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ABSTRACT

Summary: Genome-wide association studies (GWAS) have lead to
the identification of hundreds of genomic regions associated with
complex diseases. Nevertheless, a large fraction of their heritability
remains unexplained. Interaction between genetic variants is one of
several putative explanations for the ‘case of missing heritability’
and, therefore, a compelling next analysis step. However, genome-
wide interaction analysis (GWIA) of all pairs of SNPs from a
standard marker panel is computationally unfeasible without massive
parallelization. Furthermore, GWIA of all SNP triples is utopian.
In order to overcome these computational constraints, we present
a GWIA approach that selects combinations of SNPs for interaction
analysis based on a priori information. Sources of information are
statistical evidence (single marker association at a moderate level),
genetic relevance (genomic location) and biologic relevance (SNP
function class and pathway information). We introduce the software
package INTERSNP that implements a logistic regression framework
as well as log-linear models for joint analysis of multiple SNPs.
Automatic handling of SNP annotation and pathways from the
KEGG database is provided. In addition, Monte Carlo simulations
to judge genome-wide significance are implemented. We introduce
various meaningful GWIA strategies that can be conducted using
INTERSNP. Typical examples are, for instance, the analysis of all
pairs of non-synonymous SNPs, or, the analysis of all combinations
of three SNPs that lie in a common pathway and that are among the
top 50 000 single-marker results. We demonstrate the feasibility of
these and other GWIA strategies by application to a GWAS dataset
and discuss promising results.
Availability: The software is available at http://intersnp.meb.uni-
bonn.de
Contact: herold@imbie.meb.uni-bonn.de; becker@imbie.meb.uni-
bonn.de

1 INTRODUCTION
As predicted by Risch and Merikangas (1996), genome-wide
association studies (GWAS) carried out during the last years have
lead to the identification of hundreds of loci associated with various
complex diseases (Altshuler et al., 2008). However, since the effect
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sizes of the findings are typically small, a large portion of the genetic
contribution to the phenotypes remains unexplained (Maher, 2008).
Besides rare variants, so far undetected SNPs with even smaller
effect size, and various other reasons, the ‘missing’ genetic variation
could be explained by genetic interaction. Therefore, genome-wide
haplotype analysis (GWHA) (Becker and Herold, 2009; Tregouet
et al., 2009) and genome-wide interaction analysis (GWIA) are
compelling next steps in the analysis of GWAS. Marchini et al.
(2005) demonstrated that, in the presence of multi-marker disease
models, GWIA can lead to increased power as compared with
single-marker approaches. However, GWIA is computationally
challenging. With one million SNPs, 5×1011 SNP pairs have to
be tested for interaction. The computation of such a number of
test statistics is possible when the test statistic is available in
closed form (Marchini et al., 2005), but extraction of the respective
number of contingency tables from an input file is not practicable
on standard computers. We estimated a running time of 120 days
for a complete GWIA with 550 000 SNPs and 1200 individuals on a
3 GHz computer.As a consequence, only massive parallelization will
render a complete two-marker GWIA strategy feasible. Thinking
ahead, a complete three-marker strategy would require 1.67×1017

tests and is undoubtedly unfeasible. An obvious way to overcome
these limits is to analyze only ‘interesting’ combinations of SNPs
(pairs or triples), selected based on an increased prior to be involved
in the disease. Such priorities can be defined by statistical evidence
(single-marker P-value in own data), genetic impact (genomic
location) and potential biological relevance (SNP function class or
pathway information). Here, we introduce the software INTERSNP
that allows conduction of meaningful case/control GWIA strategies
that make use of such a priori information.

2 METHODS

2.1 Quality control
Stringent quality control (QC) is of particular importance with joint analysis
of multiple markers, since erroneous genotypes for just one of the analyzed
SNP may already invalidate the analysis. We implemented the QC-criteria
missing rate, deviations from Hardy–Weinberg equilibrium (HWE) and the
inflation factor λ as defined by Devlin et al. (2004). We use an iterative
QC-algorithm to address missing genotypes. The starting point is the average
genotype missing rate, taken over all SNPs and individuals. In every iteration,
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alternately either SNPs or individuals with a missing rate worse than the
average missing rate plus a user-defined missing rate difference (mrdiff) are
discarded. Then, the new average missing rate is calculated and further SNPs
or individuals are deleted, when their missing rate is higher than the new
missing rate plus mrdiff. The algorithm terminates when there are no SNPs
or individuals left that have to be discarded. Thereafter, SNPs which are not
in HWE in either cases or controls are removed. The respective P-value
thresholds for HWE are specified by the user. Furthermore, population
stratification can be accounted for by treating the belonging to strata as a
covariate in the logistic regression framework described below.

