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ABSTRACT

Summary: We present a tool that assesses the enrichment of
significant associations from genome-wide association studies
(GWAS) in a pathway context. The SNP ratio test (SRT) compares the
proportion of significant to all SNPs within genes that are part of a
pathway and computes an empirical P-value based on comparisons
to ratios in datasets where the assignment of case/control status
has been randomized. We applied the SRT to a Parkinson’s disease
GWAS dataset, using the KEGG database, revealing significance for
Parkinson’s disease and related pathways.
Availability: https://sourceforge.net/projects/snpratiotest/
Contact: codushlaine@gmail.com; colm.odushlaine@tcd.ie
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Analysis of GWAS data has expanded our understanding of complex
diseases, but typically only a small fraction of genetic variance is
explained by even large studies and many of the findings map to
non-genic regions. This may reflect the underlying genetic models
including for example, locus heterogeneity, small effects or epistasis.
Pathway analysis may be robust to these effects and increase power
by summarizing combined effects of all SNPs within a pathway in an
attempt to make biologically meaningful interpretations of the data
(Askland et al., 2009; Dinu et al., 2007; Lesnick et al., 2007; Wang
et al., 2007). This approach also provides additional information
relating to function over and above single SNP associations which
may be helpful in interpreting the data. Pathway-based analyses of
genomic data are potentially powerful, if as has been suggested, the
joint action of variants of small effect clustering within biological
pathways plays a major role in predisposing to complex genetic
disorders (Lesnick et al., 2007). Even very large genome-wide
association studies (GWAS) may lack power to identify small SNP
effects, but these may be detectable at a pathway level. An example
may be autism where pathway analysis of GWAS data has implicated
molecular mechanisms involved in neuronal cell adhesion extending
beyond the two cadherin genes implicated by the SNP analysis
(Wang et al., 2009). The SNP ratio test (SRT) uses both significant
and non-significant SNPs within a pathway to construct a ratio and
compares this ratio to a distribution of ratios based on GWAS results
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using randomized phenotypes. The SRT is similar to methods such
as gene set enrichment analysis (GSEA) (Subramanian et al., 2005)
and the set-based test offered in PLINK (Purcell et al., 2007) in
that it tests for enrichment of statistically associated SNPs in a
pathway, also using empirical P-values. As the SRT uses all SNPs
in the pathways, it can account for situations in which extensive
LD, stretching beyond the gene/pathway of interest, generates false
positives for that pathway. Single SNP association does not allow
for the influence that differences in linkage disequilibrium (LD) (e.g.
between studies or SNP arrays) may have on the identification of
truly associated variants. Thus, the magnitude of any one-association
statistic is not key, but rather the number of significant SNPs above
what would be expected by chance is key, making the SRT more
robust to false-positives at a SNP level. In addition, application of
the SRT is at a pathway level rather than at a gene level, precluding
the need to adjust for factors such as pathway/gene size (Wang et al.,
2007). The SRT is also extremely easy to implement, working with
PLINK inputs and outputs.

2 METHODS AND DATASETS
For a GWAS dataset, all SNPs are individually tested in the standard fashion
for association with phenotype/disease (e.g. trend test), resulting in a list
of significant and non-significant SNPs, (where significant is defined as the
P-value being below or equal to a specified threshold, giving a total of M
significant SNPs). A subset of these SNPs annotated as arising within genes
within pathways (PGSNPs) are then analyzed. KEGG (Kanehisa and Goto,
2000) (N = 212 pathways, Release 48.0, October 2008) was used here to
define the pathways, but in principle any pathway dataset may be used.
Alternatively, custom pathways may be specified to test specific hypotheses.
SNP data were obtained from dbSNP (b129_SNPContigLocusId_36_3.bcp
table) and genes annotated in this file were merged with KEGG genes to
create a file linking KEGG and SNP information. For a given pathway, W ,
the ratio is then defined as: rw = # significant SNPs in W / # SNPs in W .

