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ABSTRACT

Motivation: Diffusable and non-diffusable gene products play a

major role in body plan formation. A quantitative understanding of

the spatio-temporal patterns formed in body plan formation, by using

simulation models is an important addition to experimental observa-

tion. The inverse modelling approach consists of describing the body

plan formation by a rule-based model, and fitting the model

parameters to real observed data. In body plan formation, the data

are usually obtained from fluorescent immunohistochemistry or

in situ hybridizations. Inferring model parameters by comparing such

data to those from simulation is a major computational bottleneck.

An important aspect in this process is the choice of method used for

parameter estimation. When no information on parameters is

available, parameter estimation is mostly done by means of heuristic

algorithms.

Results: We show that parameter estimation for pattern formation

models can be efficiently performed using an evolution strategy (ES).

As a case study we use a quantitative spatio-temporal model

of the regulatory network for early development in Drosophila

melanogaster. In order to estimate the parameters, the simulated

results are compared to a time series of gene products involved in

the network obtained with immunohistochemistry. We demonstrate

that a ð�; �Þ-ES can be used to find good quality solutions in the

parameter estimation. We also show that an ES with multiple

populations is 5–140 times as fast as parallel simulated annealing for

this case study, and that combining ES with a local search results in

an efficient parameter estimation method.

Supplementary information and availability: Bioinformatics online;

software: http://www.science.uva.nl/research/scs/3D-RegNet/fly_ea

Contact: jaapk@science.uva.nl

1 INTRODUCTION

In many animals, morphogen gradients specify different

structures starting from a single cell at early embryo develop-

ment (Gilbert, 2006; Wolpert, 1969; Houchmandzadeh et al.,

2002). The morphogens provide spatial information by forming

concentration gradients that subdivide the developing embryo in

different regions. Distinct cell types and structures emerge as a

consequence of the different combinations of morphogen

gradients. This is a general mechanism by which cell type

diversity and structures can be generated in body plan

formation.Understanding the body plan formation also requires

understanding the underlying biochemical process. This is the

level at which genes influence the transcription of other genes.

Genetic regulatory networks (GRNs) can be described in terms

of a network of interactions between genes and proteins.
Several mathematical rule-based models (see de Jong, 2002

and references therein) have been proposed to describe GRNs.

In modelling pattern formation, spatially coupled ordinary

differential equations (ODEs) and partial differential equation

(PDEs) have been used to describe the temporal and spatial

behaviours of the genetic interaction in the system. The goal is

to understand the GRNs by quantitative simulation of the

model to reproduce a spatial temporal pattern obtained from

experimental data. Quantitative models (Reeves et al., 2006) are

in general used to test the GRNs underlying the mechanisms

behind the pattern formation and to explore some principles

such as evolvability and robustness. The model-building

process can be described in three main steps:

(1) Extraction of spatio-temporal gene expression data in a

quantitative way

(2) Modelling in terms of mathematical equations

(3) Parameter estimation: finding the optimal parameters that

provide the best fit with respect to the model solution.

When one provides a quantitative model to infer the

mechanism behind pattern formation ruled by a GRN, analysis

of the dynamics is necessary. Assuming that all parameters are

known from literature or experimental measurements (i.e. all

initial conditions, kinetic coefficients in the biochemical system,

diffusion coefficients, transcription-binding factors and the

spatial domain is specified), the inference problem consists in

solving the equations and is called the direct problem. Then, by

means of sensitivity analysis (Saltelli et al., 2004), one can

analyse the model robustness with respect to the parameters.

Unfortunately, in practice many parameters are unknown and

estimation of these parameters from experimental data is

crucial for quantitative modelling of GRNs. This is called the*To whom correspondence should be addressed.
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inverse problem. In such a case, only the governing equations
describing the system and possibly some of the parameters
therein are given.