2.2 Tests
2.2.1 Single-marker analysis By default, a single-marker P-value is
computed for all qc-SNPs. For the autosomes and the pseudo-autosomal
region of the Y chromosome, the user can either choose Armitage’s
(1955) trend test or the genotype test with 2 degrees of freedom (d.f.).
Y-chromosomal markers are evaluated with the χ2-test for the 2×2 table
of allele counts in male individuals. For X-chromosomal SNPs, we use
the allele-based test with 1 d.f. suggested by Clayton (2008). Clayton’s
approach guarantees that hemizygote males and homozygote females
contribute equally to the test statistic, reflecting the fact that only one of
the X-chromosomes is active in females.

2.2.2 Multi-marker analysis When it comes to simultaneous analysis of
SNPs, a crucial question is whether to test for interaction or whether to use a
‘full test’, i.e. a test that includes the marginal SNP effects into the analysis.
In the latter case, we obtain a test that does not explicitly test for interaction,
but a test that should be powerful in the presence of interaction. Since it is
difficult to judge which strategy should be advocated, our software supports
both strategies. When the goal is detection of genes involved in the etiology
of a diseases, a full test can be useful, because it seems reasonable to assume
that interacting genes also show some marginal effects. Even when those
marginal effects are small, their inclusion into the statistical analysis improve
the detection of respective SNP pairs. This has been shown by Marchini
et al. (2005), who considered a full genotype test. A drawback of the full
test strategy is that (strong) association of a particular SNP can render pairs
including that SNP significant, even if the other SNP is neither marginally
associated with the disease nor an interaction partner. However, this problem
can be overcome by filtering the output: for each SNP, INTERSNP lists only
the top 50 SNP combinations including the SNP.

On the other hand, an explicit test for interaction can be advocated when,
either detection of interaction per se is the research goal, or when a particular
region or SNP is already known to be associated. In this case, screening for
interaction partners using an explicit interaction test can help to find further
genes involved in the disease. INTERSNP implements various multi-marker
tests that are summarized in Table 2 (tests 1–12):

Association test with genotype contingency table (test 1): for two SNPs,
there are 3×3 = 9 two-marker genotypes. We consider the respective
3×3×2 contingency table of counts in cases and controls. Let T be the

standard test statistic for contingency tables, i.e. T =∑
i,j,k

(Oi,j,k−Ei,j,k )2

Ei,j,k
,

where i,j∈{1,2,3}, k ∈{1,2}, where Oi,j,k is the observed number of counts
in cell (i,j,k) and where Ei,j,k is the number of counts in cell (i,j,k) expected
under the null hypothesis. T is χ2-distributed with 8 d.f. When three SNPs
shall be considered simultaneously, we have 27 three-SNP-genotypes and we
obtain a test statistic that is χ2-distributed with 26 d.f. For SNP combinations
containing at least one X-chromosomal marker, we consider the genotype
contingency tables of males and females separately and sum up the respective
test statistics and d.f. to obtain a joint P-value that is not biased by different
ratios of cases and controls within the male and female group.

Although the contingency table test is not particularly sophisticated, we
included it into the program since it is very easy to compute, and therefore
can serve for screening purposes.

Test for interaction using a log-linear model (test 2): here, the observations
xijk of the 3×3×2 contingency table can be modeled by fitting a log-linear
regression model of expected cell counts mijk to the cell entries (Bishop et al.,
2007). The model equation is (1) log(m̂ijk)=u+u1(i) +u2(j) +u3(k) +u12(ij) +
u13(ik) +u23(jk) without the term u123(ijk). Testing the null hypothesis H0:
u123(ijk) = 0 yields an explicit test for interaction. With maximum likelihood
estimates m̂ijk of the cell counts under Equation (1), we obtain the test
statistic T =−2∗(

∑
i,j,k xijk ∗log(mijk)–

∑
xijk log(xijk)) that is χ2-distributed

with 4 d.f. Computation of the number of d.f. in the presence of empty
cells is straightforward. Based on the starting values m̂(0)

ijk =1, the maximum
likelihood estimates m̂ijk can be obtained iteratively:

m̂(1)
ijk = m̂(0)

ijk ∗ Xij+
m̂(1)

ij+
,m̂(2)

ijk = m̂(1)
ijk ∗ Xi+k

m̂(1)
i+k

,m̂(3)
ijk = m̂(2)

ijk ∗ X+jk

m̂(2)
+jk

,

m̂(4)
ijk = m̂(3)

ijk ∗ Xij+
m̂(3)

ij+
etc.

