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ABSTRACT

Motivation: The classification methods typically used in
bioinformatics classify all examples, even if the classification is
ambiguous, for instance, when the example is close to the separating
hyperplane in linear classification. For medical applications, it may
be better to classify an example only when there is a sufficiently
high degree of accuracy, rather than classify all examples with
decent accuracy. Moreover, when all examples are classified, the
classification rule has no control over the accuracy of the classifier;
the algorithm just aims to produce a classifier with the smallest error
rate possible. In our approach, we fix the accuracy of the classifier
and thereby choose a desired risk of error.
Results: Our method consists of defining a rejection region in
the feature space. This region contains the examples for which
classification is ambiguous. These are rejected by the classifier.
The accuracy of the classifier becomes a user-defined parameter
of the classification rule. The task of the classification rule is to
minimize the rejection region with the constraint that the error rate of
the classifier be bounded by the chosen target error. This approach is
also used in the feature-selection step. The results computed on both
synthetic and real data show that classifier accuracy is significantly
improved.
Availability: Companion Website. http://gsp.tamu.edu/Publications/
rejectoption/
Contact: edward@ece.tamu.edu, hanczar_blaise@yahoo.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microarrays provide simultaneous expression measurements for
thousands of genes and are now used in many fields of medical
research. One of the most promising applications is the prediction
of a biological parameter based on the gene-expression profile. For
example, expression profiles can be used to differentiate different
types of tumors with different outcomes and thereby assist in the
selection of a therapeutic treatment. This task consists of using
a training microarray dataset to build a classifier with which to
make a prediction for an unknown patient. Diverse methods from
pattern recognition have been used: linear discriminant analysis

∗To whom correspondence should be addressed.

(Dudoit et al., 2002), support vector machines (Furey et al., 2000),
neural networks (Khan et al., 2001), etc. Even if these methods
produce classifiers with a good accuracy, very often they are
still insufficiently accurate to be used in medical applications.
A diagnostic or a choice of therapeutic strategy must be based on a
very high confidence classifier.

As typically applied in the context of gene-expression
classification (for instance, in the previously cited works), classifiers
classify all examples even if the classification is unsafe, for example
when the example is close to the separating hyperplane. On the other
hand, a physician confronted with ambiguous symptoms may refer
the patient to another specialist instead of giving an unsafe diagnosis.
If this concept is implemented in the classification model, then it
may be more useful in practical medial application. For instance,
in cancer treatment, knowing the type of cancer is a crucial factor
to defining a efficient therapeutic strategy. A classifier with a 20%
error rate in predicting the cancer type of an arbitrary patient may be
useless. It can preferable to have a classifier that predicts the cancer
type of only a part of the patients with a very high accuracy, with
the other patients being handled by other techniques.

In this article, we recall the concept of classification with reject
option based on Chow’s theory. A rejection option is added to
classical classification methods and determines whether a given
example will be classified or rejected (not classified). Then we
present our method of classification based on Chow’s works (Chow,
1970) in the context of gene-expression data. The error rate of the
classifier becomes a parameter of the classification rule that is chosen
by the user. The learning task is to minimize the rate of rejection
with respect to the given error rate. We show how to implement this
kind of classifier in the context of wrapper feature selection. We test
and show the usefulness of the proposed method on both artificial
and real data.

2 THEORY OF CLASSIFICATION WITH REJECT
OPTION

Consider a classification problem with two classes, C = {C1,C2},
where an example is characterized by a feature vector x∈Rp and
a label y∈C. The posterior probability is defined by the Bayes’s
formula:

p(Ci|x) = p(x|Ci)p(Ci)

p(x)
= p(x|Ci)p(Ci)∑2

i=1p(x|Ci)p(Ci)
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where p(Ci) is the prior probability of class Ci, p(x|Ci) is the
conditional probability of x given Ci and p(x) is the probability
of x. A classifier is a function f :Rp →C which divides the feature
space into two regions, R1,R2, one for each predicted class, such
that x∈Ri means that f (x) = Ci. The performance of a classifier is
measure by its error rate,

ε[ f ] = p( f (x) �=y) =
2∑

i=1

∫
Ri

2∑
j=1;j �=i

p(x|Cj)p(Cj) dx

which is the probability of making an incorrect classification. The
accuracy of a classifier is defined as the probability of making a
correct decision.

a[f ] = 1−ε[f ]
The classifier minimizing the error is called the Bayes classifier. It
predicts the class having the highest posterior probability:

fBayes(x) = argmax
Ci

(p(Ci|x))

It is not possible to obtain a better accuracy than with the Bayes
classifier.