Inverse problems are typically ill-posed, and when the data
concerned are spatial and temporal, the fitting procedure can be
computationally very expensive. The parameter search space is

usually unknown and grows exponentially with the number of
unknown parameters. Therefore, the choice of an appropriate
optimization technique is crucial. When prior knowledge about

the parameter values is available, it is possible to use local search
techniques (van Riel, 2006). In general, this is not the case
and the fitness landscape of a quantitative model can only

with difficulty be generated, or even worse, the search space is
unrestricted. In such cases a global search procedure is required.
This approach has been used in the parameter estimation

of models of biochemical pathways using kinetic equations
(Katare et al., 2004; Mendes and Kell, 1998). There are
relatively few studies in literature in which GRNs or metabolic

pathways are inferred from spatio-temporal data. Reinitz and
Sharp (1995) and Gursky et al. (2004) studied eve stripe
formation in early development of Drosophila melanogaster

embryos using a genetic circuit model. They were able to infer a
GRN of five genes from spatio-temporal data obtained from
immunofluorescently stained embryos. In Reinitz and Sharp

(1995), each parameter estimation took approximately 1 week
of CPU time on a Sparc 2 using simulated annealing. Using as
starting point the parameters obtained by Reinitz and

Sharp(1995) and Gursky et al. (2004) applied a steepest descent
algorithm to find the optimal parameters for the model. Jaeger
et al. (2004a, b) inferred a GRN model of six genes with 62

unknown parameters from quantitative spatio-temporal expres-
sion data (Poustelnikova et al., 2004) (Fig. 1) for the gap genes.
Although the model could be spatially reduced to one

dimension, the fitting procedure was extremely computationally
expensive. Using parallel simulated annealing (PLSA)
(Chu et al., 1999; Lam and Delosme, 1988a, b), it took between

8 and 160 h on ten 2.4GHz Pentium P4 Xeon processors
(Jaeger et al., 2004a, b).
Using a more complex approach, Perkins et al. (2006)

considerably reduced the computational time to 1 day on a
serial platform. Their strategy makes use of specific character-
istics of the experimental gap formation data, namely. that the

production of the various proteins takes place in specific parts
of the domain. This strategy has three different stages. In the
first stage, these domains are defined, matching the observed

data, and a linearized chemistry is used as a model that
effectively decouples the system in the chemistry dimension. In
the second stage, the boundaries of the domain are fitted, and

in the last stage, the fully coupled system is solved with a local
search strategy and with as initial parameter guesses the
parameter values estimated in the second stage. However, this

type of bottom-up approach is in many cases not feasible.
Therefore, a brute-force global approach is still the most
frequently used method in the parameter estimation problem.

In this article, we discuss an approach to estimate model
parameters from spatio-temporal data with a global search
strategy. We investigate the efficiency of an evolution strategy

for the parameter estimation of GRN models capable of
simulating spatio-temporal patterns. Our choice is inspired by

Moles et al. (2003) and Mendes and Kell (1998) where the
authors compared different global optimization strategies and

suggested that the evolution strategy is the most competitive
and the only one capable of finding the true minimum in the

parameter estimation of biochemical networks. We combine
this approach with a local search strategy. As a case study, we

infer from the FlyEx data (Poustelnikova et al., 2004) the
connectionist model consisting of six genes presented by Jaeger

et al. (2004a, b) that describes the regulatory interactions in the
gap gene system of the blastoderm stage of D.melanogaster.

2 METHODS

2.1 Case study: regulatory interactions in the

gap gene system of D.melanogaster

The biological case chosen is a model of a GRN capable of simulating

the spatio-temporal pattern formation in the early development of a

Drosophila embryo. Much work has been done (Reinitz and Sharp,

1995; Reinitz et al., 1998; Jaeger et al., 2004a; Gursky et al., 2004;

Janssens et al., 2006) to understand the role of GRNs in the segment

determination system. The early Drosophila blastoderm is a syncytium

containing nuclei not surrounded by a membrane. The pattern

formation in the Drosophila blastoderm results from the interactions

among segmentation genes. To simulate this, we use the model given by

Jaeger et al. (2004a) based on a connectionist model (Mjolsness et al.,

1991). It is a dynamical model consisting of a discrete representation of

the nuclei in space and a continuous regulation of the genes in time. The

developmental time of interest is between cycles 13 and 14A before

gastrulation (cleavage cycle n is the time between the n� 1th and the nth

cell division, c.f. Foe and Alberts, 1983). Three different rules describe

the phenomena that occur during this time: interphase, mitosis and

division (see Supplementary Material for details). The resulting model is

a system of 348 equations with 66 unknown parameters

dgai ðtÞ

dt
¼

Ra�a

PNg

b¼ 1 W
b
ag

b
i þmag

bcd
i þ ha

� �
ðregulationÞ

��ag
a
i ðdecayÞ

þDa gaiþ1 � 2gai þ gai�1

� �
ðdiffusionÞ

8>><
>>:

