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ABSTRACT

Motivation: Mass spectrometry data are subjected to considerable

noise. Good noise models are required for proper detection and

quantification of peptides. We have characterized noise in both

quadrupole time-of-flight (Q-TOF) and ion trap data, and have

constructed models for the noise.

Results: We find that the noise in Q-TOF data from Applied

Biosystems QSTAR fits well to a combination of multinomial and

Poisson model with detector dead-time correction. In comparison,

ion trap noise from Agilent MSD-Trap-SL is larger than the Q-TOF

noise and is proportional to Poisson noise. We then demonstrate

that the noise model can be used to improve deisotoping for peptide

detection, by estimating appropriate cutoffs of the goodness of

fit parameter at prescribed error rates. The noise models also have

implications in noise reduction, retention time alignment and

significance testing for biomarker discovery.

Contact: pdu@us.ibm.com

Supplementary information: Supplementary data are available at

Bioinfomatics Online.

1 INTRODUCTION

Mass spectrometry is an increasingly important analytical tool

for detection and quantification of proteins and peptides in

biological samples. However, mass spectrometry is limited by

the almost ubiquitous presence of noise. The specific aim of this

work is to characterize measurement noise in mass spectro-

metry in order to improve protein and peptide detection and

quantification. In this study, we focus on the measurement

noise of proteins and peptides.
Not surprisingly, noise has not been the primary target of

interest in previous studies. In most cases, noise is assumed

to be Gaussian. Although noise models for microarray data

have been developed (Tu et al., 2002; Weng et al., 2006), noise

models for mass spectrometry data are still neglected. This is

the case even when it is clear that mass spectra are noisy, and

therefore peaks of biological importance may be masked.

Among a small number of studies on noise characterization,

Shin et al. (2004) hypothesized that three types of noise exist in

MALDI TOF spectra: Johnson noise due to the electrical
system, shot noise or Poisson noise due to the discrete nature of
the ion signal, and chemical noise due to matrix ions. Anderle

and coworkers developed a quantitative error model for pro-
tein liquid chromatography-mass spectrometry (LC-MS), and

reported that the error and intensity have a linear relationship
for time-of-flight (TOF) mass spectral data (Anderle et al.,
2004). Because LC-MS involves many steps from sample

preparation to data analysis, it is unclear how much error is
contributed by each step. Blackler et al. (2006) studied the S/N
ratio, which is crucial to protein identification, and stated that

noise from ion trap spectrometers consists of a component
independent of signal, a component linearly related to signal
and a shot noise component proportional to the square root

of the signal intensity (Blackler et al., 2006). However, they
did not develop a quantitative noise model based on this

conclusion.
A common problem requiring a noise model is in deisotop-

ing, which refers to the recognition of peptides from mass

spectral peaks due to heavy isotopes. Deisotoping is a
fundamental task in proteomic data analysis. It involves fitting
the intensity of observed isotopic distributions (OID) at certain

mass to charge ratios to the expected isotopic distributions
(EID). A widely used method of fitting OID to EID is to use a
least-squares fit (Du and Angeletti, 2006; Horn et al., 2000;

Leptos et al., 2006). Both ordinary least-squares fit and the
closely related cross-correlation method (Higgs et al., 2005;
Wang et al., 2003) implicitly assumes that noise is Gaussian and

is equal for all peaks. Bellew and coworkers (Bellew et al., 2006)
used the Kullback–Leibler distance (Kullback and Leibler,

1951) to measure the deviation of OID to EID. Alternatively,
Kaur and O’Connor used the multinomial distribution of
isotope patterns to fit OID to EID (Kaur and O’Connor, 2004,

2007) in order to estimate the number of ions and the isotopic
ratios. In most cases, the assumed noise model was not verified
from experiments. Additionally, noise models should also

improve the detection of significant biological differences in
applications such as biomarker discovery. Error models of
microarray data have been used to improve the statistical

testing in such data (Weng et al., 2006).
In this work, we study data from electrospray quadrupole

time-of-flight (Q-TOF) and ion trap instruments, both of which

are widely used. Since multiple spectra for a peptide are*To whom correspondence should be addressed.
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available in LC-MS or LC-MS/MS (from scans nearby in

retention time), we choose to examine the noise in the isotopic

clusters of peptides. LC-MS is a convenient way to study noise

since it automatically provides related scans of each peptide

during elution of chromatographic peaks.