The iteration usually converges quickly. Thus, log-linear models a
recommendable method for large-scale applications. In this case of three
SNPs, we obtain a test for genotypic 3-fold interaction with 8 d.f. SNP
combinations containing at least one X-chromosomal marker are treated
analogously to the way described for test 1 (summation of the test statistic
for males and females).

Logistic regression (tests 3-12): Tests 1 and 2 can be computed quickly, but
have limitations in their applicability. Therefore, we implemented logistic
regression following the framework introduced by Cordell and Clayton
(2002). Within this framework, it is possible to include or exclude marginal
effects, distinguish allelic and genotypic tests and to adjust for covariates.
We briefly described the logistic regression models we use. For further
details, see the paper by Cordell and Clayton (2002). Let pj be the probability
that individual j is a case. We define logit(p) := ln( p

1−p )=βT x, where β is
the vector of coefficients to be estimated and x is a vector that is coded
depending on the genotypes as follows.

We consider three SNPs. For each SNP i, i=1,2,3, we model its allelic
effect xi by coding the genotypes (1,1), (1,2) and (2,2) as xi =−1,0,1. Next,
we model dominance effects xi,D, i=1,2,3, as xi =−0.5,0.5,−0.5 for the
genotypes (1,1), (1,2) and (2,2), respectively. By multiplication, we obtain
interaction terms, for instance, x1x2 represents allelic interaction between
SNPs 1 and 2, while x1,Dx2,D represents interaction between the dominance
terms of SNPs 1 and 2. Note that these interaction terms code interaction on
an additive logit scale and, hence, on a multiplicative odds ratio scale.

Let β0 be the intercept parameter that defines the baseline likelihood
L0 := logit(p)=β0. Next, the likelihood LA

1 :=β0 +β1x1 models the allelic
effect of SNP 1 and comparison to L0 yields a likelihood ratio test
with 1 d.f. Analogously, comparison of LG

1 :=β0 +β1x1 +β1,Dx1,D to
L0 yields a genotypic test for SNP 1 with 2 d.f. In general, we let
LA

1,2 and LG
i,j denote likelihoods containing allelic terms, or, respectively,

allelic and genotypic terms, for SNPs 1 and 2. In addition, let LA,I
1,2 and

LG,I
1,2 be the likelihoods that also contain interaction terms, for instance,

LA,I
1,2 =β0 +β1x1 +β2x2 +β1,2x1x2 and LG,I

1,2 =β0 +β1x1 +β1,Dx1,D +β2x2 +
β2,Dx2,D +β1,2x1x2 +β1,2Dx1x2,D +β1D,2x1,Dx2 +β1D,2Dx1,Dx2,D. The var-
ious likelihoods just introduced are summarized in Table 1.

Now, comparison of LA
1,2 against L0 yields a full allelic test with 3 d.f.

(test 3), whereas comparison of LG
1,2 against L0 yields a full genotypic test

with 8 d.f. (test 4). In order to test for allelic interaction, one compares LA,I
1,2

against LA
1,2 (1 d.f., test 5) and in order to test for genotypic interaction one

compares LG,I
1,2 against LG

1,2 (4 d.f., test 6). Furthermore, it is possible to test
for the additional effect of SNP 2, while controlling for the effect of SNP 1 by
comparing LA,I

1,2 against LA
1 (2 d.f., test 7), or, by comparing LG,I

1,2 against LG
1

(6 d.f., test 8). These tests are summarized in Table 2 and serve as INTERSNP
standard tests that can be called via their test number.

For three SNPs, likelihoods and tests can be formalized analogously.
Here, we describe only allelic tests, but note that INTERSNP also allows
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Table 1. Likelihoods

