
[09:43 13/5/2010 Bioinformatics-btq228.tex] Page: 1569 1569–1571

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 12 2010, pages 1569–1571
doi:10.1093/bioinformatics/btq228

Phylogenetics Advance Access publication April 25, 2010

DendroPy: a Python library for phylogenetic computing
Jeet Sukumaran∗ and Mark T. Holder
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
Associate Editor: David Posada

ABSTRACT

Summary: DendroPy is a cross-platform library for the Python
programming language that provides for object-oriented reading,
writing, simulation and manipulation of phylogenetic data, with
an emphasis on phylogenetic tree operations. DendroPy uses a
splits-hash mapping to perform rapid calculations of tree distances,
similarities and shape under various metrics. It contains rich
simulation routines to generate trees under a number of different
phylogenetic and coalescent models. DendroPy’s data simulation
and manipulation facilities, in conjunction with its support of a broad
range of phylogenetic data formats (NEXUS, Newick, PHYLIP, FASTA,
NeXML, etc.), allow it to serve a useful role in various phyloinformatics
and phylogeographic pipelines.
Availability: The stable release of the library is available for
download and automated installation through the Python Package
Index site (http://pypi.python.org/pypi/DendroPy), while the active
development source code repository is available to the public from
GitHub (http://github.com/jeetsukumaran/DendroPy).
Contact: jeet@ku.edu

Received on February 10, 2010; revised on April 16, 2010; accepted
on April 21, 2010

1 INTRODUCTION
Here we describe DendroPy, a cross-platform library for the
management, manipulation and analysis of phylogenetic tree and
character data using the Python programming language. DendroPy
addresses needs of researchers in phyloinformatics and population
genetics. It supports reading and writing phylogenetic data in a wide
variety of file formats (NEXUS, PHYLIP, FASTA, NeXML, etc.) to
and from the same common object-oriented data model.

Its data model is rich and well-suited for manipulating complex
datasets. Objects represent both core phylogenetic entities (such as
taxa, trees, and character matrices), as well both components and
collections of these objects. For example, DendroPy’s representation
of phylogenetic trees includes a class for the tree itself, but also
classes for nodes, directed edges and support for the concept of
splits (also known as bipartitions), as well as collections of these
tree objects. Splits are crucial in many phylogenetic algorithms
that operate on unrooted tree, such as consensus tree generation
(Margush and McMorris, 1981) and the calculation of tree-to-tree
distances (Robinson and Foulds, 1981). DendroPy’s hashing of splits
allows for constant-time lookup of an edge in a tree. In memory, trees
are represented as rooted, but splits of either unrooted or rooted trees
are efficiently stored by hashing. Thus, DendroPy handles both types
of trees very naturally.

∗To whom correspondence should be addressed.

DendroPy is designed to deal with diverse sources of datasets.
Character data and trees refer to rich taxon objects, and users of the
library have fine grained control of how these taxa are coordinated
or kept separate across different sources of data. Thus, importing
information from a wide variety of sources can be accomplished
without unintentionally concatenating information. This makes
DendroPy a convenient tool in the domains of bioinformatics (e.g.
phylogenetic supermatrix assembly and phylogeography), in which
the character data associated with trees is derived from multiple
exemplars of the same biological taxon. DendroPy also provides
a rich framework for the simulation of trees under a variety of
branching models, such as the birth–death model (uniform or
variable), the coalescent (Kingman, 1982), the censored coalescent
(Rannala and Yang, 2003), etc. Below we describe the main features
of DendroPy in more detailed terms, and discuss its relationship to
the existing python libraries for bioinformatics.

2 DENDROPY

DendroPy is pure-Python library with no external dependencies
beyond the availability of a Python 2 interpreter of version 2.4 or
greater. It can easily be installed with a single command on a variety
of platforms without systems administration privileges or advanced
expertise. The primary documentation for DendroPy is included
with the library installation as well as on the library’s website in
the form of a ‘cookbook’. This tutorial provides practical examples
illustrating the use of its classes and methods. In addition, all the
major classes and methods have extensive documentation in the
form of Python ‘docstrings’, which make the information available
to the user through the native ‘help’ command of Python. In this
article, therefore, we only provide a brief conceptual overview of
the basic data model, as well as a synopsis of the major functions
of the library.

