, 2001;

Liu and Rost, 2002; Liu et al., 2004), i.e. the value of our
method is likely significantly higher than what the above
estimates suggest.

4.4 Comparison to other methods

Prediction methods can only be compared meaningfully using
the same datasets and the same standards of measuring

performance. Such comparisons are scientifically meaningful
only if the methods are similar in their goals and scope.
Hence, studies that rely on structure (or on modeled structure)

are not comparable to our method. Similarly, methods that
classify proteins as DNA binding but do not identify the

binding sites are also not comparable to our method. Two
studies have suggested that prediction of DNA-binding site
directly from sequence may be possible (Sarai and Kono,

2005; Yan et al., 2006). Their analysis is based on different
datasets; the comparison of published values for performance

and those that we estimated had, therefore, very limited
validity. To compare the performance of alternative
approaches to that of DISIS, we implemented methods that

are based on principles used in other studies and tested them
on our data set to estimate the importance of particular
features (Table 1). Methods that are based on sequence data

alone achieve levels of accuracy substantially higher than
random (Sarai and Kono, 2005) (Table 1). When other

features, such as conservation, are added the accuracy
improves substantially (Yan et al., 2006). DISIS, which also
incorporated predicted secondary structure and predicted

solvent accessibility reached levels of accuracy that were
substantially higher.

4.5 DNA binding marked by clearer signals than

protein–protein binding

ISIS, a method that we have developed to predict interaction
sites in transient protein–protein interactions (Ofran and Rost,
2006), which uses input features similar to DISIS, was much

less accurate than DISIS. While this gap could be attributed to
various factors (e.g. ISIS is based on a system of NN, while
DISIS is based on a combination of NN and an SVM), the

most probable explanation is that the sequence signal that
marks DNA-binding sites is much stronger than that of

protein–protein interaction sites. Put differently, these results
suggested that the similarity between different DNA-binding
sites is greater than the similarity between different protein-

binding sites.

5 CONCLUSIONS

We showed that DNA-binding sites in different proteins share

common denominators that could be characterized as a
combination of their physicochemical features (as manifested

by their sequence environment and by their evolutionary
profile), their local structure (secondary structure elements
and exposure to solvent) and their evolutionary conservation.

This fact enabled the accurate prediction of binding sites even
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in the absence of any experimental information (in particular,

without using 3D structures), in the absence of annotations and

even in the absence of evolutionary information. Comparing

the performance of our final method DISIS to the performance

of related methods that used less information, we concluded

that the underlying structure predictions were essential for the

success in predicting DNA binding. A major challenge for the

postgenomic era is the development of large-scale, automated

tools for the functional annotation of proteins (Roberts, 2004).

DISIS responds to this challenge by providing an in silico tool

that can reliably annotate binding sites in DNA-binding

proteins.
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