If the accuracy of the Bayes classifier is not sufficient for the
task at hand, then one can take the approach not to classify all
examples, but only the those for which the posterior probability
is sufficiently high. Based on this principle, Chow (1970) presented
an optimal classifier with reject option. A rejection region Rreject
is defined in the feature space and all examples belonging to this
region are rejected by the classifier. An example x is accepted only
if the probability that x belongs to Ci is higher than or equal to a
given probability threshold t:

f (x) =
{

argmaxCi
(p(Ci|x)) if maxCi

(p(Ci|x))≥ t
reject if p(Ci|x)< t ∀i

The classifier rejects an example if the prediction is not sufficiently
reliable. The rejection rate is the probability that the classifier rejects
the example,

p(reject) =
∫

Rreject

p(x) dx = p(max(p(Ci|x))≤ t)

The acceptance rate is the probability that the classifier accepts an
example,

p(accept) = 1−p(reject)

In classification with reject option, we can define two types of
error. The error, ε[f ], is the probability of making an incorrect
classification. The conditional error,

εcond [f ] = p(f (x) �=y|accept)

is the probability of making an incorrect classification, given the
classifier has accepted the example. We have the following basic
properties:

p(accept)+p(reject) = 1

p(f (x) = y)+p(f (x) �=y)+p(reject) = 1

p(f (x) = y|accept)+p(f (x) �=y|accept) = 1

There is a general relation between the error and rejection rate: the
error rate decreases monotonically while the rejection rate increases
(Chow, 1970). Based on this relation, Chow proposes an optimal
error versus reject tradeoff.

In Chow’s theory, an optimal classifier can be found only if the true
posterior probabilities are known. This is rarely the case in practice.
Fumera et al. (2000) show that Chow’s rule does not perform well
if a significant error in probability estimation is present. In this case,
they claim that defining different thresholds for each class gives
better results. The classification rule becomes:

f (x) =
{

argmaxCi
(p(Ci|x))if maxCi

(p(Ci|x))≥ ti
reject if p(Ci|x)< ti ∀i

Although this kind of classifier is popular in the machine learning
community, it is rarely used in microarray-based classification. Note
that this method is close to the notion of soft classification. The main
difference is that in soft classification, the posterior probabilities are
the output of the classifier. In classification with reject option, a
decision is made based on these posterior probabilities. The output
of the classifier is a class or a rejection.

In classifier with rejection option, the key parameters are the
thresholds ti that define the reject areas. Several strategies have
been proposed to find an optimal reject rule. Landgrebe et al. (2006)
define 3D ROC curves for a classifier, where the axes represent the
true positive rate, the false positive rate rejected by the classifier
and the false positive rate accepted by the classifier. The optimal
thresholds are chosen by maximizing the volume under the 2D
surface. Dubuisson and Masson (1993) propose a rejection rule for
problems where the classes are not well known. They include two
rejection options: an ambiguity reject when an example is situated in
the area between several classes and a distance reject for examples
far from the samples of known classes. Li and Sehi (2006) propose to
control the error instead of finding a trade-off between rejection and
error rates. They reformulate the problem as: given an error rate for
each class, design a classifier with the smallest rejection rate. Our
approach is similar in that we propose to control the conditional
error rate of the classifier, not the error.

3 IMPLEMENTATION FOR BIOINFORMATICS
In this section, we present our method of classification with
reject option in the context of gene-expression-based classification.
A classifier with reject option is composed of two elements: a
classifier model and a set of thresholds. We explain this in the
following sections and show how include this concept in the feature
selection. In this article, we restrain our work to 2-class classification
problems; multi-class problem will be studied in future works.

3.1 Classifier model
For binary classification, a classifier is a mapping f :Rp →{0,1};
however, a classifier can be defined via a discriminant function
d :Rp →R, where the sign of the function is used to predict the
label of a given example: d(x)≤0 implies f (x) = C1 and d(x)>0
implies f (x) = C2. By treating classification in this context, the
distance, |d(x)|, of the output from the origin can be used to
represent the confidence of the classification. Of interest in the
present circumstance is that, whereas Chow’s theory is defined using
the posterior probabilities, it is not necessary to compute them to
apply a rejection rule. The rejection region can be defined directly
via d(x).

