
BIOINFORMATICS ORIGINAL PAPER Vol. 24 no. 16 2008, pages 1757–1764
doi:10.1093/bioinformatics/btn322

Genome analysis

Database indexing for production MegaBLAST searches
Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L. Madden,
Richa Agarwala and Alejandro A. Schäffer∗
National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human
Services, Bldg. 38A, Room 6S608, 8600 Rockville Pike, Bethesda, MD 20894, USA

Received on March 6, 2008; revised and accepted on June 18, 2008

Advance Access publication June 21, 2008

Associate Editor: John Quackenbush

ABSTRACT

Motivation: The BLAST software package for sequence comparison
speeds up homology search by preprocessing a query sequence
into a lookup table. Numerous research studies have suggested that
preprocessing the database instead would give better performance.
However, production usage of sequence comparison methods that
preprocess the database has been limited to programs such as BLAT
and SSAHA that are designed to find matches when query and
database subsequences are highly similar.
Results: We developed a new version of the MegaBLAST module
of BLAST that does the initial phase of finding short seeds for
matches by searching a database index. We also developed a
program makembindex that preprocesses the database into a data
structure for rapid seed searching. We show that the new ‘indexed
MegaBLAST’ is faster than the ‘non-indexed’ version for most
practical uses. We show that indexed MegaBLAST is faster than
miBLAST, another implementation of BLAST nucleotide searching
with a preprocessed database, for most of the 200 queries we
tested. To deploy indexed MegaBLAST as part of NCBI’s Web BLAST
service, the storage of databases and the queueing mechanism
were modified, so that some machines are now dedicated to
serving queries for a specific database. The response time for such
Web queries is now faster than it was when each computer handled
queries for multiple databases.
Availability: The code for indexed MegaBLAST is part of the
blastn program in the NCBI C++ toolkit. The preprocessor program
makembindex is also in the toolkit. Indexed MegaBLAST has been
used in production on NCBI’s Web BLAST service to search one
version of the human and mouse genomes since October 2007. The
Linux command-line executables for blastn and makembindex,
documentation, and some query sets used to carry out the tests
described below are available in the directory:
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast
Contact: schaffer@helix.nih.gov
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
BLAST (Altschul et al., 1997) is a package of programs to match a
query biological sequence against a database and identify database
sequences that have statistically significant local alignments with

∗To whom correspondence should be addressed.

a part of the query. One of the principal heuristics that makes
BLAST fast is preprocessing the query to build a lookup table that is
subsequently used to find short high-scoring ungapped alignments,
herein called ‘seeds’. Seeds can be extended to longer ungapped
alignments and then to full gapped alignments in later phases of
BLAST programs. The default length for seeds is 3 amino acids
for proteins, 11 nucleotides for high-sensitivity nucleotide searching
with the BLASTN module and 28 nucleotides for lower sensitivity
searching with the MegaBLAST module (Zhang et al., 2000). An
important innovation introduced in BLAST version 2.0 was to
require the existence of two nearby seeds to reduce the number of
candidate matches that pass the seeding stage (Altschul et al., 1997).
For proteins, recent work shows that requiring a single contiguous
seed of length 6 and more complex preprocessing gives better
performance (Shiryev et al., 2007).

Instead of finding seeds by searching a data structure derived
from the query, one could instead find seeds by searching a data
structure derived from the database. Numerous research studies,
recently reviewed in Jiang et al. (2007), suggest that preprocessing
the database and searching a database-derived data structure can
yield much faster search times.

Two widely used software packages that do preprocess the
database for biological sequence comparison are SSAHA (Ning
et al., 2001) and BLAT (Kent, 2002). However, both these packages
are defined to find only near identical matches [e.g. for a comparison
of BLAT and the TBLASTN module of BLAST see Gertz et al.
(2006)]. The only software package we could find that:

(1) produces results similar to or identical to some module of
BLAST,

(2) preprocesses the database, rather than the query, to build a
data structure for the seed search phase,

(3) uses comparable amounts of memory for the data structure
and the database (to exclude suffix-tree solutions) and

(4) has executables or source code currently and freely available
on the web

is miBLAST (Kim et al., 2005). miBLAST was designed for
short queries of under 100 bases and we confirm that its relative
performance does deteriorate for longer queries. Below, we refer to
methods, such as miBLAST, that build a search structure from the
database by the collective term ‘database indexing’.

Since database indexing seems so promising, but no module
of NCBI BLAST uses this paradigm, we set out to engineer

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast
http://creativecommons.org/licenses/by-nc/2.0/uk/

A.Morgulis et al.

a replacement for (at least) one module of NCBI BLAST and
assess whether the claimed performance benefits could be achieved
in production usage. The most commonly searched database at
NCBI’s BLAST Web service is nr, which is a comprehensive ‘non-
redundant’ collection of sequences. Indexing of the nr database
poses specific challenges as compared with other databases because
nr is so large and is updated daily. Other popular databases for web
BLAST searches are the human and mouse genomes, and to a lesser
extent other vertebrate genomes.

