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ABSTRACT

Motivation: In this article, we show that the classification of
human precursor microRNA (pre-miRNAs) hairpins from both
genome pseudo hairpins and other non-coding RNAs (ncRNAs)
is a common and essential requirement for both comparative
and non-comparative computational recognition of human miRNA
genes. However, the existing computational methods do not
address this issue completely or successfully. Here we present the
development of an effective classifier system (named as microPred)
for this classification problem by using appropriate machine
learning techniques. Our approach includes the introduction of
more representative datasets, extraction of new biologically relevant
features, feature selection, handling of class imbalance problem in
the datasets and extensive classifier performance evaluation via
systematic cross-validation methods.
Results: Our microPred classifier yielded higher and, especially,
much more reliable classification results in terms of both sensitivity
(90.02%) and specificity (97.28%) than the exiting pre-miRNA
classification methods. When validated with 6095 non-human animal
pre-miRNAs and 139 virus pre-miRNAs from miRBase, microPred
resulted in 92.71% (5651/6095) and 94.24% (131/139) recognition
rates, respectively.
Availability: The microPred classifier, the datasets used, and the
features extracted are freely available at
http://web.comlab.ox.ac.uk/people/ManoharaRukshan.Batuwita/microPred.htm.
Contact: manb@comlab.ox.ac.uk; vasile.palade@comlab.ox.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The microRNA (miRNA) is an important type of non-coding RNA
(ncRNA) genes, which participates in post-transcriptional gene
regulation. It has been estimated that 20–30% of human genes
could be controlled by miRNAs (Kim and Nam, 2006). Very useful
associations between miRNA expression levels and human diseases,
like different types of cancers and mental retardations, such as
Fragile X Syndrome, have been identified (Chang and Mendell,
2007; Croce and Calin, 2005).

Although it has been estimated that there can be thousands of
miRNA genes in the human genome (Chang and Mendell, 2007;
Kim and Nam, 2006; Miranda et al., 2006), only 695 of them
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have been identified so far according to miRBase12 (September
2008) (Griffiths-Jones et al., 2006). The identification of miRNAs by
traditional experimental methods, such as direct cloning, suffer from
low sensitivity due to the temporal, spatial and low level expression
patterns of most miRNAs (Bartel, 2004; Berezikov et al., 2006). As
an alternative, computational prediction methods dedicated for the
discovery of novel miRNA genes by analyzing the genomic DNA
play a very crucial role. The main signal used in the computational
methods has been the hairpin secondary structure of precursor
miRNAs (pre-miRNAs) (Bartel, 2004; Kim and Nam, 2006). The
miRNA genes are transcribed as long primary miRNAs which
are then processed into ∼80 nt pre-miRNAs folding into hairpin
secondary structures. Pre-miRNAs are then cleaved into ∼22 nt
mature miRNAs which eventually participate in gene regulation
(Kim and Nam, 2006). Figure 1 shows the hairpin secondary
structure of human pre-miRNA hsa-mir-520b (from miRBase12),
which was predicted by the RNAfold program (Hofacker, 2003).

The available computational methods for human miRNA gene
recognition have been developed in two directions, as comparative
methods and non-comparative methods. The rationale behind
comparative methods is the prediction of genome sequences, which
fold into pre-miRNA-like hairpin secondary structures and are
conserved in closely related genomes, as novel pre-miRNAs. The
corresponding genomic locations are then identified as candidate
locations for miRNA genes. Several variations of comparative
methods for human miRNA prediction are discussed in MiRscan
(Lim, 2003), DIANA-microH (Szafranski et al., 2006), RNAmicro
(Hertel and Stadler, 2006) and (Berezikov et al., 2005). Although
these conservation-dependent comparative methods are powerful
in genome-wide screening of well-conserved pre-miRNAs among
closely related species, they can suffer from low sensitivity with
respect to different evolutionary distances (Berezikov et al., 2005).
That is, these methods could miss novel pre-miRNAs for which close
homologous cannot be found due to the limitation of current data,
unreliability of alignment algorithms (Loong and Mishra, 2007), or
especially due to the availability of rapidly evolving and species-
specific miRNAs (Loong and Mishra, 2007; Xue et al., 2005).
Bentwich et al. (2005) has emphasized that the non-conserved
miRNAs in human genome, which are missed by comparative
methods, can be many and yet to be recognized.