Figure 1 illustrates two class-conditional densities for the
discriminant, the density corresponding to Ci determining
probabilities corresponding to d(x) given Ci. The two vertical lines
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Fig. 1. Probability distribution of the two classes on the classifier output.

represent two thresholds, t1 and t2, the light gray area between t1
and t2 being the rejection region. The area to the left of t2 is the
region where examples are classified into the class C1. In this region,
the dark gray area represents the probability p(f (x) = C1,accept|y =
C2). We define the conditional error of class C2 by

εcond
2 = p( f (x) = C1,y = C2|accept)

Equivalently,

εcond
2 = p(f (x) = C1,accept|y = C2)p(Y = C2)

P(accept)

which shows how the dark gray region gives the conditional error of
class C2. The conditional error εcond

1 is defined analogously. Note
that the conditional errors depend on both thresholds.

3.2 Threshold selection
The task is to select thresholds to define regions for the two classes
and the rejection region. This choice determines the error reject
trade-off. As seen in Section 2, several optimization strategies have
been proposed. Our method is to fix a target condition error, ε∗

i ,
for each class. These conditional errors become parameters of the
algorithm and the learning objective is not to minimize the error but
to minimize the rejection rate under the constraints εcond

i ≤ε∗
i . If t1

and t2 are two thresholds, t2 < t1, then the problem can be formalized
as an optimization problem with three constraints:

minimize (t1 −t2)


(1) εcond
1 ≤ε∗

1
(2) εcond

2 ≤ε∗
2

(3) t2 ≤ t1

This minimization problem is represented by Figure 2. The two
axes correspond to the values of the thresholds t1 and t2, and the
three constraints are represented by the three lines, (1), (2) and
(3). The domain of validity is represented by the white region.
Minimizing t1 − t2 is equivalent to minimizing t1 and maximizing t2.

Fig. 2. Representation of the optimization problem. The two axis correspond
the values of the two thresholds t1 and t2. The three lines (1), (2) and (3)
represent the three constraints of the optimization problem. The white region
represents the domain of validity. The dotted lines represent the heuristic
search to find the optimal solution.

The solution is represented on the figure by the junction point of the
lines (1) and (2). Note the bound of the constraint (3) corresponds to
classifiers where t1 = t2, i.e. classifiers with no reject option. On this
line, the origin corresponds to the regular classifier where there is a
single threshold at 0.

We propose an iterative procedure to find the solution of this
optimization problem. For a given value of ε∗

1 , let the function
gε∗

1
(t1) = t2 [resp. gε∗

2
(t2) = t1] gives the value of t2 (resp. t1) for any

value of t1(resp. t2). t1 and t2 are initialized with their maximum
and minimum values, respectively, in the search space, represented
by the point on the upper left corner in Figure 2. We alternately
minimize t1 with respect to the constraint εcond

1 ≤ε∗
1 and maximize

t2 with respect to the constraint εcond
2 ≤ε∗

2 . At the i-th iteration,

the threshold pair is (ti1,ti2), and at the next iteration, ti+1
1 = gε∗

1
(ti2)

and ti+1
2 = gε∗

2
(ti+1

1 ). This procedure is iterated until t1 cannot be
decreased and t2 cannot be increased. The search is represented in
Figure 2 by the dotted line.

Since the functions gε∗
1
(t1) = t2 and gε∗

2
(t2) = t1 are monotonely

decreasing, the search converges to a unique solution, except in two
special cases. First, when the domain of validity is empty there is no
solution. It does not exist a classifier satisfying the constraints for
the target errors. Second, there are several solutions, all solutions
being of the type t1 = t2, meaning these solutions are correspond to
classifiers with no reject option. In this case it not necessary to use a
reject option; the regular classifier is sufficiently accurate to respect
the target errors.

Resolving this minimization problem requires estimating the
density probabilities of the two classes on the classifier output.
This estimation is done by Gaussian kernel density estimation
method (Silverman, 1986), the principle being to applied a Gaussian
distribution on all points and sum all these distributions.
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Since the conditional errors depend on the classifier, it is important
to use different subsets to learn the classifier and to compute the
thresholds; otherwise the probability estimates used for finding the
thresholds will tend to be low-biased. This means that the training
dataset, Strain, should be split into Smodel and Sthres, with the
classifier learned on Smodel and then the thresholds constructed using
Sthres and the learned classifier.