For a given GWAS dataset and, in this case, KEGG pathway, the SRT
uses simulated datasets to estimate the significance of a given pathway. The
SRT accepts files in PLINK binary format and allows the user to prepare
randomized phenotype datasets. The simulated datasets are constructed
from the original dataset, preserving the original case/control ratio but
randomizing the assignment of case/control status among individuals.
The same individuals are used, maintaining the same LD structure. This
minimizes spurious findings arising from LD because, even if LD were
leading to an excess of significance for a pathway (e.g. 1 truly unassociated
SNP in an LD block may give rise to a significant P-value by chance, leading
to spuriously significant P-values across an LD block) this LD block would
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Fig. 1. Illustration of the SRT.

be identical across all datasets using randomized phenotypes. A total of N
such datasets are simulated. In each of the simulated datasets, for each
pathway, the ratio in Equation (1) is computed (r1

W … rN
W ), where in each

simulated dataset the lowest M P-values are defined as significant. Use of
the M most significant SNPs rather than re-applying a P-value threshold in
simulations should prevent any inflation in empirically significant pathways
due to an excess of false positive SNPs in the original GWAS (due to
e.g. genotyping error, or other bias). The empirical P-value for a particular
pathway, PW

EMP = (s+1)/(N+1), where s is the number of simulated datasets
(in this case randomized phenotype simulations) that produce a ratio greater
than or equal to the original ratio (North et al., 2002) (Fig. 1; Supplementary
Fig. 2).

Note that the SRT does not correct for multiple testing at a pathway
level. Multiple-testing correction of the pathway-level P-values is still
required, although this is non-trivial due to the lack of independence between
pathways. However, the multiplicity problem is greatly reduced relative to a
SNP-level analysis. We applied the SRT to a Parkinson’s disease GWAS. The
CIDR dataset [CIDR: Genome WideAssociation Study in Familial Parkinson
Disease (phs000126.v1.p1) (13 May 2008)] consisted of a total of 344 301
SNPs, genotyped in 900 cases and 867 controls.

3 RESULTS AND DISCUSSION
We conducted standard association analysis in PLINK (Purcell
et al., 2007) for both the original and 1000 randomized phenotype
datasets. The association tests for the original dataset resulted in
17 773 nominally significant SNPs (unadjusted P ≤0.05) with a
genomic inflation factor of 1.03. A quantile–quantile plot is shown
in Supplementary Fig. 1.

We applied the SRT to investigate associations with Parkinson’s
disease for 212 KEGG pathways in the CIDR dataset. Looking
at pathways that rank highly for the SRT, there is strong
evidence supporting the roles of these pathways in the etiology of
Parkinson’s disease; for example ‘Parkinson’s disease’ (hsa05020)
(Supplementary Fig. 2), ‘Neurodegenerative Disorders’ (hsa01510),
‘Neuroactive ligand–receptor interaction’ (hsa04080). Using more
stringent thresholds (P ≤0.01 and P ≤0.005), hsa01510 remains
significant suggesting that this pathway may be enriched for variants
of small and larger effect (Supplementary Table 1).

As with other methods (Askland et al., 2009; Lesnick et al.,
2007; Wang et al., 2007), the SRT is less equipped to identify
significant pathways when there is a paucity of PGSNPs; if there
are no significant PGSNPs, the ratio is always 0 for the original
data. Thus, all simulations will at least equal this ratio, resulting
in an empirical P-value of 1. These limits reflect both the limits
of pathway annotation and the power of the GWAS dataset used.

This pattern clearly depends on the pathway and GWAS datasets
used but we note that, in the Parkinson’s dataset, only pathways with
at least 20 PGSNPs are observed to be significant (Supplementary
Fig. 3). Thus, adequate SNP coverage of a pathway is essential for
that pathway to be effectively tested.

Note the P-value chosen can reflect the disease model; choosing
a stringent P-value (e.g. <0.001) to define ‘associated’ SNPs, tests
a hypothesis that only highly associated SNPs are enriched in a
pathway. If a pathway becomes significant using a more stringent
cut-off, it reflects a role for a smaller number of variants of larger
effect in the disease. Alternatively, if a pathway becomes significant
using a less stringent cut-off, it may reflect a role for more variants of
smaller effect. If a pathway is significant under a range of thresholds,
it may suggest that a number of different genetic models underlie the
disease, as is the case for many complex diseases. We believe that a
less stringent cut-off is reasonable where the user lacks information
regarding the underlying disease model.

While designed primarily to work with PLINK, the SRT may
easily be used with datasets derived from other applications. The
primary advantages of the SRT are first that it avoids issues
arising from LD because it uses the same LD structure—by using
the same SNPs—in all simulations, and thus only pathways with
additional significant SNPs, not merely arising from LD, are
reported as significant. Second that it uses individual level data
in its simulations, maximizing the information available in testing
pathway hypotheses. The SRT can be used to test a wide variety
of pathway-based hypotheses, in addition to specific user-defined
ones, in existing GWAS datasets and in datasets emerging from
next-generation sequencing initiatives.
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