2 METHODS

2.1 Experimental methods for collection of rat serum

spectra from Q-TOF instrument

The experimental conditions for the mixture of the rat serum spectra

have been described previously (Du and Angeletti, 2006). Briefly,

normal serum is trypsin digested prior to injection. Subsequently,

peptides are injected into a strong cation exchange column with step

gradient at salt concentrations of 50, 60, 70, 80, 90, 100, 200, 300 and

600mm. Each fraction is then injected into the C18 column and the

LC-MS spectra are collected with a QQ-TOF mass spectrometer

(QSTAR Pulsar, Applied Biosystems, Foster City, CA). The C18

column used is 75mm i.d.� 25 cm (Dionex, Sunnyvale, CA). The flow

rate is 250 nl/min. Nanoelectrospray Sources are used for electrospray

ionization (ESI). TOF-MS scan is performed in the m/z range of 300–

1800 with a scan time of 1 s. This dataset is referred to below as ‘SCX’

to indicate ion exchange is used for prefractionation.

A second Q-TOF dataset is generated for noise model testing. The

experimental conditions are mostly the same, except that fractionation

is performed by 1D-PAGE. Six gel spots are trypsin digested separately.

Digested sample from each spot is then injected into a QSTAR XL

hybrid LC-MS/MS system, which is a similar Q-TOF instrument from

the same vendor. This Q-TOF dataset is subsequently referred to as

‘GEL’ to indicate that 1D-PAGE is used for prefractionation.

2.2 Experimental methods for collection of

Cytochrome C spectra from ion trap instrument

Experimental conditions for the collection of Cytochrome C spectra

have been described previously (Horvatovich et al., 2007). Briefly, ion

trap data is acquired on a capillary LC-MS system (Agilent, Palo Alto,

California, USA). Trypsin-digested horse heart Cytochrome C is

analyzed with an HPLC system coupled online to a MSD-Trap-SL

ion trap mass spectrometer (Agilent) with enhanced scan resolution,

5500m/z per second scan speed, ICC target: 30 000, max. accumulation

time: 15 000ms, scan range: 100–1500m/z. The spectra are acquired

without rolling average and saved in profile mode.

2.3 Collection of peaks from the spectra

For the Q-TOF dataset ‘SCX’, protein identification is performed by

analyzing the resulting MS/MS spectra using Mascot (Matrix Science,

London, UK). The search parameters are: peptide mass tolerance:

100 ppm; fragment mass tolerance: 0.4Da and maximum number of

missed cleavages allowed: one. Only peptides with Mascot scores of at

least 50 and e-values of below 0.01 are selected regardless of salt

fractions. For each selected peptide, isotopic peak clusters of the

peptides are taken from scans which satisfy the following criteria: (i) the

scan is within� 13 scans of the elution peak apex of that peptide;

(ii) the first four isotopic peaks are all stronger than 30 counts and (iii)

there is no obvious overlapping in either the m/z or time dimension with

other peptides by visual inspection. The criteria are intended to select

strong and clean peaks which are not or only weakly affected by the

baseline (under five counts) or by peaks of other peptides, in order to

characterize the noise in the peptide peaks. Finally, a total of 3276

peaks, i.e. 1092 isotopic clusters (three peaks per cluster) from 99

peptides are obtained for noise modeling of the Q-TOF spectra. All but

three isotopic clusters are doubly charged. The rest are triply charged.

The dataset ‘GEL’ is processed similarly. Only the ‘SCX’ dataset is used

for fitting the noise model.

Similarly, peaks are collected from the ion trap spectra of a tryptic

digest of horse Cytochrome C from eight replicate LC-MS analyses.

Instead of performing a Mascot search, peaks are simply matched to a

peptide list from an in Silico tryptic digestion. Eventually a total of 4176

peaks, i.e. 1392 isotopic clusters from 71 peptides in different replicate

runs are collected and used for noise modeling of the ion trap spectra.

All selected ions are singly charged to avoid peak overlapping due to

limited resolution of the quadrupole ion trap mass analyzer.

2.4 Q-TOF data: fitting a multinomial and

Poisson model

The OID should follow a multinomial distribution where each outcome

is in fact an isotopic peak with a different number of extra neutrons.