where Ng denotes the number of genes or gene products involved and �

is a sigmoid function with range (0,1). The model simulates the spatio-

temporal evolution for the concentration of the genes

caudal(cad), hunchback(hb), Krüppel(Kr), giant(gt), knirps(kni) and

tailless(tll). gai ðtÞ represents the concentration level at time t of gene a

in nucleus i with 1 � i � N and N the number of nuclei during a

cleavage cycle. The concentration, gbcdi , of the maternal gene bicoid is

taken from experimental observations and is kept constant in time

during the simulation. The parameters are: the regulatory weight matrix

Wb
a, describing the influence of gene b on gene a, the production rate Ra,

the activation threshold ha for �, the decay rate �a, the diffusion

coefficient Da and the regulatory influence ma of maternal bcd. Initial

gene expression levels are available from experiments. For the genes Kr,

gt, kni and tll, these are very close to zero and set to 0 in the simulations.

The data we have used to fit the model are the same as used by Jaeger

et al. (2004a). These data are available from the FlyEx database http://

flyex.ams.sunysb.edu/flyex/ (Poustelnikova et al., 2004). The model and

datasets used in the parameter estimation are discussed in detail in the

Supplementary Material.

2.2 Optimization criteria

Given a model that simulates spatio-temporal data, the problem is to

estimate the unknown parameters such that the simulation results fit

some observed spatio-temporal (target) data. The parameter estimation
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is done by optimization techniques. The optimization goal is to find

those values of the unknown parameters that minimize a scalar valued

cost-function, by exploring the set of possible values in an allowed

search space. As in the previously mentioned Drosophila studies,

we have chosen to use as cost-function the least-squares of the

difference of the simulated and the observed data:

Eð�Þ ¼
X
i;t

ðgai ðt; �Þmodel � gai ðtÞdataÞ
2

ð1Þ

with � the parameter vector, to which a constraint or penalty function is

added. An explicit search-space constraint is given for parameters Ra, �a
and Da. For the parameters Wb

a, ma and ha a collective penalty function

is used (Reinitz and Sharp, 1995) to restrict the function value of � to

the domain ½�; 1��� with � a small parameter (in this study taken to

be 0.001) (for details see Supplementary Material). We use the root

mean square (RMS) (Reinitz and Sharp, 1995) as a measure of the

quality of a model solution for a given set of parameters:

RMS ¼

ffiffiffiffiffiffiffiffiffi
Eð�Þ

Nd

s
ð2Þ

where E(�) is given by Equation (1) and Nd is the number of data

points.

2.3 Global search by evolution strategy

An evolution algorithm (EA) is a stochastic iterative algorithm that

operates on some encoded individuals from an initial population. It

consists of three main operators: crossover, mutation and selection. The

first two are exploration operators of the search space, while the last

one lets the population evolve towards the optima of a problem.

Marnellos (1997) compared SA and a course-grained parallel island

Genetic Algorithm on various biological problems (neurogenesis,

curve-fitting and life history). The first two are continuous models

and for these he reported that SA was the faster method, but GA had a

faster initial convergence. Among all the existing EAs (see Bäck et al.,

1997; Spears et al., 1993, for an exhaustive overview) such as Genetic

Algorithms (Goldberg, 1989; Holland, 1992) or Evolutionary

Programming (Fogel et al., 1966), we have chosen an Evolution

Strategy (ES) (Beyer, 1996). ES shows proven superiority, compared to

other classical EAs for problems with a high number of unknown

parameters (Runarsson and Yao, 2000; Moles et al., 2003). In contrast

with the original Genetic Algorithm, ES has initially been designed for a

constrained continuous variable optimization problem. Like most EAs,

it is a stochastic process that modifies an original population of

individuals from iteration to iteration with the aim of minimizing an

objective function. Evolution from generation to generation is based on

a deterministic selection and a stochastic mutation. One of the main

advantages of ES compared to standard EAs is the usage of strategic

parameters such as on-the-fly adaptation of the mutation parameters.