Due in part to a redesign of NCBI’s BLAST web page in
2007, single-genome databases for human and mouse have become
increasingly selected by users who submit approximately 10 000
and 3000 queries per weekday for the human and mouse databases,
respectively. The current default is that the genome-specific
nucleotide databases are searched with the MegaBLAST (Zhang
et al., 2000) module, called from within the program blastn
compiled from the NCBI C++ toolkit.

Therefore, we set out to develop a new version of MegaBLAST
that could use a data structure derived from the genome-specific
database to search for the initial seeds. We also needed to build
a program, herein called makembindex, to construct the index
structure. The basic goals for ‘indexed MegaBLAST’ were that it
should find the same matching sequences and alignments as the
version from which we started, and do so much faster for the majority
of queries that arise in practice. Unlike miBLAST, performance
of indexed MegaBLAST should degrade gracefully as the queries
become longer or have an increasing number of matches.

Early in the project, we realized that a basic impediment to
good performance would be queries that align well to DNA
sequences present with minor variations many times in the genome.
To address this difficulty, we developed the software package
WindowMasker (Morgulis et al., 2006a) to quickly mask frequently
repeated sequences without using a library of repeats. We realized
that most users rarely want to see such repetitive matches output
from BLAST, so we modified MegaBLAST to be capable of
searching a ‘soft-masked’ database. Soft-masked means that seeds
cannot intersect a masked interval, but alignments can be extended
into and through masked intervals. Soft masking a query has long
been available in MegaBLAST.

Sections 2 and 3 and Supplementary Material describe how
we engineered and tested indexed MegaBLAST to document the
potential performance improvement. The acid test is how users of
NCBI’s web BLAST service would respond. Indexed MegaBLAST
was deployed in October 2007 for the BLAST nucleotide search
variants of querying the human and mouse genomes (separately)
and announced in regular release notes. By default, WindowMasked
versions of the genomes are used, but users can turn off masking.
There have been zero user complaints and only one general
inquiry suggesting that indexed MegaBLAST works well in
production.

2 METHODS
In this section and Supplementary Material, we describe the data structures
used to organize the database index and the ‘seed search algorithm’ used
to find initial identical substrings in the query and the database. We also
describe the testing strategy and how indexed MegaBLAST has been put
into production usage. The seed search algorithm has been incorporated into
a modified version of NCBI’s MegaBLAST, as described subsequently, with

few changes to the algorithmic code parts that do subsequent processing of
the seeds.

2.1 Index structure
The MegaBLAST database index contains compressed sequence data along
with locations of k-mers. Besides the length k, two other important
parameters are the minimum seed length w(≥k) and the stride s used
to move through the database. To guarantee that every exact match of
length w between a query and a subject is found, we use the relationship
s=w−k+1. Information about the k-mer ending at every s-th position,
satisfying conditions specified below which assure we can find all seeds,
is stored in the index. The current implementation defaults to w=16, k =12
and s=5.

A database index is composed of several files called index volumes,
each corresponding to a contiguous range of sequences from the underlying
database. An index volume file contains three sections: header, sequence data
and offset data, as illustrated in Figure 1. The number of nucleotides in the
database is denoted by n. In Supplementary Material, we derive an estimate
for the number of bytes needed to store the index as:

2×4k+1 + n

4
+ 4n

min
(
s, k−1

2

) (1)

bytes. For example, for an unmasked database of size 1 GB and our default
values k =12,s=5, the estimated size of the index would be ∼1.175 GB.

2.1.1 Header The header section of an index volume primarily stores
the range of sequences from the underlying database that are indexed by
that volume. The header section also stores a few auxiliary values that are
used for housekeeping purposes, such as index format version. The exact
definition of the current version of the index format can be found in the
external documentation accompanying the code.

2.1.2 Sequence data Sequence data are stored in compressed format with
2 bits per sequence base using NCBI2NA encoding. In that encoding, bases
A, C, G and T are encoded as integers 0, 1, 2 and 3 correspondingly.
Positions containing ambiguous characters are encoded as 0. The seed search
algorithm, described in the next subsection, never touches ambiguous parts
of the sequences. These parts serve merely as placeholders.

The seed search algorithm works with logical sequences of more or less
uniform size. This makes mapping from k-mer locations to the corresponding
sequences more efficient. Logical sequences may be formed by splitting
long sequences or by combining several short sequences, as described
subsequently. The mapping between the logical sequences and the actual
database sequences is stored in the sequence data section of an index volume.

All logical sequences participating in a given index volume are assigned
a consecutive integer sequence id. Both in indexed MegaBLAST and other
variants of NCBI BLAST software, long database sequences are split into
overlapping chunks to optimize processing. From now on, by input sequence
we mean either a database sequence or a chunk produced by such splitting,
which enables us to avoid cluttering the algorithm description with the details
of handling long sequences.

Mapping of input sequences to logical sequences. Let � be the chunk
size defined in the BLAST code (current default is 5 Mbases), and let B=
�log2(�)�. Because of the chunking, we may assume that all input sequences
are of length at most �. Consecutive input sequences are concatenated into
logical sequences as long as their combined length does not exceed �. Logical
sequences are assigned consecutive integer logical sequence ids starting at 0.