No. Formula

L0 β0

LA
1 β0 +β1x1

LG
1 β0 +β1x1 +β1,Dx1,D

LA
1,2 β0 +β1x1 +β2x2

LG
1,2 β0 +β1x1 +β1,Dx1,D +β2x2 +β2,Dx2,D

LA,I
1,2 β0 +β1x1 +β2x2 +β1,2x1x2

LG,I
1,2 β0 +β1x1 +β1,Dx1,D +β2x2 +β2,Dx2,D+

β1,2x1x2 +β1,2,Dx1x2,D +β1,D,2x1,Dx2 +β1,D,2,Dx1,Dx2,D

Table 2. Tests

Test No. Test Formula d.f. Comment

1 Chi-square-test 8 Full genotype test (contingency table)

2 Log-linear model lG,I
1,2 versus lG1,2 4 Test for genotypic interaction

3 Logistic regression LA,I
1,2 versus L0 3 Full additive test

4 Logistic regression LG,I
1,2 versus L0 8 Full genotype test

5 Logistic regression LA,I
1,2 versus LA

1,2 1 Test for additive interaction

6 Logistic regression LG,I
1,2 versus LG

1,2 4 Test for genotypic interaction

7 Logistic regression LA,I
1,2 versus LA

1 2 Additional allelic effect of SNP 2

8 Logistic regression LG,I
1,2 versus LG

1 6 Additional genotypic effect of SNP 2

9 Logistic regression LA,I
1,2,3 versus L0 7 Full additive test

10 Logistic regression LA,I
1,2,3 versusLA

1,2,3 4 Test for allelic interaction

11 Logistic regression LA,I
1,2,3 versus L

A,I2
1,2,3 1 Test for 3-fold allelic interaction

12 Logistic regression LA,I
1,2,3 versus LA,I

1,2 4 Additional allelic effect of third locus

explicit model specification, in particular genotypic 3-SNP tests. Let LA
1,2,3 =

β0 +β1x1 +β2x2 +β3x3 be the three-SNP allelic likelihood, let LA,I2
1,2,3 =β0 +

β1x1 +β2x2 +β1,2x1x2 +β3x3 +β1,3x1x3 +β2,3x2x3 be the three-SNP allelic
likelihood including all pairwise interactions and LA,I

1,2,3 =β0 +β1x1 +β2x2 +
β1,2x1x2 +β3x3 +β1,3x1x3 +β2,3x2x3 +β1,2,3x1x2x3 be the allelic likelihood
including all pairwise and 3-fold interaction term. Then, testing LA,I

1,2,3 against

L0 yields a full three-SNP allelic test with 7 d.f. (test 9), whereas testing LA,I
1,2,3

against LA
1,2,3 yields a test for 2- and 3-fold allelic interaction (4 d.f., test 10).

Testing LA,I
1,2,3 against LA,I2

1,2,3 yields a test for 3-fold allelic interaction (1 d.f.,

test 11). Finally, testing LA,I
1,2,3 against LA,I

1,2 yields a test for the additional
allelic effect of SNP 3, while controlling for SNPs 1 and 2 (4 d.f., test 12).

For X-chromosomal markers, all dominance and dominance interaction
terms are ignored. All tests can be combined with up to 10 covariates.
In particular, adjustment for population strata, as derived from EIGENSOFT
(Patterson et al., 2006; Price et al., 2006), for instance, is possible.

Note that at the moment only two- and three-marker analysis is
implemented in INTERSNP. Since d.f. grow rapidly with even higher order
interactions, it might be necessary to develop completely new statistical
approaches that have enough power to detect those interactions.

2.3 Priorities
As already mentioned, complete two-marker GWIA requires computation
resources that are usually not available, and complete three-marker GWIA is
unfeasible. Therefore, two- or three-marker SNP combinations are selected
for joint analysis based on user-specified statistic and genetic criteria.

2.3.1 Statistic criterion For each SNP a single-marker P-value is
computed with Armitage’s (1955) trend test from the own study data. Based

on these P-values, a list of n top SNPs is computed. The length n of the list
is specified by the user. The user specifies how many SNPs (0, 1, 2 or 3) of
each combination shall be from the top-list.

2.3.2 Genetic criteria According to the criteria genomic location and
function class, we classify SNPs into five nested groups of increasing genetic
impact as follows: 0. gene desert: distance to nearest exon of nearest gene
is >100 kb. 1. close to gene: distance to nearest exon of nearest gene is
<100 kb or SNP lies within an intron of a gene. 2. exon: location within
an exon of a gene. 3. coding: SNP lies in a coding region of a gene. 4.
non-synonymous: SNP causes a non-synonymous amino acid exchange. The
user specifies the required genetic impact and how many SNPs (0, 1, 2 or
3) of each combination shall have the selected, or a higher, impact. SNP
annotation is derived from a respective annotation file that is loaded into
the program. The Illumina® Human-610-chip annotation file can be directly
used. For a detailed description of the annotation file format, we refer to the
documentation on our web page.