DendroPy can read and write trees in NEXUS, Newick and
NeXML formats, and read and write character data in NEXUS,
PHYLIP, FASTA and NeXML formats. Trees and character data can
be accumulated into the same dataset object from across multiple
files, and functions allow for the normalization (homogenization) of
taxon references from across these files, based on common taxon
labels.

Within DendroPy’s object model, each set of trees or character
data is associated with a particular set of taxa. The use of rich taxon
objects, rather than simple characters strings that store taxon names
is crucial, because it allows DendroPy to support simple formats
(in which the name of a taxon is sufficient to identify it) or formats
such as NeXML (Vos, 2008) that use unique identifiers distinct from
the taxon name to establish linkages between objects. Rich taxon
objects also make it easier to deal with name clashes resulting from
taxonomic synonymies, or maintaining correspondences between

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1569

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/12/1569/287181 by guest on 24 April 2024

http://pypi.python.org/pypi/DendroPy
http://github.com/jeetsukumaran/DendroPy


[09:43 13/5/2010 Bioinformatics-btq228.tex] Page: 1570 1569–1571

J.Sukumaran and M.T.Holder

datasets, in which the taxon labels have been truncated or decorated
with modifiers. DendroPy’s ‘DataSet’ object tracks multiple sets
of taxa along with trees and character data associated with each
taxon set. Explicitly reflecting the possibility of having multiple
lists of taxa in the object model allows DendroPy to support matrix
combination and partitioning operations in a sophisticated way.

Trees in DendroPy can be instantiated into rich objects with
Node and Edge objects to reflect the topology of the tree. Efficient
manipulation and querying of the tree objects are made possible
by split ‘masks’, which use a single bit to represent the bipartition
of taxa that the deletion of the branch would induce. These split
masks are also stored in a hash table that maps them to the edge in
question. This allows for rapid and accurate establishment of split
identity across multiple trees. Through these split masks, trees that
share the same set of taxa can be compared across multiple datasets
using various metrics, such as weighted Robinson–Foulds distances
(Robinson and Foulds, 1981), symmetrical differences (Felsenstein,
2004), etc. DendroPy also provides functions for the calculation of
various statistics on a single tree, such as tree height, tree length
(sum of branch lengths), the γ statistic of Pybus and Harvey (2000),
goodness-of-fit to or Kullback-Leibler divergence (Kullback and
Leibler, 1951) from a coalescent model, patristic distance between
leaves, distances between nodes, etc.

Iteration is an central concept in Python (and many other
programming languages). DendroPy provides iterators that return
either nodes or edges for trees in a variety of traversal styles
including pre-order, post-order or in-order traversal. Traversal can
be constrained to a subset of nodes or edges through flexible
filters. Expressing tree traversal via Python iterable interface allows
phylogenetic operations to be expressed concisely, and without
indepth knowledge of internal implementation details of DendroPy’s
Tree object.

Trees can also be manipulated structurally by adding or removing
branches or taxa (i.e. terminal branches), or being re-rooted at
different nodes. Functions are already provided to generate trees
under various different branching models, including birth–death
(under both constant and variable rates), the neutral coalescent, the
constrained (or truncated) coalescent, etc., but the tree manipulation
and growing functions provided by DendroPy allow new tree
simulation functions to be written very easily and rapidly.

3 ‘SUMTREES’ AND OTHER APPLICATIONS
In addition to various classes and functions to facilitate phylogenetic
computation with Python, DendroPy also provides several ‘end-
user’ applications and scripts that can be used even by investigators
without a programming background. An example is ‘SumTrees’,
a program to summarize non-parameteric bootstrap or Bayesian
posterior probability support for splits or clades on phylogenetic
trees. This program takes advantage of DendroPy’s splits hash-map
to rapidly enumerate splits in one or more collections of trees. The
proportion of trees out of the sample from multiple files in which
a particular split is found is taken to be the degree of support for
that split, with a burn-in option that allows for an initial number
of trees in each file to be excluded from the analysis if they are
not considered to be drawn from the true support distribution. The
support for the splits will be mapped onto one or more target trees
either in terms of node labels or branch lengths. The target trees can

be supplied by the user. If no target trees are given, then a majority-
rule clade consensus tree will be constructed based on the samples
given.