The sequence data section of an index volume contains a table that maps
each logical sequence id to the input sequences from which it is composed.
Each element of the table contains four integers:

(1) sequence id of the first input sequence in the logical sequence;

(2) sequence id of the last input sequence in the logical sequence;

1758

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

Indexed MegaBLAST

Header

Offset Data
Look Up Table

Offset Lists

start of offset list for Nmer 0

start of offset list for Nmer 1

start of offset list for Nmer 2

0

(special offset)
2nd position of Nmer 0

3rd position of Nmer 0

1st position of Nmer 0

last position of Nmer 0

0

empty
list

1st position of Nmer 2

0

length of the first sequence

length of the last sequence

mapping for the last logical
sequence

mapping for the first logical
sequence

id of the first constitient input
sequence

id of the last constitient input
sequence

starting offset in the sequence store

ending offset in the sequence store

first logical sequence data

second logical sequence data

last logical sequence data

first constituent sequence data
byte 0

first constituent sequence
data: last byte

first constituent sequence data
byte 1

second constituent sequence data
byte 0

last constituent sequence
data: last byte

padding

padding

Sequence Data

Lengths Table

LId Map

Sequence Store

number of logical sequences

value of k

id of the first input sequence

id of the last input sequence

start of offset list for Nmer 4k–1

last position of Nmer 4k–1

Fig. 1. Schematic of the data structure used for the database index.

(3) offset (in bytes) of the start of this logical sequence from the start of
the sequence store and

(4) offset (in bytes) of the end of this logical sequence from the start of
the sequence store.

Sequence store. The sequence store is the part of the sequence data
section of an index volume that contains compressed sequence data. Logical
sequences are stored there in order of increasing logical sequence id.

Logical sequence data contains concatenated encoded constituent input
sequences. The encoding of input sequences using 2 bits per base is padded
with extra 0 bits at the end, if needed, to ensure that they end on a byte
boundary. The index volume stores the true lengths of all input sequences,
so the seed search algorithm will not treat the padding 0 bits as part of a
nucleotide encoding.

2.1.3 Offset data The offset data section of an index volume consists of
two parts: the lookup table and the offset lists. The lookup table contains 4k

entries. The i-th entry contains the pointer to the start of the list of positions
in the database called the offset list, where the k-mer with value i occurs.

Offset lists come after the lookup table in the data structure. Individual
lists are terminated by a sentinel 4-byte word encoding 0. Our method of
offset encoding ensures that 0 is not a valid value for a list entry. Positions
of k-mers can be added to the offset lists in the order of their appearance
in the underlying database, but in practice, the order is permuted for faster
searching, as described in Supplementary Material.

To identify which k-mer positions to store, the set of seed-eligible
intervals is computed for each input sequence. A seed-eligible interval is
a subsequence of an input sequence that does not contain ambiguities or

lower case (masked) letters. A k-mer is stored in the index if the following
three conditions hold:

(1) the k-mer is fully contained within a seed-eligible interval;

(2) the seed-eligible interval is at least w nucleotides in length and

(3) the offset of the last letter of the k-mer relative to the start of the
corresponding logical sequence is divisible by the stride, s.

Let s2 =2�log2 s�; i.e. the smallest power of 2 greater than or equal to s.
For a k-mer the actual value o stored in the offset list is computed in the
following way:

o=s2
2 + p

s
+h ·(s2

2 +
⌈

2B

s

⌉
+1),

where h is the logical sequence id, �2B/s� is the number of bits used to
encode the position of a k-mer within its logical sequence at stride s and p is
the offset of the last letter of the k-mer relative to the start of the logical
sequence. o is stored as a 32-bit wide unsigned integer.

Special offsets and prefixes. For some k-mer instances, extra information
is stored along with its encoded position. Let dl (dr) be the distance from the
first (last) base of the k-mer to the left (right) end of the corresponding valid
interval. We call a k-mer instance special if either dl <s, or dr <s, or both.
We define ul (ur) to be equal to dl (dr) if dl <s (dr <s) and 0 otherwise.

Special prefixes are used in the offset lists by the seed search algorithm
to ensure that reported seeds never cross the boundary of a seed-eligible
interval. For special k-mer instances, an extra 32-bit prefix value os =s2ul +
ur is stored in the offset list immediately prior to their encoded position o. It is
always the case that os <s2

2 and o≥s2
2, so the prefix is easy to distinguish

from the actual encoded position.

1759

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

A.Morgulis et al.

An example for offset entries. Consider the following subsequence from
the first contig NT_019273.18 of the masked human genome starting at offset
8 500 000 (with the first base at offset 0):

gagaggACAACACTTAAAGGTTCAACTAGCAATA
With (default) values of k =12, s=5, chunk size 5 Mb, and chunk overlap
of 100 bp, base at offset 8 500 000 in the input is in the second logical
sequence and has offset 3 500 100 in its logical chunk. The 12-mers at
offset 3 500 100 (gagaggACAACA) and 3 500 105 (gACAACACTTAA) are
partially masked. Therefore, they are not part of any seed-eligible interval
and are not added to the lookup table offset lists in the index structure. The
next 12-mer considered for addition to the lookup table is at offset 3 500 110
(CACTTAAAGGTT), and that is in a seed-eligible interval. This is also a
special offset as the distance to its seed-eligible interval boundary to the left
is only four. The 12-mer at offset 3 500 115 (AAAGGTTCAACT) is also in
a seed-eligible interval, but it is not a special offset.