In this study, we use a modified ð�; �Þ-ES, based on stochastic fitness

ranking. This method is simple and has proven to be more efficient than

most EAs and ESs for large parameter estimation problems (Runarsson

and Yao, 2000, 2005). A pseudo-algorithm is given in Algorithm 1.

The main part in ES is the creation of � new offspring (Algorithm 1,

steps 6 and 7) by recombining two parents and mutating the

individuals. We use a global intermediate recombination described in

Equation (3) and a non-isotropic mutative self-adaptation rule

(Runarsson and Yao, 2000) described in Equations (4–6). The

recombination is given by

�0c ¼ rð�o; �c; �cþ1Þ ¼ �c þ � �o � �cþ1ð Þ ð3Þ

where �i is the parameter vector of an individual i, individual o is

the highest ranked individual (the fittest) and � is the recombination

factor. In this way, a number of � new individuals are created from

the � offspring. The individuals c are chosen among the best � offspring

obtained after a stochastic ranking (Runarsson and Yao, 2000).

The rest of the new population is filled with the (unchanged) � best

individuals (repeatedly). Mutation is applied to these �� � individuals

according to the non-isotropic self-adaptation rule:

�0
k;j ¼ �ði; �Þ;jexp �

0Nð0; 1Þ þ �Njð0; 1Þ ð4Þ

�0k;j ¼ �ði; �Þ;j þ �0
k;jNjð0; 1Þ ð5Þ

�0
k ¼ �i þ �ð�0

k � �iÞ ð6Þ

with k ¼ �þ 1; . . . ; �, i ¼ k mod � and j ¼ 1; . . . ; n. �0
k is the step-size

control per individual (parameter vector) k and �0
k;j an element of this

vector. � aims to tune the search distribution so that maximal progress

is maintained (mutations become smaller as the search progresses).

� ¼ ’�=
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
n

pp
and �

0

¼ ’�=
ffiffiffiffiffi
2n

p
are the learning rates for a parameter

and for an individual, respectively, and ’� ¼ 1 is the expected rate of

convergence. Finally, Nð0; 1Þ is a normally distributed uniformly

random variable and Njð0; 1Þ a new random variable for each

parameter j. Equation (6) implies an exponential smoothing of the �

mutation parameter for reducing random fluctuations in the self

adaptation, with �¼ 0.2 as the smoothing factor. For an explanation

of this mutation strategy we refer to Runarsson and Yao (2005).

2.3.1 Island evolution strategy We have developed an evolution

strategy with multiple subpopulations (island-ES, also called regional

model or island model). In this article, the focus is not on the perfor-

mance in terms of computational time of a parallel version of ES, but

on its effectiveness in terms of the quality of the solution. The island-ES

used here is run on a single processor, working as a regional model.

It has been shown (Cantú-Paz, 1995; Mühlenbein et al., 1991) that an

island evolution algorithm can qualitatively outperform a serial EA.

A number of subpopulations are defined to evolve, as described in

Algorithm 1, independently of each other for a certain number of

generations (isolation time or migration interval �). After the isolation

time, a number of individuals are distributed over the subpopulations

by a procedure called migration. The number of exchanged individuals

(migration rate 	), the selection method of the individuals for migration

and the scheme of migration determine the average genetic diversity in

the subpopulations and the exchange of information between sub-

populations. Multiple subpopulations initialized independently ensure a

diverse set of individuals covering a large part of the optimization

search space. The migration operation spreads the best individuals over

subpopulations. In this study, we migrate the best one of the � selected

parents randomly every 500 generations to other subpopulations.

This elitist migration ensures that the new individual inserted in

a subpopulation can allow the population to escape local minima if

trapped in one with a high value of the cost-function. We use a

complete net structure (Lohmann, 1991) with random assignment.

Algorithm 1 ð�; �Þ-ES

1: INITIALIZATION: generate an initial population of � individuals

according to an n-dimensional probability distribution over the search

space.

2: while termination criteria not met do

3: SCORE: evaluate each individual objective function.

4: RANKING: sort individuals based on a stochastic ranking.

5: SELECTION: select the � best individuals out of � offspring as

parents for the next generation.

6: RECOMBINATION: apply recombination only to the best �

individuals (differential evolution).