2.3.3 Pathway information Pathway information is an obvious criterion
to select SNPs for joint analysis. All analysis strategies (cf. next section)
can be restricted to combinations of SNP that lie within genes that belong
to a common pathway. Pathway information is provided by the user via a
file that contains a list of pathways, together with the rs numbers of the
SNPs that lie in genes from the respective pathway. In this way, expert
researchers can restrict pathway-based interaction analysis to those pathways
that are of potential relevance for the phenotype of interest. Since such
expert knowledge is not always available, or often does not exist, we also
support direct usage of all pathways from the KEGG (Kanehisa et al.,
2006) database via a respect pathway file that can be downloaded from or
web page or from the SNP ratio test homepage (O’Dushlaine et al. 2009;
https://sourceforge.net/projects/snpratiotest/). Note, that we do not provide
an explicit test for association of pathways with disease, in the sense of
looking for an overrepresentation of associated SNPs in particular pathways,
but that we use pathway information as a prior.

2.4 Typical GWIA strategies
Our software allows flexible combination of the selection criteria. In the
following, we exemplify the usage by presenting various meaningful GWIA
strategies.

(1) Single-marker analysis with Armitage’s trend test.

(2) Analysis of all SNP pairs with at least one SNP among the top 10
single-marker results. (Recommended tests: 7, 8).
The idea of this strategy is to conduct a genome-wide search for
possible interaction partners of the top single markers. This strategy
is particularly meaningful when the top hits lie in confirmed disease
loci. Therefore, we recommend to use tests 7 or 8 to test for the
additional allelic or genotypic effect of further SNPs.

(3) Analysis of all pairs of SNPs which are among the top 1000 single-
marker results. (Recommended tests: 1, 2, 3, 5, 6).
In this situation, tests 1–6 are useful. Test 1 tests the same hypothesis
as test 4 (full genotype test) and test 2 tests the same hypothesis as
test 6 (genotypic interaction). Since tests 1 and 2 are much faster to
compute, we recommend to use them when no covariates shall be
included into the analysis.

(4) Analysis of all pairs of SNPs which are among the top 50 000
single-marker results and also lie in a coding region of a gene.
(Recommended tests: 1, 2, 3, 5, 6).

(5) Analysis of all pairs of non-synonymous SNPs. (Recommended tests:
1, 2, 3, 5, 6).

(6) Analysis of all pairs of SNPs which are among the top 5000 single-
marker results and which lie in a common pathway. (Recommended
tests: 1, 2, 3, 5, 6).
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(7) Analysis of all SNP triples which are non-synonymous and which
are among the top 10 000 single-marker results. (Recommended
tests: 9, 10, 11).
In order to reduce d.f., we recommend to use allelic tests for three
SNPs.

(8) Analysis of all SNP triples which are non-synonymous and which
are among the top 100 000 single-marker results and which lie in a
common pathway. (Recommended tests: 9, 10, 11).

2.5 Multiple testing adjustment
By default, Bonferroni correction with the number of conducted tests is
provided. When combinations of SNPs from the single-marker top list are
selected for joint analysis, such correction is sufficient when, either, a test
for interaction is used (tests 2, 5, 6, 10 and 11), or when marginal effects
are included only for those SNPs that are not required to be from the single-
marker top list (strategy 2, tests 7 and 8). Thus, the marginal effects of
the SNPs, the selection is based on, do not contribute to the test statistic,
and there is no selection bias. However, when tests are used that include the
marginal evidence into the test statistic (tests 1, 3, 4, 9 and 12), correction with
the number of actually conducted tests could result in an anti-conservative
procedure. Therefore, when tests including marginal effects are used and
when combinations are selected based on single-marker evidence, we have
to correct with the number of tests that would have been conducted without
the single-marker criterion.

While Bonferroni correction avoids increased type I error, it is also
known to reduce power since it ignores the correlation between tests
that is caused by linkage disequilibrium (LD) and marker overlap. In
order to improve adjustment for multiple testing, we have implemented
Monte Carlo (MC) simulations for genome-wide application. With the
MC-approach it is possible to account for the dependency of tests and to
avoid conservativeness, while keeping correct type I error. We exemplify a
valid GWIAMC-procedure by application to strategy IV (test 3) as follows:

(1) For each SNP compute its Armitage P-value.

(2) Determine the list of single-marker top hits (top-n-list).

(3) Compute joint P-value using test 3 for all pairs of SNPs, where both
markers are in the top-n-list and both SNPs lie within the coding
region of a gene.