Computations for CACTTAAAGGTT in the subsequence above resulting
in the entries in the index structure for masked human genome are:
(i) lookup table entry index of 4 702 383 using the bit encoding for the four
bases, (ii) special offset value of 32 using the formula 2�log2 5� ·4+0, and
(iii) offset value of 2 377 873 using the formula (2�log2 5�)2 +3500110/5+
1·((2�log2 5�)2 +�2�log2(5000000)�/5�+1). The special offset value of 32 is
followed by the offset value of 2 377 873 in the list of offsets for lookup
table entry index 4 702 383.

2.2 Approach to testing
2.2.1 General setup Database indexing functionality is implemented in
the NCBI C++ toolkit via the executables blastn and makembindex. For
testing, we used statically linked versions of blastn and makembindex
built from the toolkit sources of September 5, 2007. The executables were
built for the 32-bit Intel x86 architecture under Linux OS kernel version
2.6.5 using GCC v4.0.1 compiler. The executables and some documentation
are available in the directory:
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast

All tests were performed on a Dual Intel Xeon 5160 machine running at
3 GHz (two dual-core CPUs) with 8 GB of RAM. All runs were performed
in single-thread mode. When measuring the running time of a program,
three runs were performed and the median time was recorded, except for
the large-scale test. The standard UNIX time utility was used to measure
total running time. To measure the time used to search for seeds, blastn
was instrumented with checkpoints that measured the time of seed searching
procedures using Linux gettimeofday system call.

Instantiations of the following command line, including some variables,
were used to run blastn for different tests.

blastn -db <database> -task megablast \
-outfmt 6 -use_index <true|false> \
[-index_name <index>] -query <query> \
[-filtering_db <osr_db>] \
[-lcase_masking] [-dust <true|false>]

-db <database> specifies the name for BLAST database created
using formatdb utility. formatdb is a part of NCBI BLAST software
distribution.
-task megablast selects MegaBLAST module.
-outfmt 6 is used to choose the tabular output format.
-use_index allows to choose whether to use database indexing

functionality.
-index_name <index> is optional and only needed when using

database indexing functionality. index in this case is the base name of
the database index volumes created via the makembindex utility that sets
up the data structures described in Supplementary Material. For example, if
the index volumes are named dbi.00.idx, dbi.01.idx, …, then the
value of index should be dbi.
-query <query> specifies the name of the FASTA formatted file

containing the query sequence.

-filtering_db <osr_db> is optional and is used to enable masking
the query for organism specific repeats. In this case osr_db is the name of
the database containing the repeats.

Runs in which -use_index is set to false are referred to as either
‘baseline’ or ‘non-indexed’.

Databases. The tests were run against human build 36 and mouse build
36 contig genome databases. The indices were created from unmasked
databases and databases masked with WindowMasker (Morgulis et al.,
2006a), including low-complexity filtering by DUST (Morgulis et al.,
2006b). Each database was split into several volumes, so that each volume
index was ∼1 GB in size, or less for the last database volume. The runs
were done for each volume individually, and the sum over all volumes was
recorded as the running time.

Queries. Queries were selected with a focus on human and mouse because
a central goal was to use indexed MegaBLAST in the production NCBI web
service to search the nucleotide sequences of these two genomes. For each
organism, four query sets, each containing 100 queries, were used to test the
performance of MegaBLAST. For production testing, we used 100 queries
from human only. We call these query sets Qsmall, Qmedium, Qlarge, Quser
and Qproduction. To form Qsmall, Qmedium and Qlarge, sample queries
for three approximate sizes were randomly selected from within bacterial
artificial chromosome (BAC) sequences from the genome being queried.
The sizes are: small (∼500 bases, range: 501–506), medium (∼10 Kbases,
range: 10000–10446), and large (∼100 Kbases, range: 100001–102087);
100 queries of each size were selected for each of human and mouse. The
query sets Qsmall, Qmedium, Qlarge are available in subdirectories of ftp://
ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/queries

The fourth set of queries, Quser, was created by first collecting real user
submissions over a period of one week to the NCBI BLAST web service,
with the restriction that the user clicked the link for querying the human
genome or the link for querying the mouse genome. For each organism,
100 queries were selected at random from among these real user queries.
When preparing Quser, we did not take note of any information about the
user submitting the query, only the query sequence and parameter settings.
Unlike the other query sets we used, Quser cannot be made public, so as
to protect the confidentiality of users and usage of the NCBI Web BLAST
service.

For production tests, we randomly selected 100 human sequences from
the nt database (ftp://ftp.ncbi.nih.gov/blast/db/) as our query set, and we call
this set Qproduction. The 100 query sequences ranged in size from 29 bases
to 181 166 bases. The 50th percentile query length was 1044 bases and the
75th percentile query length was 2120 bases, roughly reflecting the length
distribution of DNA queries submitted to the NCBI web pages.