The other approach, non-comparative computational recognition,
does not rely on the phylogenetic conservation signal. Therefore,
these methods have the capability of recognizing non-
conserved/species-specific miRNAs, and miRNAs that can be
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Fig. 1. Human pre-miRNA has-mir-520b and its hairpin secondary structure
predicted by the RNAfold program under the default parameters.

missed due to the limitations of comparative data and methods.
The main idea of this approach has been the effective identification
of pre-miRNAs among the hairpin secondary structures predicted
from the human genome. This is a very challenging task as
human genome consists of a vast number of sequences folding
into hairpin secondary structures, which are not pre-miRNAs.
These structures are called ‘pseudo hairpins’ (Bentwich et al.,
2005). Bentwich et al. (2005) presents an initial non-comparative
method which first screened about 11 million hairpin structures
from human genome. Then it combined bioinformatics predictions
with microarray analysis and sequence-directed cloning to detect
89 novel human miRNAs, 53 of which are not conserved beyond
primates. Following this inaugural work, several classifier systems
have been developed as non-comparative prediction methods to
distinguish human pre-miRNA hairpins from pre-miRNA-like
pseudo hairpins. Xue et al. (2005) presents a Support Vector
Machine (SVM)-based classifier called triplet-SVM, which
classifies human pre-miRNAs from pseudo hairpins based on 32
‘structure-sequence triplet features’. An extension of triplet-SVM
method called MiPred, which used the random forest algorithm
to improve the classification results, is presented in (Jiang et al.,
2007). Another SVM-based classification method, miRabela, which
focused on recognizing novel pre-miRNA candidates closely
located around known miRNAs genes in human genome, is
published in (Sewer et al., 2005). The miPred (Loong and Mishra,
2007) is also an SVM-based method for the classification of human
pre-miRNAs from genome pseudo hairpins based on a set of 29
‘global and intrinsic’ features.

Presently, the next generation sequencing techniques, such as
‘deep-sequencing’, have made it possible to discover the tissue-
specific and development stage-specific miRNAs and miRNAs
expressed at low levels with high sensitivities (Friedlander et al.,
2008; Ruby et al., 2006). However, in addition to the flaws
of these high-end sequencing techniques such as sequencing
errors, polymorphisms and RNA editing and splicing, these also
do present a great deal of computational challenges such as
the separating of miRNAs from other sequenced small RNAs
or degradation products, and mapping deep-sequencing reads
to genomic positions (Friedlander et al., 2008). The miRDeep
(Friedlander et al., 2008) is a non-comparative computational
method developed for the identification of miRNAs from a
pool of sequenced RNA transcripts resulted by deep-sequencing
experiments. This method first aligns the transcript reads to genomic
locations and selects the genomic sequences from those locations,
which can form hairpin secondary structures. Then these hairpin
secondary structures are scored by using a probabilistic model,
which is based on deep-sequencing signals and Dicer processing
features of real pre-miRNAs together with some other features, to

identify real pre-miRNAs by rejecting non-pre-miRNA (negative)
hairpins.

1.1 Addressing the limitations of the existing
computational methods

By analyzing the available datasets, previously published results and
capabilities of the existing comparative and non-comparative human
miRNA prediction methods, we have identified some limitations
associated with them. According to our knowledge, these issues
related to human miRNA recognition have not been considered
together or completely addressed before.

We first consider the limitations of the existing comparative
methods. As mentioned above, there is a vast number of sequences
in human genome (∼11 million) that can fold into pre-miRNA-
like hairpin secondary structures (Bentwich et al., 2005). Most
of these are pseudo hairpins, but can have different origins and
a variety of other functions (reviewed in Lindow and Gorodkin,
2007; Pearson et al., 1996). Due to their different functionalities, it
is reasonable to argue that these pre-miRNA-like pseudo hairpins
can also be conserved in closely related genomes. Moreover, it
has been identified that hairpin secondary structures are common
motifs in other types of ncRNAs (Clote et al., 2005; Hertel and
Stadler, 2006; Zhang et al., 2005). Importantly, we observed that
129 other types of ncRNA sequences, which are present in the
other ncRNA dataset considered in this study (in Section 2.1),
were completely folded into pre-miRNA-like hairpin secondary
structures by the RNAfold program under the default parameters (at
37˚C). These sequences are presented in Table S1 in ‘Supplementary
Materials and Methods’. Most of these human other ncRNAs
can also be conserved in related genomes. Due to these reasons,
we can argue that there can be many conserved hairpins in the
human genome, which are not pre-miRNAs. Therefore, a proper
comparative method for human pre-miRNA recognition should first
effectively distinguish whether a genomic sequence folding into a
hairpin structure is a real pre-miRNA or not (a pseudo hairpin or
a ncRNA-derived hairpin), in addition to its conservation analysis.
Among the available comparative methods, RNAmicro and DIANA-
microH methods have partially considered these issues. RNAmicro
has considered the classification of conserved pre-miRNAs from
conserved other ncRNAs, but has not considered the classification
pre-miRNAs from pseudo hairpins. On the other hand, although
DIANA-microH has considered the classification of conserved pre-
miRNAs from conserved pseudo hairpins, it has not considered the
classification of pre-miRNAs from other ncRNAs.