This is because the probability of each outcome (i.e. EID) can be

calculated given the atomic composition and the abundance of relevant

elements with the polynomial method of Yergey (1983). Among these

elements, the natural abundance of 13C has been reported to be in a

tight range (Beavis, 1993), and it can be assumed to be 1.11% for the

sake of noise analysis. Denote the probability of the first three isotopic

peaks by p1, p2 and p3 in the EID, then p1, p2 and p3 can be calculated

from the peptide sequence. Let the number of ions in these peaks in the

OID be n1, n2 and n3, which are the peak intensities for the Q-TOF

instrument used, and denote the total number of peptide ions of all

isotopic forms by npep, then the probability of observing the OID can be

calculated using the multinomial distribution as follows:

PEIDðn1, n2, n3; npepÞ ¼ npep!
Y4
i¼1

pnii
ni!

where n4¼ npep� n1� n2� n3 and p4¼ 1� p1� p2� p3, and p1, p2 and

p3 are calculated according to Yergey’s method assuming that all

elements (i.e. C, N, O, S, H) are of natural abundance, and npep4 ni
for i¼ 1, . . . , 4. The adjustable parameter npep can be estimated by

maximizing PEID according to the principle of maximum likelihood.

However, the multinomial model alone is not sufficient to explain

the OID. Because the ion count in a unit time is governed by Poisson

statistics, the observed peak intensity ni can be approximated as a

sample from the Poisson distribution with a mean of ti, which in turn is

a sample from the multinomial distribution with parameters p1, p2, p3
and npep. Therefore, the probability of observing intensity ni given

ti for the i-th isotopic peak is

POIDðnijtiÞ ¼
e�ti ðtiÞ

ni

ni!

For a given set of parameters p1, p2, p3 and npep, there are multiple

possible values of ti, therefore the probability of observing the OID

with peaks n1, n2 and n3 is a summation over all possible values of ti as

follows:

POIDðn1, n2, n3; npepÞ ¼
X

t1þt2þt3þt4¼npep

npep!
Y4
i¼1

e�ti ðtiÞ
ni

ni!

ptii
ti!

. . . ð1Þ

where the adjustable parameter npep can be estimated by maximizing

the above probability according to the maximum likelihood principle.

With N independent isotopic clusters (N¼ 1092 in ‘SCX’), the

probability ptotal of observing all isotopic clusters is the product of

all POID:

ptotal ¼
YN
i¼1

POIDðn1, i, n2, i, n3, i; npep, iÞ . . . ð2Þ
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2.5 Q-TOF data: detector dead-time correction

The pure multinomial model described above assumes that isotopic

peaks in a cluster are independently detected. The assumption of

independent detection is often violated due to the detector ‘dead-time

effect’, known to cause suppression of heavier ion counts by lighter ions

that arrive at the detector slightly earlier in TOF instruments

(Chernushevich et al., 2001). The model can be modified to correct

the dead-time effect prior to the multinomial and Poisson fit. Denote

the intensity of the i-th isotopic peak by hi, the intensity of the (i� 1)-th

isotopic peaks by hi� 1, where i¼ 0 for the monoisotopic peak

and hi� 1¼ 0 when i� 150, and the corrected intensity by h
0

i.

To relate h
0

i with the observed peak intensities hi, we postulate the

semi-empirical relation

h
0

i ¼
hi log ð1� ðhi�1 þ 0:5hiÞ=T Þ

ðhi�1 þ 0:5hiÞ logð1� 1=T Þ
. . . ð3Þ

where T is a constant that is related to the total number of detectors for

each instrument, and (hi� 1þ 0.5 hi) is the measured number of ions in

the (i� 1)-th isotopic peak plus half the measured number of the ions

in the i-th isotopic peak (because all ions in the (i� 1)-th peaks and the

leading half of the i-th peak can suppress the i-th peak itself). It can be

shown that according to Equation (3) the measured peak intensity

is always smaller than the actual number of ions, that is, hi 5 h
0

i.

Furthermore, as the number of ions incoming to the detector increases,

the value of (hi� 1þ 0.5 hi) saturates to a constant, T. T is unknown and

therefore can be fitted to obtain corrected intensities that maximize

Ptotal according to Equation (2). Because Ptotal can only be calculated

for Q-TOF data, detector dead-time correction is only applied to the

Q-TOF dataset ‘SCX’ and not to the ion trap data.