7: MUTATION: Gaussian mutation is applied to the other indivi-

duals in the population (with boundary control).

8: end while

Y.Fomekong-Nanfack et al.
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At each migration, an individual from a population can migrate to any

other subpopulation.

2.4 Local search

Global search is often used for parameter estimation problems where

no information on parameters is available. Although it has proven to be

efficient in many problems to identify promising regions, a slow

convergence when reaching the global minima is always observed.

Combining a global search with a local optimizer to identify the

minimum speeds up convergence. The hybrid approach used was

inspired by Katare et al. (2004) where the authors have successfully

used a hybrid genetic algorithm to estimate parameters of small

(5 parameters) and large (31 parameters) kinetic model of propane

aromatization on a zeolite. Also, Gursky et al. (2004) used a local

search to refine the parameters obtained after a global search by

simulated annealing.

There is a large variety of local search techniques. Most local

optimizer techniques such as Powell’s method, the quasi-Newton

methods or Levenberg–Marquardt are based on the gradient descent

approach and thus require the derivative of the objective function f(�).

If analytic expressions are not available for the derivative, a finite-

difference approximation of the gradient of f(�) can be used. In many

situations, computing the objective function f(�) can be expensive and

numerical approximation of the gradient of f(�) is thus too costly.

Furthermore, biological data can be noisy, making the use of the

gradient difficult if not impossible. In these cases, Newton-like local

optimizers become inappropriate. A good alternative is a direct search

method. Direct search such as generating set search (Kolda et al., 2004;

Lewis et al., 2005), pattern search (Hooke and Jeeves, 1961) or downhill

simplex(DS) (Nelder and Mead, 1965) are suitable to solve a variety of

optimization problems that are not well suited for standard optimiza-

tion algorithms, including problems in which the objective function is

discontinuous, non-differentiable, stochastic or highly non-linear.

In this study, we use the DS as local search strategy. DS assumes

that the initial starting point (simplex) is around a local minimum.

Simplex-based direct search methods are based on a comparison of the

cost-function values at the vertices of a simplex that is updated by the

algorithm steps [a simplex is the geometrical figure consisting, in

N dimensions, of Nþ 1 points (or vertices) and all their interconnecting

line segments, polygonal faces, etc. giving in 2D a triangle and in 3D

a tetrahedron.]

2.5 Validation

To validate our optimization method, we have reverse-engineered

‘artificial GRNs data’. Results of these validation tests can be found in

the Supplementary Material.

3 RESULTS

The purpose of the model presented in Section 2.1 is to simulate

the pattern formation of the early Drosophila embryo, as

described in Section 1 and shown in Figure 1. The aim of the

optimization is to find suitable model parameters that can

simulate realistic patterns, in comparison with real quantified

gene expression patterns. The search space is based on Jaeger

et al. (2004a), but it is slightly enlarged for some parameters

(see Supplementary Material). Different settings for ð�; �Þ-ES
are used followed by DS local search. The population size � is

varied, in ES � ¼ f200; 350; 500g and in the island ES with four

subpopulations � ¼ 500=4 ¼ 125. The other method para-

meters are in all cases � ¼ �=5, �¼ 0.85 and �¼ 0.2

(Runarsson and Yao, 2005). In all settings 20 optimization

runs have been performed. To facilitate comparison the initial

populations in the different settings are generated using the

same 20 random seeds and the number of generations for

different � is such that the (sequential) computational time is

comparable in all runs. The DS is applied to each resulting gap

gene circuit and runs for 130 000 iterations. All simulations are
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Fig. 1. Gene expression data. a,b and c correspond to confocal images of stained Drosophila blastoderm embryos. Staining is done by fluorescent

immunohistochemistry (Kosman et al., 1998). d,e and f are the average quantitative gene expression levels obtained by successive image-processing

operations (Myasnikova et al., 1999, 2001). Images are from the late blastoderm stage cleavage cycle 14A; (a,d) time class 8 for hunchback (embryo

ba3); (b,e) and (c,f) time class 1 for bicoid and caudal, respectively (embryo cb11). Images are from the FlyEx database http://flyex.ams.sunysb.edu/

flyex. The y axis gives the relative protein concentration expression level normalized to a fluorescence intensity range from 0–255. The x axis

corresponds to the anterior–posterior (A–P) axis of the embryo.
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performed on a serial 3.4GHz ‘Intel Xeon’ processor and took

8–11 CPU hours for the complete ESþDS search.