Now we consider the existing non-comparative methods. As
pointed out above, human genome consists of a vast number
of pseudo hairpins, and hairpin structures can be found among
the complete secondary structures of other types of ncRNAs and
their motifs. Therefore, a proper non-comparative approach for
novel human pre-miRNA recognition should effectively distinguish
real pre-miRNA hairpins from both genome pseudo hairpins and
other ncRNAs. However, the existing non-comparative methods
(triplet-SVM, MiPred, miRabela, miPred) were mainly developed to
distinguish real pre-miRNAs from pseudo hairpins only. Although
miRabela method considered some other ncRNAs (some tRNAs
and rRNAs) in the negative training dataset, this dataset was not
much representative. In miPred method, the classifier trained for the
classification of pre-miRNAs from pseudo hairpins was tested for the
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classification of another ncRNA dataset. However, the recognition
rate obtained was as low as 76.15%.

1.2 Common classification requirement and microPred
classifier

As discussed above, both comparative and non-comparative
computational methods for human miRNA recognition require a
suitable method for the effective classification of real pre-miRNA
hairpins from both pseudo hairpins and other ncRNAs. In this
article, we present a systematic development of a classifier system
satisfying this classification requirement by using effective machine
learning techniques. Our approach includes the use of a more
complete and representative ncRNA and pseudo hairpin dataset
as the negative dataset for the classifier development, introduction
of new biologically relevant features, feature selection, application
of class imbalance learning methods and extensive and systematic
training and testing of classifier systems. We name the classifier
system developed in this research as ‘microPred’.

As discussed previously under the miRDeep method, the
classification of pre-miRNA hairpins from non-pre-miRNA hairpins
is also an essential requirement in identifying miRNA transcripts in
deep-sequencing data. Therefore, microPred can also be used in the
miRDeep method together with its probabilistic model, for example,
in a multi-classifier environment, or as an alternative method to
distinguish real pre-miRNA hairpins from negative hairpins.

2 MATERIALS AND METHODS

2.1 Biological datasets
The proposed microPred classifier system should classify real human pre-
miRNAhairpins from both pseudo hairpins and other ncRNAs. Therefore, the
positive training dataset for the classifier development should be composed
of known human pre-miRNAs, while the negative training dataset should be
composed of both pseudo hairpins and human other ncRNAs. The datasets
selected in this study are introduced below.

2.1.1 Positive dataset-human pre-miRNAs: We retrieved 695 human
pre-miRNA sequences published in miRBase12 (http://microrna.sanger.ac.
uk/sequences/) (Griffiths-Jones et al., 2006). Then the redundant sequences
were filtered out. This retained 691 non-redundant sequences. Out of these,
660 sequences were folded into hairpin secondary structures; while the
remaining 31 were folded into structures having multi-branched loops by
the RNAfold program under the default parameters at 37˚C. These 31 pre-
miRNA sequences with their predicted secondary structures are given in
Table S2 in ‘Supplementary Materials and Methods’. We considered all of
these 691 non-redundant pre-miRNA sequences as our positive dataset. The
minimum, maximum and average lengths of these sequences were 53, 137
and 89 nt, respectively.

2.1.2 Negative dataset-Pseudo hairpins: we obtained 8494 non-
redundant human pseudo hairpin sequences which have been previously
used in triple-SVM, MiPred and miPred methods. Originally, these pseudo
hairpins were extracted from human RefSeq genes (Pruitt and Maglott, 2001)
without undergoing any experimentally validated alternative splicing event.
Therefore, it is more likely that these pseudo hairpin sequences do not
contain any annotated or un-annotated pre-miRNAsequences. The minimum,
maximum and average lengths of these sequences were 62, 119 and 85 nt,
respectively.