3.3 Feature selection
For feature selection we adapt sequential forward search (SFS) to
classification with reject option. In the usual application of SFS,
the features providing the lowest error rate are selected; however,
in the reject scenario, the selection criterion is no longer the error
rate but is instead the size of the rejection region. As the search
proceeds, we select the feature providing the lowest rejection rate
under the conditional error constraints εcond

1 ≤ε∗
1 and εcond

2 ≤ε∗
2 . As

we have previously noted, the threshold computation can fail when
there is no solution to the optimization problem. If the selection of a
feature leads to this case, then there is no classifier and this feature
is directly removed from the potential selectable features for this
iteration. For the next iteration, this feature will be tested again. In
the case where all features lead to failed classifiers, the selection is
done by selecting the feature that minimizes the error rate of the
classifier with no reject option. This case may occur in the first
iterations of the feature selection, when the information contained
in the selected features does not allow the construction a classifier
respecting the target error constraints.

4 RESULTS AND DISCUSSION
We present results showing the advantage of using a rejection
option in classification and the limitations of this method. The
experiments use both synthetic and real data. The experiments
on synthetic data permit very accurate estimations of the error
and rejection rates. The experiments on real data require the use
of sampling methods to estimate the error rate and it has been
shown that these methods are inaccurate for small-sample problems
(Hanczar et al., 2007); nonetheless, we present them under this
codicil to illustrate the method on real data, keeping in mind that, as
always with small samples, the experiments using synthetic data are
more definitive owing to better error estimation. In all experiments,
we are interested only in the conditional error and to simplify the
notation we will call this term the error. We assume that the target
errors are equal: ε∗ = ε∗

1 = ε∗
2 , and we compute only the total error

rate ε. We compare our method with classifiers with no reject option
and with classifiers using posterior probabilities. The classifier with
posterior probabilities, described in Section 2, has a fixed pre-defined
threshold. If the posterior probabilities are lower than this threshold,
then the example is rejected. In the following sections, we present
some representative results. Supplementary results and details on
experimental design can be found in the companion website.

4.1 Synthetic data
The synthetic data are generated from real microarray dataset. We
use three microarray datasets: colon, breast and lung cancer datasets,
which are detailed in the next sections. A dataset is reduced to its
30 best genes, based on their t-test scores. Then Gaussian mixture
models are fit for each of the two classes. N/2 and 5000 examples

are, respectively, generated for each class to form the training and
test set. Finally, 1970 noise features are added to the training and
test sets. A noise feature is generated for the two classes from the
same Gaussian distribution whose mean and standard error are of
same order as the other features. Altogether, the synthetic data has
two equally likely classes, a training set of N examples, a test set of
10000 examples, 30 relevant features and 1970 irrelevant features.
More details are presented on the companion website.

Figure 3 shows the results on synthetic data generated from a
colon cancer dataset, N = 200, the classification rule is the a SVM
with linear kernel. The dotted line corresponds to the error rate of the
classifier with no reject option. In panel A, the full line represents the
error rate of classifier with reject option whose the target error rate
is 0.1. In panel B, the full line represents the error rate of classifier
using the posterior probabilities whose threshold is to 0.1. The gray
histogram represents the rejection rate whose scale is on the left
axis. Up to 20 features are selected by the SFS procedure. In panel
A, we see that with no reject option the error rate decreases during
the first four iterations and then stays around 0.15. If we apply our
algorithm with target error rate 0.1, the error is always around 0.1.
The reject rate is around 0.6 with a minimum at 0.4 for three selected
features. Note that in classification with no reject option the error rate
begins to decrease strongly then increase slowly with the number
of selected features, thereby exhibiting the peaking phenomenon
(Hua et al., 2005). For the classifier with reject option, the error
rate is stable around the target error for any number of selected
features. It is interesting to note that the peaking phenomenon can
be observed with the rejection rate, the optimal solution in the reject
setting corresponding to the classifier that accepts the maximum
of examples. In panel B, we see the error rate of classifier using
posterior probabilities is between 0.07 and 0.08 and the rejection
rate is higher than 0.75. Compared to our method, the classifier using
posterior probabilities is more accurate but rejects more examples.
The tradeoff error/rejection is better in our method because in both
methods we respect the constraints (error ≤0.1) but our method
rejects less examples.

Another experiment using the colon cancer dataset has been done
in which we vary the target error rate. We use the same parameters
as in the previous experiment except that the number of selected
features is fixed to 10. The classifier with no reject option still
produces an error rate of 0.15. We construct classifiers with reject
option with different target error rates. The results are presented in
the Figure 4. We see that the errors of classifiers are very close to the
target error, meaning that the constraint on target error is respected.
The rejection rate decreases as the target error increases, going from
0.91 for ε∗ = 0.05 to 0.12 for ε∗ = 0.15. Increasing the target error
makes the problem easier, the threshold region decreases, and more
examples are accepted.