3.1 Full search

The first setting assumes that no a priori knowledge is available

regarding any of the 66 parameters other than the search space.

After the global search only one gap gene circuit has an RMS

512 and did not show any specific defect. In Figure 2 we have

visualized the results. A table with the exact numbers is given in

the Supplementary Material (Table 2). The parameters for the

acceptable gap gene circuits are of similar quality as Jaeger

et al. (2004a, b) but show a somewhat larger diversity due to the

full search and the larger search space.

3.2 Reduced search

In this setting the 20 optimizations are first run with the

activation thresholds hhb, hKr, hgt and hkni at a nominal value of

�3:5, as suggested by Jaeger et al. (2004a). For the other

parameters we have set the parameter search space as in

the previous ‘Full Search’ setting. The problem is now

62-dimensional. The fixation of the four activation thresholds

results in a much easier optimization problem as can be judged

from the fact that 16 out of the 80 runs result in an RMS512

after the ES. Also the advantage of using the island search can

be seen more clearly: 16 out of 20 runs result in an RMS514, in

contrast to the 8 in the (100 500)-ES runs.
A second series has been done with activation thresholds hhb,

hKr, hgt and hkni having as nominal value �2:5. As can be seen in

Figure 2 ((3) and (2)) the results are comparable with the �3:5
setting.
In all cases where an RMS5 12 was obtained the simulated

patterns match nicely the real spatio-temporal data (see Fig. 3

for an example). As in Jaeger et al. (2004a), in some other cases

there is a small defect, especially for the late and posterior tll

concentration.
The parameters obtained are in most cases comparable for

different optimization runs and with the ones obtained in

Jaeger et al. (2004a). In some cases it is clear that the model

results are not sensitive to significant changes in the parameter
values, as can be seen for Wkni

hb in the left scatterplot in Figure 4.

Incidentally our regulatory weight matrix entries differ from

those in Jaeger et al. (2004a), like Wcad
tll and Whb

tll in the right

scatterplot in Figure 4. More scatterplots and a qualitative

summary of the obtained weight matrices are given in the

Supplementary Material—Figures 9 and 10, Table 6.

4 DISCUSSION

Modelling pattern formation in terms of their GRN implies a

description of the interactions between the different genes.

Although some network structure is known, in most cases very

little quantitative information is known about these interac-

tions. Therefore, given a network of m genes, inferring the

regulatory network consists of estimating m�mþ c para-

meters where c is the number of other parameters (decay-rate,

diffusion, etc.). It is essential to have computational methods
that allow to estimate these unknown parameters in a reason-

able time.

4.1 Convergence ES

In Figure 5, we illustrate the convergence behaviour of the

evolution strategy. In the left plot, the average fitness evolution

is given for the 20 optimization runs with N¼ 62 and h ¼ �2:5.
In all cases a fast initial convergence is followed by a slow

decrease of the fitness. Note that the lines represent an equal

amount of computational work, so the runs with �¼ 200 are

allowed many more generations resulting in a slightly better

RMS than the �¼ 500 case. Comparing the latter with the

island-based ES with four subpopulations of each 125

individuals, it is obvious that the island-ES gives a significantly
better RMS. The reason is that the fittest individual within one

subpopulation is migrated to another subpopulation that might

be stagnating, hence the staircase behaviour of the fitness

curves (Fig. 5, right plot). This feature makes an island-based

ES also much more reliable (see also under reliability).

4.2 Combining global and local search

Following the idea that heuristic search cannot easily find true

minima, coupling ð�; �Þ-ES with a local search can considerably

increase the quality of the solution and speed up the

convergence. This works only if the output solution of the ES

is already in the neighbourhood of a solution corresponding to

a minimum. Simple ð�; �Þ-ES could almost always find gap

circuits with an RMS between 11.00 and 16.00 in an average of
8–11 CPU hours. As shown in Figure 5, a quick convergence of

the objective function is always observed after a few genera-

tions of ES. These first steps are the main strength of ES.