Human other ncRNAs: ideally, the other ncRNA dataset should be
composed of all human other ncRNAs recognized so far except miRNAs.
However, a complete human ncRNA dataset is not readily available so far

in any RNA database to extract. Although miPred method presented an
ncRNA dataset, it is not purified due to its containment of animal ncRNAs in
addition to human ncRNAs. Therefore, we did not consider that dataset in this
study. We obtained the manually annotated human ncRNA dataset discussed
in (Griffiths-Jones, 2007), which was originally published in Lander et al.
(2001). This dataset was formed by starting with the automatic prediction
methods, and then carefully removing the predicted pseudogenes manually.
Therefore, this dataset is regarded as the best currently available ncRNA
predictions for the human genome according to (Griffiths-Jones, 2007).
The original dataset contained 1020 ncRNA sequences (except miRNAs)
whose sequence lengths ranged from 48 to 548 nt. After removing the
redundant sequences and sequences longer than 150 bases (in order to
be comparable with human pre-miRNA and pseudo hairpin datasets) 754
sequences were recovered. This dataset included 327 tRNAs, 5 5S-rRNAs,
53 snRNAs, 334 snoRNAs, 32 YRNAs and 3 other miscellaneous RNAs. The
updated sequences of snoRNAs were obtained from snoRNABase database
(Lestrade and Weber, 2006). The average length of a sequence in this dataset
was 89 nt. As mentioned in Section 1.1, 129/754 ncRNA sequences in
this dataset were folded into hairpin secondary structures by the RNAfold
program. The remaining 625 sequences were folded into structures with
multi-branched loops, most having hairpin motifs. We included all 754 other
ncRNA sequences into the negative dataset. We believed that the inclusion
of the ncRNA sequences forming multi-branched loop secondary structures
(as previously done in RNAmicro method) would enrich the negative dataset
by providing the additional information representing their hairpin motifs.

2.2 Features
One of the main challenges in machine learning-based classifier development
is the extraction of an appropriate set of features on which a classifier is
trained to identify each class effectively. In this problem, we had to choose a
set of global features that can be extracted regardless of type of the secondary
structures of sequences, since our dataset contained both hairpin secondary
structures and structures having multi-branched loops.

We first looked into the features used by the existing pre-miRNA
classification methods, and considered the 29 ‘global and intrinsic’ features
introduced in the miPred approach, which can be calculated regardless of
the type of the secondary structures of sequences. These features included
17 sequential features [16 dinucleotide features (AA%, AC%, …, UU%), and
(%C +G)] calculated from the primary sequence itself, 6-folding measures
(dG, dP, dQ, dD, MFEI1, MFEI2) and one topological descriptor (dF)
calculated from the secondary structure of the sequence, and five normalized
variants of dG, dP, dQ, dD and dF, i.e. zG, zP, zQ, zD and zF. When
calculating zG, zP, zQ, zD and zF, for each original sequence 1000 random
sequences were generated. Here we adopted the same symbols used in miPred
to denote these 29 features. In order to calculate these features, we used the
scripts developed in miPred, which are available at http://web.bii.a-star.edu.
sg/∼stanley/Publications/Supp_materials/06-002-supp.html.

2.2.1 Newly Introduced Features: In addition to the above features, we
newly considered the following 19 features. Let L be the length of a sequence.

New Minimum Free Energy (MFE)-related features:

• MFE Index 3: MFEI3 = dG/n _loops; where n _loops is the number of
loops in the secondary structure, and dG = MFE/L.

• MFE Index 4: MFEI4 = MFE/tot_bases; where tot_bases is the total
number of base pairs in the secondary structure.

RNAfold-related features: these features were extracted using the RNAfold
program with ‘−p’ option at 37˚C, which calculates the partition function
and the base paring probability matrix following the algorithms presented in
(McCaskill, 1990).

• Normalized Ensemble Free Energy (NEFE).

• The frequency of the MFE structure (Freq).

• The structural diversity (Diversity).
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• Related to these features, we introduced the following feature:
Diff = |MFE - EFE|/L; where EFE is the ensemble free energy.

Mfold-related features: these thermodynamical features were calculated
using the UNAfold program http://dinamelt.bioinfo.rpi.edu/twostate-fold.
php (Markham and Zuker, 2005) in the Mfold web server package (Zuker,
2003).

• Structure Entropy dS, and dS/L.

• Structure Enthalpy dH, and dH/L.

• Melting Energy of the structure Tm, and Tm/L.

Base pair-related features: these features were calculated by the scripts
written by us.

• |A−U|/L,|G−C|/L, |G−U|/L; where |X −Y | is the number of (X −
Y ) base pairs in the secondary structure, (X −Y )∈{(A−U), (G−C),
(G−U)}.