(4) Construct a list of two-marker top hits, ordered by ascending P-value.
Optionally, the best single-marker P-values can be included into the
list when the goal is to adjust simultaneously for both single-maker
and two-marker analysis.

(5) Do m simulations: permute case/control status such that the
case/control ratio is kept constant. Conduct steps 1–4 for each
simulated dataset. In particular, the SNP set of single-marker top
hits differs between replicates. This is a must to mimic the selection
process and to account for the fact that the marginal effects contribute
to the test statistic of test 3.

(6) It is now possible to compute adjusted P-values for the best P-value
of the real data, but also for k-th best P-value pk . We compute the
adjusted P-value as s/m, where s is the number of simulated datasets
for which the best P-value is smaller than or equal to pk and where m
is the number of replicates. Note that, even for k >1 it is necessary to
compare pk to the best P-value of the simulated dataset. Comparison
with the k-th best P-value of the replicates could lead to the senseless
situation that the corrected P-value for some pk with k >1 is better
than the corrected P-value for p1.

2.6 Implementation
INTERSNP is written in C/C++. Our data file format is identical to the
transposed file set (tped/tfam format) used by PLINK (Purcell et al., 2007).

Analysis options (statistical tests, priorities) are specified by the user in a
selection file. The user can also chose whether the complete data are read
and stored in the computer’s working memory, or whether for each SNP
combination genotype information is reread from the respective lines of the
input file. In the latter case, the genotype information is deleted from the
working memory immediately after the test statistic has been computed.
This technique guarantees the possibility to analyze huge datasets when
computer’s working memory is limited.

3 RESULTS
We analyzed a GWAS dataset that was recently published by
Hillmer et al. (2008) and that reported a new locus for male
pattern baldness on chromosome 20p11 with 296 cases and 347
controls. The strongest association signal was confirmed in an
independent replication sample (combined P=2.7×10−15). Here,
we reanalyzed the initial GWAS (643 individuals), without the
replication sample, and used only those 300 026 qc-SNPs that had
a calling rate of at least 95% in both cases and controls. Note,
that the lower calling rates for the remaining SNPs were not due
to genotyping failure but arose since the sample was genotyped in
batches with varying SNP content. Table 3 provides running time for
strategies I–VIII for on a 3 GHz linux machine with 32 GB working
memory.

Without MC-simulations, the majority of strategies is computable
within a few minutes. The most demanding strategy we present
(strategy V), requires only 7 min with the log-linear test (test 2).
Computation time increases when logistic regression is used, since
the maximization of the likelihoods requires repeated multiplication
of matrices. Determinants of running time are the number of
individuals and the number of parameters to be estimated. The
latter is equal to the sum of parameters in the alternative and the
null likelihood, and the number of individuals. As a consequence,
computation time is highest with test 6, since it requires the
computation of LG

1,2 and LG,I
1,2 which include 4 and 8 parameters,

respectively. Still, even with strategy V, computation of test 6 is
feasible in <11 h. Thus, for all strategies, it is possible to increase
the number of tests by defining them based on a larger list of
single-marker top hits.

Table 3 also includes running time estimates for 100 MC-
simulations. We chose this number since it can give a first hint
to judge whether a result is close to genome-wide significance or
not. In practice, recomputation with a larger number of replicates is
recommendable. Note that running time does not simply scale up by
a factor of 100 since part of the running time of the real data goes
into file procession and data storing and has to be done only once.

All MC-strategies are feasible, most of them need <1 day of
computing time on a single computer. When test 1 or 2 are used,
typically 1 h computing time is already sufficient. As before, the
tests based on logistic regression take markedly longer, but remain
feasible. Again, strategy V in combination with test 6 is most
demanding, but about 1 month of running time still can be considered
to be acceptable.

All running times in Tables 3 refer to the situation when the
complete genotype data can be stored in the working storage of
the computer. When we did not store the genotype data matrix,
running time increased by a factor 2 on average and for none of
the strategies running time increased by more than a factor of three.
Thus, all strategies are also feasible when not enough computer
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Table 3. Running time

Strategy TEST Number of testsa Running Time Running Time MC

I. ATTb 300 326 1m31 7m42

II 7 3 003 205 33m34 66h18
8 52m23 187h30

III 1 499 500 1m32 22m12
2 1m37 33m25
3 5m29 7h25
5 8m25 13h20
6 24m57 35h15

IV 1 835 728 2m14 74m6
2 2m23 90m45
3 8m33 11h50
5 13m50 16h29
6 42m22 50h24

V 1 14 180 475 4m30 6h21
2 7m14 10h37
3 93m21 149h7
5 154m50 254h4
6 645m2 798h45