2.6 Ion trap data: estimating intensity dependent noise

The noise in ion trap data is much larger than that in the Q-TOF data

(Fig. 1) and appears to come from sources other than the variability in

isotopic distribution alone. Indeed, a multinomial fit is not feasible

because the resulting Ptotal is unrealistically close to zero. In addition,

the reported counts in the intensities are no longer the actual number of

ions (MacCoss et al., 2001). Therefore, the goal is to characterize noise

as a function of intensity.

The noise can be estimated as follows. For a pair of isotopic peaks

with observed peak intensities, h1 and h2, we calculate the probability of

an ion going into each isotopic peak, p1 and p2 using Yergey’s methods

assuming all elements to be of natural abundance. Denote npep as the

total number of peptide ions in the isotopic peak cluster. Then we have

two simple equations:

h1 ¼ npepp1

h2 ¼ npepp2

Assuming that the errors in h1 and h2 are roughly equal, the least-

squares solution for npep is the following:

npep ¼
h1p1 þ h2p2

p21 þ p22

� �

The above equation is based on the assumption that the errors in h1
and h2 are roughly equal otherwise a weighted fit might be necessary.

Since we assume that the error is a function of the signal intensity for

ion trap data, similarity in peak intensities h1 and h2 implies that their

errors are also similar. In practice, a subset of peak pairs is used for

which p1/p2 is in the range of [1/2, 2], which implies the true peak

intensities are roughly similar. At the same time, the range allows

a number of peak pairs to be collected to build statistics.

With npep estimated, for the i-th isotopic peak, the true intensity

should be npep pi and the error can be estimated as

Erri ¼ hi � npeppi ¼ hi � pi
h1p1 þ h2p2

p21 þ p22

� �
. . . ð4Þ

3 RESULTS AND DISCUSSION

3.1 Q-TOF data: fitting a multinomial and Poisson

model with detector dead-time correction

The Q-TOF dataset ‘SCX’ used in our noise estimate consists of

1092 isotopic clusters with three isotopic peaks in each cluster

giving a total of 3276 peaks. The first step of the fit is to find the
best-fit parameter, T, for dead-time correction. Figure 2 shows

the convergence at the best-fit T that corresponds to the lowest

log odds, defined as �log ( ptotal). The best-fit T is found to be

111 000. The convergence at the best-fit value for T supports
the validity of dead-time correction.

Next, the errors are calculated by plugging the best-fit T into
the model. Figure 3 shows the error as a function of intensity

for all peaks, with the first, second and third isotopic peaks in

blue, red and yellow, respectively. Figure 3a shows the error

without dead-time correction. An ideal residual plot should
show only random errors and be free of systematic patterns.

Most data points on Figure 3a seem to be random and roughly

symmetric with respect to the x-axis. However, in the
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Fig. 1. Representative data from Q-TOF and ion trap instruments

(a) Intensity of the first and second isotopic peaks versus the third

isotopic peak in multiple scans of Q-TOF spectra for peptide

VKDFATVYVDAVK with monoisotopic mass of 1453.8Da. (b)

Intensity of the first and second isotopic peaks versus. the third

isotopic peak in multiple scans of ion trap spectra for peptide IFVQK

with monoisotopic mass of 633.4Da.
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Fig. 2. Maximum likelihood estimation of T for the Q-TOF dataset

‘SCX’. T is estimated to be 111 000 at the point of minimum odds as a

global minimum. Only regions around the minimum are shown.
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high-intensity region there is a clear pattern that the first

isotopic peak (in blue) is underestimated and the second

isotopic peak (in red) is overestimated by the model. Together

with the clear convergence of log odds as a function of T in

Figure 2, the error plot in Figure 3 indicates that either the first

isotopic peak is somewhat enhanced or the second isotopic

peak is suppressed. The latter is more likely because detector

dead-time effect is known to cause suppression of peaks by ions

that arrive at the detector slightly earlier (Chernushevich et al.,

2001).
Figure 3b shows the error plot with dead-time correction.