• Average base pairs per stem (Avg_BP_Stem):
Avg_BP_Stem = tot_bases/n_stems; where n_stems is the number of
stems in the secondary structure; stem is a structural motif of the
secondary structure, which contains more than three contiguous stack
of base pairs as defined in miPred.

• %(A−U)/n_stems, %(G−C)/n_stems, %(G−U)/n_stems.

All these 48 features are explained in more detail in ‘Supplementary
Materials and Methods’. When calculating these features, the secondary
structures of the sequences were predicted by the RNAfold program under
the default parameters at 37◦C.

2.3 Choice of SVM classifier and model selection
SVM is a supervised machine learning paradigm for solving linear and non-
linear classification and regression problems (Burges, 1998). We chose SVM
as our classification paradigm in this research due to its high generalization
capability (Burges, 1998), ability to find global classification solutions
(Burges, 1998) and successful application in bioinformatics and other
practical domains.

The model selection for SVMs involves the selection of a kernel function
and its parameters which yield the optimal classification performance for
a given dataset (Burges, 1998). Among the available kernel functions, the
Radial Basis Function (RBF) is the most popular and widely used one due
to its higher reliability in finding optimal classification solutions in most
practical situations (Keerthi and Lin, 2003). The problems associated with
other kernels (Sigmoid, Polynomial, etc.) are discussed in (Burges, 1998;
Keerthi and Lin, 2003). Interestingly, it has been found that the Linear kernel
could be seen as a special case of RBF and this relationship could be used
to ease the parameter selection under RBF (Keerthi and Lin, 2003). We used
this method of model selection to train SVM models in this study, which is
described in ‘Supplementary Materials and Methods’. The performance of
the classifier at each parameter point is evaluated by 5-fold cross-validation
performance on the training dataset using the Geometric mean (Gm) metric.
The reason for using this metric and its definition are given in Section 2.5.
After finding the best parameters giving the highest cross-validation Gm value
for the training dataset, a new SVM model was trained using the complete
training dataset at those parameters. Then a separate testing dataset was
used to measure the performance of the developed classifier. The matlab
interface of libsvm2.86 (Chang and Lin, 2001) package was chosen as the
SVM training program. All the SVM training experiments in this research
were programmed in matlab. Before training the SVM classifier systems, the
complete dataset was scaled into (−1,+1) interval.

2.4 Feature selection
Our complete feature set consisted of 48 features as introduced in Section 2.2.
However, selecting the most discriminative set of features would increase
the performance, efficiency and comprehensibility of a classifier system by
reducing its complexity. There are basically two types of feature selection

methods presented in the machine learning literature: wrapper methods
and filter methods (Guyon and Elisseeff, 2003). In wrapper methods, the
true classification results given by a learning algorithm is used to evaluate
the goodness of feature subsets. However, in this research, the initial
attempts to apply wrapper approach for SVMs failed due to the large cross-
validation training time required to train SVMs with our large training
dataset. Therefore, we focused on filter methods for the selection of the
best subset of features.

Filter methods select features prior to training a classifier system
based on some discriminative measures. It has been reported that feature
subset selection filter methods that consider the interactions among the
features are more superior than the feature ranking filter methods that
evaluate each feature separately (Guyon and Elisseeff, 2003). Therefore,
we applied the following feature subset selection filter methods, which
were previously considered in (Kovzoglu and Mather, 2002), with the
backward elimination algorithm for searching the feature space: Divergence
(D), Transformed Divergence (TD) and Jeffries–Matusita distance (J −M).
These filter methods are briefly explained in ‘Supplementary Materials and
Methods’.

2.5 Class imbalance problem
The main problem encountered in the dataset selected in this research
(introduced in Section 2.1) was its imbalance. That is, the positive dataset
(691 pre-miRNAs) was largely outnumbered by the negative dataset
(9248 = 8494 pseudo hairpins + 754 other ncRNAs). The ratio of the positive
to negative dataset was 1:13.4. It has been well studied in machine learning
research that training a classifier system with such an imbalance positive and
negative dataset can result in poor classification performance with respect
to the minority class (Weiss, 2004)—in this case it would be with respect to
the positive (pre-miRNA) class. Generally, a classifier should result in high
performance with respect to both positive and negative classes for it to be
used for the real-world predictions with high confidence. This problem is
known as class imbalance learning problem in machine learning literature. It
has been found that SVM classifiers can also be sensitive to class imbalance
(Akbani et al., 2004; Veropoulos et al., 1999).