VI 1 18 458 1m33 11m35
2 1m35 12m10
3 1m41 22m51
5 1m50 31m42
6 2m27 76m45

VII 9 632 710 14m20 25h24
10 17m 29h27
11 20m38 35h50

VIII 9 150 128 8m55 5h39
10 8m49 5h42
11 9m53 7h25

aStrategy I: number of single-marker tests. Other strategies: number of multi-marker
tests, number of single-marker tests is not counted.
bArmitage trend test.

working storage is available. In particular, different jobs can be run
in parallel.

We also checked the performance of INTERSNP with datasets
with more individuals (data not shown). When test 1 or 2 are used,
running time increases roughly by a factor equal to the relative
increase in individuals. With the logistic regression models, the
increase is higher, because the matrices involved in the computation
have size (number of individuals) × (d.f.). We believe that several
weeks of running time are an effort that has to be invested. Keeping
in mind that study planning, patient recruiting and genotyping
typically take several years, moderately long running time should
not be a hindrance for extensive data analysis.

Although the focus of our article is on introducing GWIA
strategies, we also wish to briefly present the most interesting
association results, since they exemplify potential advantages
of GWIA. Single-marker analysis is presented in Table 4 as
background information. MC-corrected P-values are shown for
10 000 simulations. The first eight lines contain markers from
the confirmed X-chromosomal locus (Hillmer et al., 2008). The
SNPs reach genome-wide significance after Bonferroni correction
already in the initial GWAS. As expected, the P-values obtained

with MC-simulations are lower since the dependency of the tests
is accounted for. Also, SNP rs1998076 in line 9 is genome-
wide significant after Bonferroni correction (P=0.039) and MC-
simulations improve the level of significance to P=0.0248. Notably,
the SNP belongs to the locus on chr 20 that was replicated in an
independent sample (Hillmer et al., 2008). Finally, the last SNP
of Table 4 was not significant, neither after Bonferroni correction
nor with MC-simulations. Consistently, it was not replicated in the
independent sample.

Results from strategy VI (analysis of all pairs of SNPs which are
among the top 5000 single-marker results and which lie in a common
pathway) are found in Table 5. We show the results from the test for
genotypic interaction obtained with the log-linear model (test 2).
The top pair is defined by SNPs rs608139 (chr 2) and rs4678398
(chr 3). Both SNPs show single-marker association at a moderate
level (P = 0.0080 and 0.0091) and lie in genes that are annotated
to pathway hsa04530 from the KEGG database. According to the
database, the pathway is responsible for tight junction.

There is strong evidence for genotypic interaction between the two
SNPs, P=1.249×10−6. The result is driven by an excess of double
heterozygotes in controls (16.2% versus 3.2% in cases, Table 6).

The interaction P-value withstands Bonferroni correction with
the number of two-marker tests (18 458 tests, corrected P=0.023).
Note that although the two SNPs are selected as the members
of the top 5000 single-marker list, Bonferroni correction with
the number of actually conducted tests is sufficient since the test
statistic of test 2 does not include marginal effects. In order to
account for the dependency of the tests caused by LD, we ran
10 000 permutation replicates and obtained a corrected P-value
of 0.0091. Thus, we were able confirm genome-wide significance
for strategy VI. Still, we wish to emphasize that this result requires
replication in independent studies, since we carried out all strategies
shown in Table 3. Nevertheless, our example demonstrates the
potential of the application of priors to GWIA. With a complete
GWIA of all SNP pairs (4.5×1010 tests), we would have expected
56 250 SNP pairs with a P-value smaller than that observed for our
top SNP pair from strategy VI. Thus, the pair most probably never
would have got into focus.

4 DISCUSSION
We have successfully implemented a software product that allows
conduction of a variety of promising and meaningful GWIA
strategies. Our running time estimates show that a single computer
is sufficient to make those strategies feasible. Thus, researchers
are enabled to conduct GWIA even when they do not have
access to computing resources that allow massive parallelization.
Moreover, by combining a priori information and MC-simulations,
our approach could also be more powerful than complete GWIA
strategies.