2.2.2 Comparison of indexed MegaBLAST with miBLAST We compared
the performance of miBLAST (Kim et al., 2005) and NCBI MegaBLAST
with indexed database support by running Qsmall and Qmedium against
the unmasked database comprising contigs on human chromosomes 1
through 5. These chromosomes were selected because the size of the
database is ∼1 GB. For all runs, the queries were masked using DUST
algorithm (Morgulis et al., 2006b), but not masked for organism-specific
repeats.

The comparison to miBLAST is imperfect because of differences in the
intended usage and engineering of miBLAST and indexed MegaBLAST.
Some comparison on usage where functionality is similar provides more
useful information than showing no comparison at all. When comparing
against miBLAST, we used Qsmall and Qmedium but not Qlarge,
because miBLAST is intended only for short queries. Conversely, indexed
MegaBLAST includes some compromises in data structure design that
damage its performance on Qsmall slightly, so that its performance on
longer queries is competitive with or better than baseline MegaBLAST.
miBLAST uses the BLASTN module of BLAST to compute alignments,
which means that it takes longer and finds more imperfect local alignments
than MegaBLAST. To quantify this tradeoff, we ran miBLAST and indexed

1760

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast
ftp://
ftp://ftp.ncbi.nih.gov/blast/db/

Indexed MegaBLAST

MegaBLAST on a large-scale test of 10 000 50mer queries extracted from
human chromosomes 1-5. Because the queries are from the sequences in
the database, one might expect each query to yield at least one perfect, full-
length alignment, but no perfect match is reported for some queries because
of the use of DUST filtering.

2.2.3 Comparison of stand-alone indexed and non-indexed MegaBLAST
In all cases, each command line call to blastn involved one query. In
other words, the query concatenation feature of blastn application was
never used, so that query length can be used as a parameter in evaluating
performance. Recent versions of blastn also support splitting of long
queries. All queries used in the tests were short enough so that no query
splitting happened.

To compare how the query length and the number of results affected the
performance of the indexed database search compared to non-indexed case,
the query sets Qsmall, Qmedium and Qlarge were run against unmasked
indexed databases. No additional query masking was applied for these
tests.

2.2.4 Comparison of indexed and non-indexed MegaBLAST in a production
environment The NCBI BLAST web service utilizes a custom queueing
system (ftp://ftp.ncbi.nih.gov/blast/documents/blast-sc2004.pdf) to process
search requests and present results to the user. Depending on the database
size, a database may or may not be split into smaller chunks that can be
searched in parallel on worker nodes. Similarly, long queries can be split
and short queries, even submitted by different users, can be combined
into a single task. The system encourages cache reuse by steering tasks
to worker nodes that have recently performed similar searches. While
traditional MegaBLAST searches are parallelized and run in this manner,
indexed MegaBLAST searches are run in serial on dedicated machines. A
script runs periodically on these dedicated machines to ensure that the entire
index resides in memory.

We used a script (http://www.ncbi.nlm.nih.gov/blast/docs/web_blast.pl)
to submit one indexed and one non-indexed search for each query in
Qproduction against the human genome, allowing 2 s between submissions.
Reflecting the defaults of the NCBI BLAST web pages, the non-indexed
queries were masked for low complexity regions and human repeats. The
indexed queries were not masked, since the index incorporates masking
information. Times recorded were the start-to-finish wall-clock time for each
run, where each non-indexed search was spread over 10–20 worker nodes
and the time reported does not combine wall-clock times for individual
nodes.

3 RESULTS
To make BLAST databasse indexing feasible in production, a first
requirement is that the amount of memory used by the index data
structures should be reasonable. Table 1 shows the sizes of the
index volumes in relation to the actual database length. The data
are provided for the databases used for timing tests described in
Subsections 2.2.3 and 2.2.4 as well as for a shorter Drosophila
genome. The indices were created using s=5 and k =12. The last
column of the table shows the upper bound provided by formula 1.
The bound is pretty tight for unmasked databases. It is less tight in
the masked case, because it does not take into account the actual
number of unmasked bases.

A second requirement is that the amount of preprocessing time
needed to create the index data structures should be reasonable.
We measured the time it takes to create human unmasked,
human masked, mouse unmasked and mouse masked indices
as 1319.11 s, 1000.67 s, 1176.56 s, and 911.27 s, respectively.
For each database, the time in the previous sentence is the

Table 1. Database index size for different source databases

Source database Database Index size Bound
size (Mbp) (Mbytes) (Mbytes)

Drosophila, unmasked 116.78 229.60 250.62
Drosophila, masked 116.78 204.74 250.62
Human chr. 1-5, unmasked 1025.20 1197.79 1204.46
Human chr. 6-13, unmasked 1077.86 1254.13 1259.75
Human chr. 14-Y, unmasked 767.77 926.56 934.16
Human chr. 1-8, masked 1493.03 1229.81 1695.68
Human chr. 9-Y, masked 1377.79 1137.62 1574.68
Mouse chr. 1-7, unmasked 1140.61 1297.20 1325.64
Mouse chr. 8-16, unmasked 1074.64 1222.98 1256.37
Mouse chr. 17-Y, unmasked 428.82 538.65 578.26
Mouse chr. 1-10, masked 1526.66 1258.19 1730.99
Mouse chr. 11-Y, masked 1117.42 932.09 1301.29

Windowmasker software (Morgulis et al., 2006a) was used to generate masked
databases. Windowmasker was run with default parameters and low complexity masking
enabled. The bound column shows the upper bound calculated from formula 1.

sum of index volume creation times taken over all volumes of
the database.