The solutions developed to overcome this problem are called class
imbalance learning methods which can be divided into two main categories:
external/data processing methods and internal/algorithmic methods (Weiss,
2004). External methods are independent from the learning algorithm being
used, and basically involve in pre-processing of training data to make them
balanced. Random over/under-sampling (Weiss, 2004), SMOTE (Chawla,
2002) and multi-classifier system (MCS) training (Molinara et al., 2007)
were the external imbalance learning methods considered in this research.
Generally, internal methods engage in the modification of the learning
algorithm to remove its bias for the majority class. Different error costs
(DEC) (Akbani et al., 2004; Veropoulos et al., 1999) and zSVM (Imam et al.,
2006) methods have been developed for SVMs as internal imbalance learning
methods. More crucially, it has been found that the best imbalance learning
technique which would give the highest performing classifier is domain and
dataset dependent (Weiss, 2004). Therefore, we applied all these mentioned
external and internal imbalance learning methods for SVMs in order to
develop a better performing classifier with our dataset. These imbalance
learning methods are briefly described in ‘Supplementary Materials and
Methods’.

It has been well studied that the most commonly used performance
metric ‘Accuracy’ (Acc = the percentage of correctly classified instances)
could not be used to measure the performance of a classifier precisely
when the class imbalance problem is present, as it does not reveal the true
classification performance with respect to the positive and negative classes
separately (Akbani et al., 2004; Weiss, 2004). Therefore, we used sensitivity
(SE = proportion of the positive examples correctly classified), specificity
(SP = proportion of the negative examples correctly classified) and Geometric
mean (Gm =√

SE ×SP) to measure the performances of the classifiers in this
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research, as commonly used in class imbalance learning research (Akbani
et al., 2004).

3 RESULTS AND DISCUSSION

3.1 Feature selection results
As the first experiment, we trained an SVM classifier with
the complete imbalanced dataset to observe the classification
performance by using all 48 features. Here, the complete dataset
was randomly divided into five equally sized partitions. We used
stratified random sampling such that each partition contained the
same ratio of positive and negative examples. Then four partitions
were used together as the training dataset to train an SVM classifier
following the model selection method mentioned in Section 2.3.
Next, the resulted model was tested for its classification performance
on the fifth data partition. This procedure was repeated five
times with different combinations of training (four partitions) and
testing (the remaining partition) datasets in an outer 5-fold cross-
validation loop, and the classification results on the testing datasets
were averaged. We used this systematic cross-validation method
for classification performance evaluation throughout this research.
Hereafter we refer to this method as ‘outer-5-fold-cv’ method.
This initial experiment conducted with all 48 features produced
the following average test classification results: SE= 80.32%, SP=
98.71% and Gm = 89.04%.

Next we considered only the 29 features introduced in miPred,
and evaluated the classification results for our dataset using the
aforementioned outer-5-fold-cv method. This experiment produced
SE = 71.98%, SP=98.55% and Gm = 84.22%, which were much
lower than the results obtained by using all the features. This showed
that the new features introduced by us have a significant influence
in more accurate classification of our datasets. Then we applied the
filter feature selection methods introduced in Section 2.4 to select
the best subset of features from all 48 features, which would give
the highest classification results for our dataset. We evaluated the
effectiveness of the feature subsets selected by these different filter
methods by comparing the true classification results obtained for our
dataset on those feature subsets via outer-5-fold-cv method. The true
classification results obtained subjected to different feature subsets
selected in these experiments are summarized in Table 1. Both D
and TD methods resulted the same feature subset.

From these results we chose the feature subset selected by J −M
filter method, which yielded the highest classification Gm (90.84%
depicted in bold face in Table 1), as the best feature set to be used in
the development of the proposed classifier. This feature set contained
the following 21 features: (%C +G), MFEI1, MFEI2, MFEI3,

Table 1. True classification results obtained through outer-5-fold-cv method
with respect to different feature subsets selected

Feature selection
methods

Number of
features
selected

True classification results (%)

SE SP Gm

All features 48 80.32 98.71 89.04
miPred features 29 71.98 98.55 84.22
J–M 21 83.36 99.00 90.84
D and TD 8 67.59 99.44 81.99

MFEI4, dG, dQ, dF, zD, Diversity, NEFE, Diff, dS, dS/L, |A−U|/L,
|G−C|/L, |G−U|/L, Avg_BP_Stem, %(A−U)/n_stem, %(G−
C)/n_stem, %(G−U)/n_stem. This feature subset retained seven
(one sequential and six structural features) out of 29 miPred features,
and interestingly, 14 out of 19 newly introduced structural features
by us. These findings also indicated that the structural features
introduced by us and miPred method have higher discriminating
power for separating pre-miRNAs from negative hairpins than the
sequential features. This selected feature subset with less number
of features not only gave the highest classification results, but
also immensely reduced the large cross-validation training time
taken by SVMs, specially, when executing class imbalance learning
experiments (e.g. over-sampling) presented in the Section 3.2.