At the last point of the figure (ε∗ = 0.15), the target error is the
same as the error of the classifier with no reject option, which has
been found by directly applying the classification rule. One might
expect that in this situation there would be no rejection area and
all the examples would be accepted. This is not the case: 12% of
the examples are rejected, even through the classifier with no reject
option shows that it would be possible to classify all examples at the
target error. This apparent anomaly occurs because for the classifier
with reject option the training data have been evenly split into two
sets, one for model learning and the other for threshold computation.
That means the classification rule is applied on only the half of
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Fig. 3. Result of classification on artificial data based on colon dataset. N = 200 and the classification rule is a linear SVM. The dotted line represents the
error rate of classifier with no rejection. In panel A, the full line represents the error rate of classifier with reject option whose target error rate is 0.1. In panel
B, the full line represents the error rate of classifier using the posterior probabilities whose threshold is to 0.1. The gray histogram represents the rejection rate
whose scale is on the left axis.

Fig. 4. Results of classification with reject option on artificial data. The full
line represents the error rate of the classifier and the dotted line represents
the situation where error equal target error. The gray histogram represents
the rejection rate whose scale is on the left axis.

the training set in the case of classification with reject option and,
therefore, the classifier designed with reject option is less powerful
than the classifier designed with no reject option. This is the first
limitation: if the target error is close to the error obtained by the
classifier with no reject option, then there is no benefit to using the
classifier with reject option.

Algorithm performance is influenced by the training set size.
Figure 5 shows the results on the lung cancer dataset with a SVM

Fig. 5. Result of classification on artificial data based on lung dataset.
N = 200 and the classification rule is a linear SVM. The cross line represents
the error rate of classifier with no rejection option. The circle line represents
the error rate of classifier with reject option whose target error rate is
represented by the dotted line . The gray histogram represents the rejection
rate whose scale is on the left axis.

classifier. The error rates of the classifier without and with reject
option are represented with the cross and circle lines, respectively.
The difficulty of classifier design depends on the size of the training
set, the larger the training set, the easier the design. Therefore, it is
not appropriate to fix the same target error for all training set sizes.
We have chosen to set the target error to the half of the error obtained
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Fig. 6. Result of classification on lung cancer dataset. In panel A, the classification rule is the Fisher discriminant. Panel B is a SVM with linear kernel. The
dotted line represents the error rate of classifier with no rejection option and the full line represents the error rate of classifier with reject option whose target
error rate is 0.05. The gray histogram represents the rejection rate whose scale is on the left axis.

by the classifier with no reject option. This target error is represented
by the dotted line. The rejection rate is represented by the gray
histogram. We see that for a training set size of N = 200 or more the
target error is respected with a rejection rate between 0.25 to 0.5. For
N = 100 the error rate of the classifier with no reject option is 0.09
and the target error is 0.045. The classifier with reject option does not
respect the target error constraint, its error being 0.06. With N = 50
the error rate of the classifier with no reject option is 0.18 and the
target error is 0.09. There are no results for the classifier with reject
option because classifier construction fails, there were no solution
to the optimization problem during the threshold computation step.
These problems are related to the density estimations of the classes
on the classifier output. This estimation is done with N/4 examples
for each of the two classes, which means 12 and 25 examples for
the N = 50 and N = 100 problems, respectively. When the number
of examples is too low, the density estimations are very inaccurate
and lead to bad reject options. This is the second limitation of the
method. If the number of examples is too low to estimate accurately
the class densities, then the classifier construction may fail or the
classifier not respect the target error constraints.

4.2 Real data
We have applied our approach on three real microarray datasets. We
have used the lung cancer dataset (Bhattacharjee, 2001) whose the
task is to discriminate the adenocarcinmas from the other type of
cancers. The data contains 139 adenocarcinomas and 64 cancers of
another type. The colon cancer dataset (Alon et al., 1999) contains
the genetic profile of 39 patients affected by a colon cancer and 23
non-affected patients. The breast cancer dataset has (van de Vijver,
2002) 295 patients affected by a breast cancer, 115 belonging to
the good-prognosis class and 180 to the poor-prognosis class. We
have reduced the three datasets to a selection of the 2000 genes with
highest variance.