The error plot is clearly improved in the high-intensity region,

where points from all isotopic peaks are roughly symmetrically

distributed about the x-axis, and there is no apparent bias for

any isotopic peak. There are several points that appear to be

outliers, which could be due to false protein identification by

Mascot, overlapping peaks or solvent ions.
Figure 4 shows the SD in log scale calculated from the

observed error (shown in Fig. 3b with dead-time correction) in

blue, versus the SD calculated from the multinomial model in

green, and a combined multinomial and Poisson model in red.

According to the multinomial model, for a peak within an

isotopic cluster that has a total of npep ions, assuming the

fraction of the peak in the cluster is p calculated by Yergey’s

method, the intensity of this peak will vary in replicate mea-

surements with a mean of npepp and a variance of npepp(1� p),

simply because of sampling error in the multinomial process.

However, it is obvious that the observed error is significantly

larger than that prescribed by the multinomial model, i.e. the

green squares.
By realizing that the ion counts contain shot noise charac-

terized by a Poisson distribution, we can construct a noise

model of multinomial and Poisson which can explain most of

the observed noise, as shown in Figure 4. The analytical form

for the variance in the multinomial and Poisson model is

npeppþ npepp(1� p). It can also be estimated by Monte Carlo

simulation in repeated random draws from a multinomial pro-

cess followed by a Poisson process. As shown in Figure 4, the

multinomial and Poisson model explains most of the observed

noise, although a fraction of the observed noise is still of
unknown source. Note that the observed plateau of the

observed SD in blue for intensities above 4000 is likely an
artifact, due to insufficient number of peaks in that region and

the averaging effect of weaker peaks to the left. It is interesting

to note that the actual SD is slightly larger than the model
estimate, indicating that there can be extra sources of

variability which are not considered in the present model.
A more complex model may fit better to the data than the

Poisson does, such as the Gamma distribution which has one

more parameter. However, the Poisson distribution is preferred
because it is regarded as a reasonable approximation of the

detection process (Chernushevich et al., 2001; Senko et al.,
1995).

3.2 Evaluation of noise in the ion trap data

From Figure 1b it is obvious that the relative noise level in the
ion trap data is much larger than that in the Q-TOF data.

Unlike Q-TOF data, the error in ion trap intensity is calculated

using Equation (4), and plotted in Figure 5a. The noise of each
peak can then be estimated by binning peaks of similar intensity

and calculating the SD from the intensity error. Figure 5b
shows the log–log graph of signal-to-noise ratios versus signal

intensity, where signal is the peak intensity. The solid line shows

the relationship for the Cytochrome C data. Apparently the
trend is roughly parallel to the dashed line, which shows

the theoretical square root relationship predicted by a Poisson
model. The trend in Figure 5b is insensitive to changes of

window sizes for binning.
Our results are consistent with previous findings regarding

noise in ion trap instruments. Blackler et al. (2006) found that

noise in quadrupole ion trap instruments, LCQ and LTQ (both
from Thermo Finnigan), is Poisson limited in which the mea-

sured signal-to-noise ratio versus noise relationship is parallel
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are calculated by first sorting peaks by intensity, then the SD of the ith

peak is calculated as SDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPiþ200
k¼i�200

Error2
k
=401

q
, where Errork is the error

for the kth peak. The SD for the multinomial model is calculated

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npep � p� ð1� pÞ

p
, where npep is the number of peptide ions from

the best-fit multinomial model and p is the fraction of peptide ions

in the isotopic peak calculated with Yergey’s method. The SD for

the multinomial and Poisson model is calculated by Monte Carlo

simulation.
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to that predicted by the Poisson model. According to Blackler
et al., the distance between the solid line and the dashed line in

Figure 5b represents the difference between signal intensity and
the actual number of ions. The distance is roughly 10-fold

for LCQ, and 2–3-fold for LTQ. Our result in Figure 5b shows
the distance between the lines is also approximately one order
of magnitude, which is more similar to the LCQ than to the

LTQ. Alternatively, Li et al. (2006) found that the noise in LTQ
is proportional to the 0.7–0.8th power of the intensity. Our

result is therefore more consistent with a Poisson noise model.
The importance of our result on the ion trap data is 3- fold.