3.2 Class imbalance learning results
From the highest classification results obtained with respect to
the best feature subset selected in the last section (SE=83.36%,
SP=99.00%), it was clear that the resulted classifiers performed
poorly with respect to the positive class compared with the negative
one. That is, these classifiers developed with our imbalanced dataset
(691 positives and 9248 negatives) were biased towards the majority
negative class (SP>> SE). If this type of a classifier is used for
real-life prediction, due to its lower sensitivity, the chance of miss-
detecting the valuable novel pre-miRNAs by it would be quite
high. Therefore, these results provided a good evidence for us to
apply class imbalance learning methods in this problem for the
development of a better performing classifier with respect to both
positive and negative classes.

We first considered the external imbalance learning methods. The
re-sampling methods (random over/under-sampling and SMOTE)
were applied until the positive and negative datasets were balanced.
In MCS training, the negative dataset was randomly divided into 13
sub- datasets based on the negative to positive dataset ratio (∼13.4).
Then a set of 13 classifiers were developed such that each one trained
on the same positive dataset and one of the negative sub datasets.
The majority voting function was used to combine the results of the
ensemble. Next we focused on internal imbalance learning methods
for SVMs. First, the DEC method was applied on the imbalanced
dataset with different negative to positive error cost ratios which
were in the range r = (C−/C+) = {0.01, 0.02, …, 0.1}. This also
includes r = 0.0747 which is equivalent to one over the negative
to positive class ratio. Under this method, the classifier giving the
highest Gm was found at r = 0.0747, which agreed with the findings
reported in (Akbani et al., 2004). As the last imbalance learning
method, the zSVM method was applied.

These imbalance learning experiments were also conducted
through the outer-5-fold-cv method. That is, first, an SVM model
was trained by applying a particular internal/external imbalance
learning method on a training dataset containing four-fifth of the
complete dataset. Then its performance was tested on the remaining
imbalanced one-fifth of the dataset. This procedure was repeated
five times with different combinations of training and testing
datasets, and finally, the test results were averaged. Table 2 presents
the average test classification results obtained through these class
imbalance learning experiments.

From these results, it was observed that all these imbalance
learning methods improved the SE by a significant amount (on
average by ∼7%) in the expense of reducing some amount of
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SP (on average by ∼3.5%), when compared with the preliminary
classification results (i.e. SE=83.36%, SP=99.00%). Out of these
methods, the SMOTE method gave the best performing classifiers
for our dataset (with respect to both the classes) by resulting the
highest average Gm (93.58%) with SE= 90.02% and SP=97.28%.
This method increased the SE by 6.66% by reducing the SP
only by 1.72%. Therefore, we chose the best classifier developed
under the SMOTE method as the final microPred classifier. This
classifier is publicly available at http://web.comlab.ox.ac.uk/people/
ManoharaRukshan.Batuwita/microPred.htm.

We validated the microPred predictions on the other animal (non-
human) and viral pre-miRNAs published in the miRBase12, and
obtained a high sensitivity. Out of 6095 other animal pre-miRNAs
across 49 species, microPred identified 5651 correctly with 92.71%
of recognition rate. Out of 139 viral pre-miRNAs across 12 species,
131 were predicted correctly with 92.24% of recognition rate. The
prediction results for separate species are given in Table S3 and
Table S4 in ‘Supplementary Materials and Methods’.

3.3 Comparisons of the existing non-comparative
classifiers with microPred

When we compared the ways in which the exiting classifiers (triplet-
SVM, MiPred, miRabela and miPred) have been developed to the
systematic procedure followed to developed microPred classifier,
we found the following problems of the existing methods.