Application to the GWAS on male pattern baldness (Hillmer et al.,
2008) revealed an interesting result involving two SNPs lying in
genes from a joint pathway. The top hit obtained with this strategy
(corrected P = 0.0086) pointed to two SNPs that would have been
overlooked with a single-marker approach, but also with complete
GWIA in which the hit would not have ranked among the top 50 000
hits. In view of the fact that numerous different analysis strategies
were conducted, the result warrants replication. Respective efforts
are ongoing.
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Table 4. Single-marker analysis

No. Chr_No_1 rs_No_1 Pos_No_1 P-value BONF P-value MC P-value Comment

1 23 rs4548330 496582 6.85333e-10 0.000205899 0.0000 Replicated
2 23 rs5919235 496583 1.03681e-09 0.000311495 0.0001 Replicated
3 23 rs2497938 496629 2.93098e-09 0.000880572 0.0005 Replicated
4 23 rs1041668 496581 3.02748e-09 0.000909565 0.0006 Replicated
5 23 rs5919200 496579 5.92054e-09 0.00177874 0.0012 Replicated
6 23 rs775358 496577 8.35546e-09 0.00251028 0.0016 Replicated
7 23 rs12396249 496648 5.47348e-08 0.0164443 0.0095 Replicated
8 23 rs5919393 496649 6.1065e-08 0.0183461 0.0108 Replicated
9 20 rs1998076 468034 1.30027e-07 0.0390648 0.0248 Replicated
10 13 rs4976846 388824 2.9238e-07 0.0878413 0.0549 Not replicated

Table 5. Results strategy VI

rs_1 P_1a rs_2 P_2b Pc BONF P-value MC P-value Pathway

rs608139 0.008 rs4678398 0.009 1.25e-06 0.023 0.0091 hsa04530
rs9436297 0.011 rs17863168 0.012 7.87e-05 1.000 0.4788 hsa04080
rs2892805 0.009 rs348458 0.013 0.00015 1.000 0.7204 hsa00830
rs2892805 0.009 rs610529 0.014 0.00025 1.000 0.8667 hsa00830
rs1199333 0.009 rs5750854 0.009 0.00038 1.000 0.9533 hsa04010
rs9816982 0.001 rs2186598 0.015 0.00038 1.000 0.9535 hsa04080
rs1464443 0.003 rs10487888 0.008 0.00050 1.000 0.9810 hsa04012
rs2575357 0.007 rs3741049 0.012 0.00052 1.000 0.9828 hsa00620
rs918938 0.011 rs7789059 0.014 0.00057 1.000 0.9886 hsa04514
rs11851957 0.002 rs1938958 0.009 0.00062 1.000 0.9917 hsa04080

aP-value Armitage trend test SNP 1.
bP-value Armitage trend test SNP 2.
cP-value test for interaction (4 d.f.).

Table 6. Two-marker genotype frequencies (rs608139 and rs4678398)

Cases Controls

AA AB BB AA AB BB

AA 0.003 0.016 0.003 0.017 0.003 0.003
AB 0.152 0.032 0.045 0.116 0.162 0.023
BB 0.423 0.281 0.045 0.367 0.263 0.046

Recently, Evans et al. (2006) have shown that using two-stage
two-locus models in GWIA can be less powerful than an exhaustive
search. They come to the conclusion that in an approach that requires
both SNPs to reach a particular single-marker P-value cutoff, power
is reduced because it is not unlikely that at least one of the SNPs
does not reach the cutoff when marginal effects are small. Since
an exhaustive search is typically not feasible, a sensible strategy
can, therefore, be to require only one SNP to reach the single-
marker cutoff. With the INTERSNP program options it is possible
to organize the analysis in this way.

In general, we have to answer the crucial question: ‘How
important is interaction for the etiology of complex diseases?’ We
think that this is an open question that cannot be answered at
the moment. Of note, according to a literature review containing

publications on dichotomous phenotypes until 6/2008, interaction is
absent virtually among all the genes found with the standard GWAS
single-marker approach (Becker and Herold, 2009). However, there
is obviously a bias toward simple disease models in those genes
identified via a single-marker strategy. Thus, the phenomenon
of missing interaction between genes identified so far need not
be representative of the genetic basis of complex diseases in
general. Indeed, there are strong arguments that epistasis and genetic
interaction are inevitable consequences of the evolutionary process
(Frankel and Schork, 1996; Phillips, 2008; Wolf et al., 2000). In
view of these reasons and in view of the small fraction of genetic
heritability explained so far, it is a reasonable assumption that
interaction plays a role in the etiology of at least some complex
diseases. The search for those is obligatory. In conclusion, we
believe that by application to further GWAS, our software can
help to elucidate the actual relevance of interaction for complex
diseases.
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