First, to our knowledge this is the first study in the literature on

the noise model of a MSD-Trap-SL instrument from Agilent,
which shares wide use along with LCQ and LTQ. Second,

compared to Blackler et al.’s results, our study shows Poisson
noise is dominant on a different ion trap instrument, and by a
different method of analyzing the isotopic patterns instead of

repeated injections. Third, the ion trap noise model comple-
ments the Q-TOF noise model and allows comparison of ion

trap noise to Q-TOF noise. The ion trap and Q-TOF instru-
ments are important for proteomics; together, they account for
most of the protein identifications in the HUPO Plasma

Proteome Project (Omenn et al., 2005).

3.3 The noise model improves deisotoping

The noise models developed have many applications that can
improve the statistics of mass spectrometry results. One
important application is deisotoping, which involves fitting

the intensity OID at certain mass to charge ratios to the EID.
A widely used method of fitting OID to EID is to use a least-

squares fit (Du and Angeletti, 2006; Horn et al., 2000; Leptos
et al., 2006). A typical measurement of the goodness of fit is the
Pearson correlation coefficient (below referred to as r). The

problem of using r is that a good cutoff has to be chosen to
distinguish peptide peaks from non-peptide ones.

In this section, we first show that a single r cutoff is not
optimal for all peptides of all intensities. Instead, the cutoff
should be intensity and mass specific. We then proceed to

show that the noise model can be used to estimate r cutoffs for

given error rates, or vice versa, for any mass and intensity

combination.
Figure 6 shows that r depends on intensity for all annotated

peptides in the Q-TOF dataset of ‘SCX’. Peptides with stronger

intensities generally have larger r, which is consistent with the

multinomial and Poisson noise model that predicts the signal-

to-noise ratio generally increases with intensity. While the r

for most peptides at intensities around 10 000 is greater than

0.95, a cutoff of 0.95 apparently rules out most peptides with

intensities around 200. The calculation of r is independent from

the noise model.
The effect of intensity on the error rates of deisotoping using

r is shown in Figure 7a. The error rates are estimated as follows.

First, a dataset is created which contains each of the 1092

isotopic clusters in the ‘SCX’ dataset, and exactly one permuted

version for each of original ‘true’ isotopic cluster. The original

clusters are labeled as ‘true’ and the permuted clusters are
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Fig. 7. The effect of intensity and mass on the TPR and precision

in deisotoping using correlation coefficient r on the dataset ‘SCX’.

(a) TPR and precision are intensity dependent. (b) TPR and precision

are mass dependent. The legend ‘m in 900–1100’ means that the mass

is in the range of 900–1100Da. (c) The precision–recall curve corrre-

sponding to (a). (d) The precision–recall curve corrresponding to (b).
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SD of the peak, which is calculated in the same way as in Figure 4,

except with a sliding window size of 201. Results are plotted as a solid

line. The dashed straight line shows the square root of signal intensity

versus signal intensity, as predicted by the Poisson noise model.

−1

−0.8
−0.6

−0.4
−0.2

0

0.2
0.4

0.6
0.8

1

100 1000 10000 100000

Intensity

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Fig. 6. Correlation coefficients versus intensity for all peptides in the

Q-TOF dataset ‘SCX’. The intensity is defined as the sum of the first

four isotopic peaks in a cluster and is plotted in log scale.

1074

P.Du et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/8/1070/213310 by guest on 24 April 2024



labeled as ‘false’. The dataset is referred to below as ‘SCX-

PMU’. Note that in such a dataset, ‘true’ and ‘false’ are

equally likely. Then the true positive rate (TPR), or recall, can

be calculated as the fraction of ‘true’ isotopic clusters which are

above a certain r cutoff among all ‘true’ ones. The precision can

be calculated as the fraction of ‘true’ clusters among all clusters

which are above a certain r cutoff. The TPR and precision for

each r-value are calculated for each of the three intensity

regions, 100–300, 900–1100 and 3500–4500, respectively, by

using subsets of ‘SCX-PMU’ which contain only clusters in

the corresponding intensity region. The TPR and precision as

a function of r are shown in Figure 7a, where solid, dashed, and

dotted lines represent each of the three intensity regions from

weak to strong. The lines with or without markers represent

precision and TPR, respectively. Apparently, the general trend

is that both TPR and precision decrease as intensity decreases.