Changing to a local search strategy if the ES stagnates results in

an efficient and reliable parameter estimation method (see also

the Supplementary Material).

4.3 Reliability of the method

The stochastic nature of ES implies that one has to run many

simulations in order to obtain ‘possible’ solutions.

Approximately 50% of the ESþDS runs produced gap gene
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Fig. 2. Comparison of the different optimization runs for (F) full

search, (3) reduced search with activation thresholds set at �3.5 and

(2) reduced search with activation thresholds set at �2.5. Each bar-

column represents 20 runs of a setting. Duo bar-columns are read as

follows: left: after ES, right: after DS; bottom bar: RMS 4 14,

middle(light): RMS 2 (12,14), top: RMS � 12.
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circuits with a good RMS (�12). This percentage is better than

obtained by simulated annealing, as discussed in Jaeger et al.

(2004a, b) where only 25% good solutions is reported.
Results obtained with the island-based ð�; �Þ-ES show that in

the reduced search setting (fixed h-values) 75% of the runs

return gap gene circuits with an acceptable RMS (�14), and if

followed by a DS local search, 62% of the runs result in gap

gene circuits with an RMS 512. The quality of the solutions

obtained by the island version is comparable with the one

obtained by the simple ES, but the number of solutions with an

acceptable RMS is larger (75% versus 60%, c.f. Fig. 2 and

Table 2 and 5 in the Supplementary Material). The higher

reliability can be explained by the fact that each subpopulation

evolves independently like a normal ES. When no improvement

can be obtained in one of the subpopulations, or if the

subpopulation is too homogeneous, a fully connected network

migration is applied (in the current implementation this is done

after a fixed number of generations, but it is possible to develop

an adaptive strategy for this). Inserting new individuals in a

subpopulation from another subpopulation allows each sub-

population to create diversity, and thus to escape from a local

minimum.

4.4 Improvement of previous results

Jaeger et al. (2004a, b) presented 10 gap gene circuits including

bcd, cad, hb, Kr, gt, kni and tll gene expression and covering a

range of 35–92% of the A–P axis. These 10 gap gene circuits

were selected among 40 results according to their RMS (�12).

Their results were obtained using a parallel simulated annealing

method, and the computational time needed was between 8 and

160 h using ten 2.4GHz processors for each simulation.
We have demonstrated that our method, ð�; �Þ-ES followed

by a DS search, gives solutions comparable to their solutions in

terms of the RMS and in simulation results. In most cases, we

find similar values for the parameters and a similar gap gene
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Fig. 3. Solution of the gap gene circuit gn52c13_200_62_25_14 at time points T¼ 10.550 and after division, T1 ¼ 24:225 and T8 ¼ 67:975 obtained

after parameter estimation using (40 200)-ES (left) followed by Downhill simplex local search (right). Experimental (target) data is indicated with

dashed lines.
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network (see also Supplementary Material, Figs 9 and 10 and

Table 6).
One advantage of our method is that it is more reliable, i.e.

the percentage of good solutions is larger than obtained by

parallel simulated annealing: around 50% of the runs have a

good solution quality compared to the 25% in Jaeger et al.

(2004a, b). The island-based ð�; �Þ-ES approach followed by

DS even increases the ratio ‘good solutions’ to 62% using the

same amount of work.
The most significant result of this work is the relatively small

computational effort needed to reach a ‘good guess’ as starting

point for the local search. Our method, ð�; �Þ-ES followed by a

local search, requires less computational time (8–11 CPU

hours), and less resources (one 3.4GHz processor) to achieve

solutions as good as the one obtained with PLSA (between

8–160 CPU hours using 10 parallel 2.4GHz processors),

making our method 5–140 times as fast.

The test case in this study was a one-dimensional reaction-

diffusion system with a large number (66) of parameters to

estimate. In future work, we plan to infer GRN models for

pattern formation in organisms where moving cells and

deformable shape are essential features. Three-dimensional

models will then be necessary and the number of parameters

will increase substantially. Therefore, an efficient parameter

estimation method will be mandatory.
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We modified the original gene circuit software available at
http://flyex.ams.sunysb.edu/lab/download.html and also mod-
ified the Cþþ Direct Search software available at http://
www.cs.wm.edu/�va/software/DirectSearch/direct_code/

which contains the downhill simplex used.
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