First, we could clearly observe that the datasets considered
in the development of these existing classifiers suffered from
class imbalance problem (larger negative dataset compared with
positive dataset—see Table 3 under the column ‘Complete dataset’).
However, surprisingly, none of these methods have considered a

Table 2. Classification results obtained through different class imbalance
learning methods. The best results are depicted in bold face

Imbalance learning method SE (%) SP(%) Gm(%)

None (imbalanced data) 83.36 99.00 90.84
Over-sampling 91.89 95.20 93.53
Under-sampling 91.03 94.70 92.85
SMOTE 90.02 97.28 93.58
MCS 91.46 95.21 93.32
DEC 90.30 93.28 91.78
zSVM 87.70 97.29 92.37

proper class imbalance learning analysis for classifiers development.
Although it has been mentioned that the DEC method was
considered for the development of the miRabela method, how
the training and testing was done has not been given clearly.
The triplet-SVM, MiPred and miPred methods chose a random
positive and negative more balanced dataset from the complete
imbalanced dataset as the training dataset. After training a classifier
on this training dataset, its performance was tested on the remaining
positives and another randomly chosen negative testing dataset.
Table 3 compares the sizes of the complete datasets available
for these methods with the sizes of the chosen positive and
negative training and testing datasets. Choosing only a small portion
of negatives randomly by discarding the rest would neglect the
valuable information encoded by those negatives, which could
have been more useful for the development of these predictors. In
contrast, in the development of microPred classifier in this research,
we considered the complete available dataset via different class
imbalance learning techniques effectively.

Second, none of these existing methods have applied a systematic
cross-validation scheme through different training and testing
datasets to validate their classification results. In other words, the
primary training and testing datasets selected from the complete
dataset in these methods (triplet-SVM, MiPred and miPred) to train
the classifiers and then to validate their performances were fixed
(see Table 3, under the columns ‘Training dataset’ and ‘Testing
dataset’). On the contrary, we took a more systematic approach
by using different training and testing datasets, which cover the
complete dataset, through the outer-5-fold-cv method to validate the
classification results thoroughly in all the experiments carried out in
this research. Therefore, we can state that the classification results
reported in our research are much more reliable than the results
reported in those existing pre-miRNA classification methods.

4 CONCLUSION
In this article, we showed that both comparative and non-
comparative human miRNA gene recognition approaches require a
suitable method for the classification of human pre-miRNA hairpins
from both pseudo hairpins and other ncRNAs. Then we presented
the systematic development of a classifier system (microPred) for
this classification requirement by using effective machine learning
methods. Our microPred classifier obtained higher and more reliable
classification results than the existing pre-miRNA classification
methods.

Table 3. Comparison of the sizes of complete, training and testing datasets of the existing classifiers with those of the microPred classifier developed in this
research, which are given in bold face

Methods Complete dataset Training dataset Testing dataset Classification results (%)

#Pos. #Neg. #Pos. #Neg. #Pos. #Neg. SE SP Gm

triplet-SVM 193 8494 163 168 30 1000 93.30 88.10 90.66
MiPred 426 8494 163 168 263 265 89.35 93.21 91.26
miPred 323 8494 200 400 123 246 84.55 97.97 91.01
miRabela 178 5395 Not given clearly in the article 71.00 97.00 82.99
microPred 691 9248 SMOTE + outer-5-fold-cv 90.02 97.28 93.58

#Pos. = number of positive examples, #Neg. = number of negative examples.
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Fig. 2. Use of microPred for comparative prediction of pre-miRNAs.

The microPred classifier could be used to predict novel human
pre-miRNAs in both comparative and non-comparative ways.
The non-comparative prediction is straightforward, while the
comparative prediction requires additional conservation analysis.
As shown in Figure 2, under comparative prediction, microPred can
be first used to predict whether a genomic sequence falling into a
hairpin secondary structure is a real pre-miRNA candidate or not. If
it is predicted as a real pre-miRNA hairpin, then it could be further
examined for its sequence/structure conservation in other closely
related genomes. For sequence conservation analysis, a popular
sequence similarity search tool like BLASTN (Altschul et al., 1990)
could be used. In order to find the structure conservation, an RNA
structure homology search tool like INFERNAL developed in Rfam
research (Griffiths-Jones, 2005) could be adopted.

Importantly, it would be worth trying to incorporate the advanced
features used in the microPred with the deep-sequencing data and
signals used in the miRDeep probabilistic model to develop a better
computational method for miRNA discovery. This fact has also been
suggested in (Friedlander et al., 2008). One way to do this would
be through a MCS.

As discussed in Section 2.1, 31/674 human pre-miRNAs are
folded into secondary structures having multi-branched loops by
the RNAfold program. There can be many such pre-miRNAs to be
recognized. Since our microPred classifier can handle the structures
with multi-branched loops, this could also be used to screen novel
pre-miRNAs folding into structures having multi-branched loops.
In this case, however, further investigations have to be carried out
for the ways of reducing false positive predictions.
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