Having shown that the data structures for database indexing can
be created in a reasonable amount of memory and time, we proceed
to evaluate the time for searching, especially the time for finding
seeds. The performance advantage or disadvantage of indexed seed
search, by which we mean the seed-finding phase of BLAST with
an indexed database, depends on the size of the seed candidate
lists (see Supplementary Material). When the database (or the query
originating from the corresponding genome) is masked for repeats
and low complexity regions, then the seed candidate lists are likely
to be short. However, for an unmasked database and query, the
indexed search may actually have worse performance compared to
the non-indexed case, if the query contains highly repetitive regions.

3.1 Comparison of indexed MegaBLAST and
miBLAST

Table 2 summarizes a performance comparison of miBLAST and
indexed MegaBLAST. miBLAST performs best on very short
queries; the query length of 500 bp used in Qsmall query set is
on the upper end of the useful query length range for miBLAST.
Since the performance of indexed MegaBLAST depends on the
total number of matches, Table 2 contains separate rows for queries
producing less than 5000 results and for the ones producing at least
5000 results. The performance of indexed MegaBLAST is better
than that of miBLAST by at least 2.5 times in all cases except for
the queries from Qsmall producing over 5000 results. In the latter
case, the performance advantage of miBLAST is under 12%. The
rightmost columns show that indexed MegaBLAST is faster than
miBLAST on the vast majority of queries considered.

On a large-scale test of 10 000 50-mer queries, miBLAST required
76 times more time (20 h and 25 min versus 16 min) to find 22 times
more local alignments (122.7 million versus 5.5 million). However,
indexed MegaBLAST found a perfect length 50 match for 9648
queries, while miBLAST found a perfect match for 9269 queries.
The superior performance of indexed MegaBLAST in finding perfect
matches is unexpected, and the description of miBLAST in Kim
et al. (2005) does not suggest to us why a perfect match should be

1761

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

ftp://ftp.ncbi.nih.gov/blast/documents/blast-sc2004.pdf
http://www.ncbi.nlm.nih.gov/blast/docs/web_blast.pl

A.Morgulis et al.

Table 2. Performance comparison of miBLAST and indexed MegaBLAST

Set No. of results Time (s) Faster

MI MB MI MB Tied

Qsmall <5000 170.20 23.21 0 89 0
≥5000 161.11 182.72 10 1 0

Qmedium <5000 129.16 39.26 0 17 0
≥5000 15340.13 4237.12 6 75 2

The time represents the sum of median results per query. In this table and in Table 3,
the number of results refers to the number of alignments reported, not the number of
database sequences with at least one reported alignment. The queries are grouped based
on the number of results. The three rightmost columns count the number of queries for
which either software package was faster or the running times were considered a tie.
The two running times for a query were considered a tie, if the time difference is <0.1s.

missed by miBLAST on ∼4% of queries, where it is not blocked by
DUST filtering.

The index structure used by miBLAST differs fundamentally from
that described here in that for each k-mer, the miBLAST index
stores only the sequence identifiers containing that k-mer but not the
offsets. As demonstrated by Kim et al. (2005), the resulting space
savings can be advantageous when queries are short. However, as
query length grows, the fraction of database sequences that contain
a k-mer of the query grows closer to one. Therefore, the fraction of
database sequences that have to be considered for alignment to the
query, which Kim et al. call the ‘filtration ratio’ grows closer to one
and the relative performance of miBLAST deteriorates.

3.2 Comparison of stand-alone indexed and
non-indexed MegaBLAST

Table 3 compares the performance of baseline and indexed searches.
Queries are categorized depending on whether they yield a small
number (<5000) of result alignments or a large number. In the
former case, indexed seed search is 5–9 times faster than non-
indexed search. In the latter case, however, indexed seed search is
slower due to more cache misses. When the number of seeds is very
large, the proportion of time spent in seed search is small; almost all
time is spent in seed extension procedures. As a consequence, the
relative decrease in total running time is rather small—between 0%
and 8%.

For masked databases, indexed MegaBLAST is consistently faster
than baseline across all query sets, as shown by Table 4. In these
runs, the baseline search is not performed with the query unmasked
because baseline MegaBLAST cannot utilize database masking
information. Masking of the query results in a small number of seeds
in both the indexed and baseline runs, making the amount of time
spent in later processing of seeds and alignments comparable. The
performance advantage is achieved partly because in the indexed
run, a substantial fraction of the masked database is not scanned
for potential seeds. The decrease in total running time is also more
substantial in the masked case because the extension procedures
have much fewer seeds to process.