The corresponding precision–recall curve is also shown in

Figure 7c, though it does not contain the r cutoff.
Appropriate r cutoffs should also be mass specific. Similarly,

it can be shown that peptide masses also affect the error rates

of deisotoping using r, as shown in Figure 7b. With the same

dataset of ‘SCX-PMU’, the TPR and precision for each r-value

are calculated for three mass regions, 900–1100, 1300–1500 and

1900–2200Da, respectively, by using subsets of ‘SCX-PMU’

which contain only clusters in the corresponding mass regions.

Clearly, both TPR and precision decrease as mass increases for

the masses used. The explanation is that the isotope patterns of

lower masses have more ‘information content’ than those with

higher masses. Specifically, the ratios of the first two isotopic

peaks for masses 900, 1300 and 1900Da are approximately 2.1,

1.4 and 1.0, as shown in Figure 8. It is more likely to obtain

two peaks with a ratio of 1.0 than to have two peaks with the

ratio of 2.1 by random chance.

The Q-TOF noise model can be used to estimate r cutoffs

corresponding to given error rates, or to estimate error rates for

a given r-value. This is feasible because r directly reflects the

noise. To show this with actual data, four mass and intensity

regions are chosen first such that each region contains at least

36 isotopic clusters for meaningful error rate estimation. The

two mass regions of 1000–1400 and 1400–1900Da, and the two

intensity regions of 100–350 and 500–800 form four mass and

intensity regions. Higher intensities are not selected due to the

lack of enough peptides with high intensity. An additional

reason is that, the noise model is more useful for deisotoping at

low intensities where the signal-to-noise ratio is low. For each

mass and intensity region, TPR and precision are calculated

from subsets of the ‘SCX-PMU’ dataset with the specified mass

and intensity. Likewise, those rates are also calculated for

subsets of the ‘GEL-PMU’ dataset in those regions. Note that

the ‘GEL-PMU’ dataset is not used to fit the noise model. The

number of isotopic clusters in each region ranges from 36 to

150, with an average of about 100. Finally, TPR and precision

are predicted from the multinomial and Poisson noise model

for each r cutoff at the given mass and intensity by Monte Carlo

simulations of 5000 isotopic clusters.

In Figure 9a–d, rates for ‘SCX-PMU’, ‘GEL-PMU’ and

prediction are in black, red and green, respectively. The blue

lines are the precision predicted with the first 100 simulated

isotopic clusters. The difference between the green and blue
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Fig. 9. Comparison of observed and predicted TPR and precision for

datasets ‘SCX-PMU’ and ‘GEL-PMU’. ‘SCX’ means the dataset is

‘SCX-PMU’. ‘Gel’ means the dataset is ‘GEL-PMU’. ‘Pred’ means the

rates are predicted by simulation with the multinomial and Poisson

noise model, with a total of 5000 simulated isotopic clusters. ‘Pred100’

means the rates are predicted with the first 100 simulated isotopic

clusters. (a) The region of mass in 1000–1400Da and intensity in 500–

800. (b) The region of mass in 1400–1900Da and intensity in 500–800.

(c) The region of mass in 1000–1400 Da and intensity in 100–350.

(d) The region of mass in 1400–1900Da and intensity in 100–350.

(e) and (f) are the corresponding precision–recall curves for the above

Figure (a)–(d).
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dashed lines in the same figure is due to sampling error, i.e.

small number of isotopic clusters in each region. Figure 9a

displays the results for the region with mass in 1000–1400Da

and intensity in 500–800. The predicted TPR and precision

in green closely match with those from ‘SCX-PMU’ and ‘GEL-

PMU’. Note that the predicted TPR and precision are some-

what more optimistic than the actual rates, because the

multinomial and Poisson processes are inherent parts of the

ion statistics, and therefore represent the lower noise limit.

Figure 9b for the region with mass in 1400–1900Da and

intensity in 500–800 is similar to Figure 9a. Figure 9c and d are

for the lower intensity region of 100–350. The differences

between the green and the blue dashed lines in each figure serve

as examples of the sampling error. It is largely due to sampling

errors that the precision from ‘SCX-PMU’ is lower than the

prediction by �0.2 in Figure 9d, and occasionally the actual

rates are higher than the predicted rates. The corresponding

precision–recall curves are in Figure 9e–f.
Results in Figure 9 show that the noise model can be used to

estimate r cutoffs given an error rate. Instead of choosing the

cutoffs arbitrarily or improperly, having the appropriate cutoffs

would minimize the error rates for optimal deisotoping results.