Unlike the synthetic data, there is no test set to estimate classifier
performances. We use k-fold cross-validation, which is an iterative
procedure where the data are randomly divided into k subsets.
During the i-th iteration, the feature selection and model learning
are done on the k−1 subsets not containing the i-th subset and
the designed classifier is evaluated on the i-th subset. The final
estimate is the mean of the results of the k iterations. We use
10-fold cross-validation in our experiments. As noted previously,
cross-validation is not very reliable in small sample settings
(Hanczar et al., 2007), and therefore these results should be viewed
with caution.

Figure 6 shows the results of classification on the lung cancer
dataset as a function of the number of selected features. The target
error of each class is fixed to 0.05. In panel A, the classification
rule is the Fisher discriminant. Owing to the high variance of
cross-validation, the error curves are unstable; nonetheless, we can
put forth some putative statements. The error rate for the classifier
with no reject option is decreasing until 15 features and then stays
around 0.08. For the classifier with reject option, the error rate is
higher than the target error rate and the rejection rate is high with
<10 features, perhaps meaning that there are insufficient features,
which would be consistent with the classifier with no reject option.
From 10 features onward, the error rate respects the target error
constraints and the rejection rate is stabilized at around 0.5. In panel
B the classification rules is SVM with linear kernel. The error of
the classifier with no reject option is around 0.1. For any number of
selected features, the classifier with reject option reaches the target
error rate. From 3 features onward, the rejection rate is stabilized at
around 0.37. These results indicate that on real data, using a reject
option with the two classifiers improves their accuracy.

As previously remarked, there are limitations to these methods.
For instance, a low number of examples has a bad impact on the
results. For the colon cancer dataset, the classifier with no reject
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option has an error rate from 0.15 to 0.17. With the target error
set to 0.1, the error rate of classifier with reject option is highly
variable, from 0.14 to 0.53, and is much higher than the target error.
The rejection rate is very high, always >0.9. These poor results are
not unexpected because the colon cancer dataset contains 39 and 23
patients for the two classes. That means during the cross-validation
procedure, the probability densities of the two classes are estimated
with only 17 and 10 examples, respectively. With so small a number
of examples, density estimation is very inaccurate and leads to wrong
thresholds.

The breast cancer dataset illustrates another limitation of trying
to improve classification accuracy with a reject option. The target
error is set to 0.2 and the error of the classifier with reject option
varies between 0.28 to 0.53. The rejection rate is very high, >0.85.
Moreover, classifier construction fails 75% of the time. In this case,
the problem does not come from the threshold computation but from
the feature-label distribution and the class split in the sample data.
The error rate of the classifier with no reject option is between 0.3
and 0.35 but the good-prognosis class represents only 34% of all
examples. This means that the classifier has the same accuracy
as the majority classifier that predicts all examples to be in the
poor-diagnosis class. In effect, the classifier does not discriminate
between the two class densities. Computation of the threshold cannot
improve the accuracy of the classifier. This result demonstrates
the last limitation of our method: if the regular classifier has no
discriminatory power, then the incorporation of a reject option will
not improve its accuracy.

5 CONCLUSION
We have presented a new approach of the classification of gene-
expression data. The principle is to add an reject option to the
regular classifier. Only the examples for which the classification
is sufficiently reliable are classified. The rejection region is defined
by two thresholds. If an example belongs to the reject region, then
the example is rejected; otherwise, it is accepted. Unlike regular
classifier, the proposed method allows the user to control the error
rate of the classifier. The error rate become a parameter of the
classifier design and performance now depends of the rejection rate.
The classifier respecting the target error constraint with minimal
rejection rate is the best. We have also shown how to include this
approach in feature selection. A reject option can be added to many
classification rules. We have tested it on the Fisher discriminant
and SVM.

We have shown on both synthetic and real data that this
method can significantly improve classifier accuracy; however, we
have shown three conditions for which the method cannot be

used: (1) if the target error is close to the error obtained by the
classifier with no reject option, then there is no benefit to use the
classifier with reject option; (2) if the sample size is too low to
obtain a decent estimates of the class densities, then the classifier
design may fail or the classifier not respect the target error constraint
and (3) if the regular classifier lacks discriminatory power beyond
that of the majority classifier on the sample data, then adding of
a rejection option will not improve its accuracy. Using a classifier
with constraint option can facilitate the construction of more reliable
classifiers for medical application where confidence of the diagnosis
must be very high.
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