For masked databases, indexed MegaBLAST searches with the
query also masked for repeats were done to evaluate if masking the
query makes sense when the database is masked already. The results
(Table 4) show that although the seed search phase is somewhat

Table 3. Running time in seconds for baseline and indexed versions of
MegaBLAST in the case of the unmasked human genome database

Set <5000 results ≥5000 results

Count Baseline Indexed Count Baseline Indexed

Qlarge 1 5.08 3.49 61 44173.96 43888.14
1.46 0.29 961.24 1396.93

Qmedium 13 82.17 71.95 87 13009.04 13325.62
24.06 6.29 305.10 745.59

Qsmall 88 118.05 56.51 12 528.85 570.84
68.19 7.24 13.70 65.86

For each query set the top row contains the number of queries in the corresponding
group and the total search time. The second row shows the time taken by the seed
search phase only. For 38 queries in Qlarge, at least one version of MegaBLAST ran
out of memory due to the large number of results.

Table 4. Running time in seconds for baseline and indexed versions of
MegaBLAST in the case of masked genomes and query masked (indicated
by yes) or unmasked (indicated by no)

Human masked Mouse masked

Set Baseline Indexed Baseline Indexed

Yes Yes No Yes Yes No

Qlarge 1097.11 511.76 418.31 1702.35 736.74 613.17
447.42 108.32 127.60 447.50 98.71 114.07

Qmedium 266.43 90.80 95.36 437.45 146.63 140.94
176.21 23.97 28.64 162.15 22.82 25.63

Qsmall 104.79 27.24 26.44 148.98 64.93 67.76
76.83 5.27 5.33 70.10 5.32 5.11

Quser 144.06 46.12 NA 164.21 82.82 NA
93.49 8.27 NA 83.18 7.01 NA

For each query set the top row is the total search time, and the second row is the time
taken for the seed search phase only. NA—not applicable.

faster in the case of masked queries, the total running time may be
worse. This anomaly occurs because masking the query involves
calling a separate BLAST search against a repeats database and the
overhead of doing that actually offsets any performance benefit due
to reduced number of seeds.

3.3 Comparison of indexed and non-indexed
MegaBLAST in a production environment

Figure 2 presents run times for 100 indexed searches and 100 non-
indexed searches in a production setting, with the exception that
the compute cluster used for this test was not being used for other
tasks. Time reported is for the second of the two searches done
for each query and each method. The average wall-clock time was
0.5 s for an indexed search and 0.8 s for a non-indexed search. The
75th percentile times offer a better measure of the user experience;
this was 0.38 s for an indexed search and 1.37 s for a non-indexed
search. Times are plotted against logarithm of query size to show

1762

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

Indexed MegaBLAST

 0

 1000

 2000

 3000

 4000

 5000

 6000

1.5 2 2.5 3 3.5 4 4.5 5 5.5

R
un

ni
ng

 ti
m

e
(m

ill
is

ec
on

ds
)

Log of the query length

without index

with index

Fig. 2. Wall-clock times for 100 indexed and non-indexed searches in a
production setting, as a function of logarithm of query length. Considering
times to be tied if they are within 0.01 s, indexed search is faster 75 times,
non-indexed search is faster 19 times, and they tie on 6 queries. Indexed
search is faster on shorter queries and slower on the longest queries.

that indexed search is generally faster for shorter queries and non-
indexed search is faster for longer queries.

Since the non-indexed search uses 10–20 nodes while the indexed
search uses one node, non-indexed search may use a lot more total
CPU time than indexed search even when the non-indexed wall-
clock time is less. So long as the dedicated machines for indexed
search can keep up with incoming MegaBLAST queries to the
human and mouse genomes, users perceive a much faster response
time for the genome-specific queries because of the combined effects
of faster runs and no competition from queries to other databases.
Quantifying the benefits to throughput for all types of queries is
difficult, since the workload for the dedicated and shared machines
is variable over time.

4 DISCUSSION
We presented a new implementation of the seed search phase of
MegaBLAST (Zhang et al., 2000) in which seeds are found by
searching an index structure of k-mers derived from preprocessing
the database. We showed that this ‘indexed MegaBLAST’ is
faster than the ‘baseline MegaBLAST’, which preprocesses the
query, in most cases and especially for masked databases. When
indexed MegaBLAST is slower because there are too many seeds,
performance degradation is limited enough that the code can be used
in production. Indexed MegaBLAST satisfies the requirement that
the outputs are identical or nearly identical to baseline MegaBLAST,
so long as all options are set consistently. In addition, usage of the
preprocessor program makembindex is being tested at NCBI for
other projects such as alignment of short sequences generated by
‘next-generation sequencing technologies’ to a reference genome.

Undertaking this project was positively influenced by several
research papers suggesting that preprocessing the database for initial
lookup could give faster search times than preprocessing the query.
We decided to put our effort into a relatively simple data structure
design, the seed search phase of the MegaBLAST module, and
support for masked databases, so as to get some use of database

indexing into production BLAST usage more quickly. Now that this
overarching goal has been achieved, there are many possibilities to
extend and improve our implementation.

First, our implementation could be extended to the BLASTN
module by changing the strides and k-mer lengths. To get good
performance, some alternative data structure for long lists may be
necessary, as discussed subsequently. Extending our work to protein
searching would be much more challenging due to the increased
alphabet size. Williams and Zobel (2002) implemented a research
prototype for nucleotide and protein searching, called CAFE, in
which they preprocessed the database into an inverted index. They
demonstrated quite impressive performance for CAFE, but to get
that performance, they substantially changed the searching methods
and scoring used in phases of the homology search beyond the initial
word lookup. Thus, to make a production version that replaces some
BLAST module would be more difficult than the seed search phase
replacement we carried out.