For example, to reach 90% precision, the required r cutoffs for

the four mass and intensity regions in Figure 9a–d are 0.91,

0.95, 0.90 and 1.00, respectively, which can be directly read

from the dashed green lines. Alternatively, given an r cutoff for

a mass and intensity region, the TPR and precision can be

estimated. For instance, the solid green line in Figure 9d shows

that the TPR is only 50% at the r cutoff of 0.968 for that

region. In addition, when precision is over 90%, TPR is almost

zero for the same region, as shown in Figure 9f. These would

be difficult to estimate without a noise model, or with a

Gaussian noise model that assumes noise is equal for all peaks.

A Poisson noise model or multinomial model alone would

underestimate the noise. Note that even though we use r to

demonstrate the usefulness of the noise model, the approach

should also work for other similarity measures between

OID and EID in deisotoping because the similarity is directly

affected by the noise level.
An actual example of how the noise model improves

deisotoping is shown in Figure 10 for an isotopic cluster from

‘GEL’. The cluster has a mass of 1149.58Da, an intensity of

230 and an r-value of 0.93. The traditional method fails to

recognize it as a peptide at the precision of 90% because the

r is less than the cutoff of r¼ 0.97, found from the ‘SCX-PMU’

dataset at 90% precision. In practice, the traditional method

often uses arbitrary cutoffs for lack of annotated datasets.

With the noise model-based method, which predicts a cutoff of

0.90 at the same precision (shown as the dashed green line in

Fig. 9c), the cluster is recognized as a peptide. It makes sense

because at the low intensity of 230, the deviation from the

expected isotopic distribution is expected to be larger than that

when the intensity is strong. The deviation is mass and intensity

specific, and is captured by the noise model.

3.4 Other applications of noise models

The noise models can also predict ultimate limits on the

reproducibility of LC-MS experiments. The reproducibility

of LC-MS has been measured using coefficient of variation
(CV), which is defined as the ratio of SD to the mean.

According to the described noise model, the CV for Q-TOF
spectra is ultimately limited by the multinomial sampling error

and by the Poisson noise. The limitation cannot be removed by

other steps in the experiments because the noise is inherent.
Additionally, the noise models predict that the elution time

apex of the same peak may fluctuate among replicate runs,
which puts an ultimate limit on the reproducibility of retention

times. Because of the inherent noise, isotopic peaks of the

same peptide may not have the same elution time apex. This is
important because a cluster of peaks with the same elution time

apex is often used as the criterion to look for peptide features
in LC-MS (Du et al., 2007; Wang et al., 2003).

The noise models can also be used to guide statistical tests to
find peaks or peptides that are differentially expressed between

biological samples, based on measured intensities. Such ‘label-
free’ approaches are frequently used in biomarker discovery.

In a significance test such as a t-test, SD is estimated from

the data, which takes away one degree of freedom and may not
be a reliable estimate. Noise predicted from a noise model may

be used instead of the SD, or as priors for estimating the SD of
intensities.

4 CONCLUSION

We have developed a model that characterizes Q-TOF noise
with a multinomial and Poisson model. This model explains

most of the observed noise, whereas a only multinomial model

proved to be inadequate. In addition, dead-time correction
significantly improves the fit at high-intensity regions of

Q-TOF data. We also find that the ion trap instrument has
larger noise than Q-TOF, and the ion trap noise is roughly

proportional to Poisson noise, consistent with previous reports

for other ion trap instruments. We demonstrate that the noise
model can be used to improve deisotoping for peptide

detection, by estimating appropriate cutoffs of the goodness
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Fig. 10. An illustrative example of an observed peptide isotopic

distribution compared to the expected distribution. Error bars repre-

sent 95% confidence interval, or 1.96 SD. SD is calculated from the

multinomial and Poisson noise model, and normalized by the total

intensity. Error on the first peak is 1.96 SD, which is somewhat large

but is expected because the multinomial and Poisson processes are

inherent parts of the ion statistics and therefore represent the lower

noise limit. The peptide sequence is identified as VFSQQADLSR with

a MASCOT score of 74, with a mass of 1149.58Da and an intensity

of 230.
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of fit parameter at the prescribed error rates. Our findings also
have implications in noise reduction and in LC-MS data
analysis for biomarker discovery.
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