There are some possible algorithmic improvements to our
implementation that could be tried without a major redesign. We
summarize two of these possible changes. Instead of using a uniform
stride (by default s=5) when selecting k-mer occurrences to put in
the index, one could stride by a non-uniform increment in such
a way that every potential seed (default length 28) is adequately
represented by one or more k-mer substrings. The stride at each
position could be chosen so that the k-mers whose occurrences
are in the index are as infrequent as possible. This would make
the k-mer lists longer but speed up the seed search phase. A
preliminary assessment of the human genome suggested that using
non-uniform strides could simultaneously increase the length of
the k-mer lists by 9% and shorten the weighted average length by
25%; ‘weighted average’ means that each k-mer is weighted by its
number of occurrences in the genome. Using non-uniform strides
would make the preprocessing take longer, but we do not consider
database preprocessing time as a primary measure of performance,
since preprocessing is done outside MegaBLAST. Another possible
improvement is that long singly linked lists of k-mers could be
replaced by a more sophisticated structure such as a hash table or
some sort of tree (Giladi et al., 2002).

Possible improvements suggested by research implementations
of database indexing, which require a major redesign, include the
following. Using ‘q-gram filtering’, which considers the number of
k-mer matches within a region of dynamic programming alignment
matrix, can provide a more stringent filter for candidate matches than
single seeds (Rasmussen et al., 2006). The database sequences could
be transformed into data feature vectors as proposed in Lee et al.
(2007). In the same spirit as the k-mer reordering we described under
optimizations already implemented (Supplementary Material), some
subset of ‘pier’ k-mers could be stored in a smaller, more rapidly
accessible data structure as proposed in Cao et al. (2004). Finally, the
sequence representation implemented in MICA (Stokes and Glick,
2006) could allow for a space efficient way to store database indices
for smaller values of k [Stokes and Glick (2006) state k =7 as the
effective upper limit for k]. Such indices could be used for more
sensitive searches currently provided by BLASTN.

In sum, one part of NCBI’s web BLAST service has been using
indexing of the database rather than indexing of the query in
the seed search phase since October 2007. Production usage of
indexed MegaBLAST and the tests herein validate the performance
improvements that have been claimed for database indexing.

1763

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

A.Morgulis et al.

Further improvements to our implementation, possibly requiring a
major redesign, may be achievable.

ACKNOWLEDGEMENTS
Thanks to Yuri Merezhuk for providing statistics on the use of the
indexed MegaBLAST service and for help in assembling the Quser
test set. Thanks to Ivan Ovcharenko for testing the command line
version of indexed MegaBLAST and suggesting improvements to
the documentation.

Funding: This research is supported by Intramural Research
Program of the National Institutes of Health, NLM.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST – a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Cao,X. et al. (2004) Piers: an efficient model for similarity search in DNA sequence
databases. ACM SIGMOD Record (Special Issue on Data Engineering for Life
Sciences), 33, 39–44.

Gertz,E.M. et al. (2006) Composition-based statistics and translated nucleotide
searches: improving the TBLASTN module of BLAST. BMC Biol., 4, 41.

Giladi,E. et al. (2002) SST: an algorithm for finding near-exact sequence matches in
time proportional to the logarithm of the database size. Bioinformatics, 18, 873–879.

Jiang,X. et al. (2007) Survey on index based homology search algorithms.
J. Supercomput., 40, 185–212.

Kent,W.J. (2002) BLAT— the BLAST-like alignment tool. Genome Res., 12, 656–664.
Kim,Y.J. et al. (2005) miBLAST: scalable evaluation of a batch of nucleotide sequence

queries with BLAST. Nucleic Acids Res., 33, 4335–4344.
Lee,A.J.T. et al. (2007) A novel filtration method in biological sequence databases.

Pattern Recog. Lett., 28, 447–458.
Morgulis,A. et al. (2006a) A fast and symmetric DUST implementation to mask low-

complexity DNA sequences. J. Comp. Biol., 13, 1028–1040.
Morgulis,A. et al. (2006b) WindowMasker: Window-based masker for sequenced

genomes. Bioinformatics, 22, 134–141.
Ning,Z. et al. (2001) SSAHA: A fast search method for large DNA databases. Genome

Res., 11, 1725–1729.
Rasmussen,K.R. et al. (2006) Efficient q-gram filters for finding all ε-matches over a

given length. J. Comp. Biol., 13, 296–308.
Shiryev,S.A. et al. (2007) Improved BLAST searches using longer words for protein

seeding. Bioinformatics, 29, 2949–2951.
Stokes,W.A. and Glick,B.S. (2006) MICA: desktop software for comprehensive

searching of DNA databases. BMC Bioinformatics, 7, 427.
Williams,H.E. and Zobel,J. (2002) Indexing and retrieval for genomic databases. IEEE

Trans. Knowl. Data Eng., 14, 63–78.
Zhang,Z. et al. (2000) A greedy algorithm for aligning DNA sequences. J. Comp. Biol.,

7, 203–214.

1764

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/1757/202524 by guest on 23 April 2024