Other scripts include those to convert data between various
standard formats, calculate the probability of trees under a coalescent
model, construct a table of frequencies of splits in different empirical
distributions of trees, etc. In addition to providing immediate utility,
these scripts serve as canonical examples of usage of the library,
and thus provide guidelines or templates for custom scripts to be
developed.

While there are no tree inference functions provided by the library
itself, a function is provided that delegates the tree estimation under
various different criteria to PAUP* (Swofford, 2003), and retrieves
the results in the form of a collection of DendroPy trees as well
as a Python dictionary object representing the maximum likelihood
estimate of the character substitution model.

4 INTEROPERABILITY WITH OTHER LIBRARIES
A variety of libraries supporting computing and operations with
phylogenetic data exist, including a number specifically for the
Python programming language: e.g., BioPython (Cock et al., 2009),
PyCogent (Knight et al., 2007), ETE (Huerta-Cepas et al., 2010) or
P4 (Foster, 2010). However, despite the variety of rich, powerful and
flexible phylogenetic toolkits available for the Python programming
language, there remains a deficiency in terms of some important
tree- or tree-shape-based calculations, analysis and comparisons,
as well as tree- and tree-shape simulations, often performed in the
phylogenetic context.

For example, while BioPython (Cock et al., 2009) has the ability
to read NEXUS-formatted tree files, its emphasis is on gene and
genomic sequence-based operations and it has limited functionality
with respect to tree-based operations. On the other hand, both
PyCogent (Knight et al., 2007) and ETE (Huerta-Cepas et al.,
2010) have a much richer tree operation functionality, allowing
for comprehensive tree manipulation operations and powerful and
flexible tree visualizations. At the same time, however, these two
libraries do not have many of the tree metric, analysis, comparison
and simulation functionality found in DendroPy. P4 (Foster, 2010),
in constrast, has some basic tree comparison functionality, but lacks
the more advanced tree manipulation and visualization functionality
found in PyCogent (Knight et al., 2007) and ETE (Huerta-Cepas
et al., 2010), and lacks tree simulation functionality altogether.
Similarly, there are several aspects or functionalities that are
markedly absent in DendroPy that are provided by these other
libraries, the most important of that are tree visualization and public
sequence database querying and retrieval.

These differences do not reflect deficits or incompleteness
of any of the existing libraries, but rather differences in the
application goals and use-case concepts motivating the underlying
design of the libraries. For example, BioPython, PyCogent and
ETE are motivated by application in the phylogenomic domain,
where splits comparisons across trees or operations under the
coalescent framework are not usually required, while P4 emphasizes
phylogenetic tree inference, where simulations under the coalescent
are not usually required and tree-manipulation operations are not
usually exposed to clients.

As such, these libraries serve to complement rather than replace
each other, and depending on a particular task or application, one

1570

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/12/1569/287181 by guest on 24 April 2024



[09:43 13/5/2010 Bioinformatics-btq228.tex] Page: 1571 1569–1571

DendroPy phylogenetic computing library

library may be more suitable than another. Recognizing this, and
recognizing the usefulness of being able to use multiple libraries
simultaneously, we have implemented the facility to seamlessly
export DendroPy tree objects to ETE and vice versa, and are in
the process of expanding this support to PyCogent and BioPython.
Furthermore, DendroPy already has the facility to exchange data
with other useful libraries, such as APE (Paradis et al., 2004) for the
R statistical programming language (R Development Core Team,
2009), and we are working on expanding this support to other R
libraries, such as Geiger (Harmon et al., 2009).

ACKNOWLEDGEMENTS
We wish to thank the students and faculty of KU and other
institutions who provided feedback on the usage and documentation
of the library, as well as the editors and anonymous reviewers whose
comments helped to greatly improve this paper.

Funding: J.S. acknowledges funding support from a subaward of
CIPRES grant (NSF Award # 0715370 to Warnow; subaward to
M.T.H.).

Conflict of Interest: none declared.

REFERENCES
Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Felsenstein,J. (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MA,
580 pages.

Foster,P. (2010) P4, a python package for phylogenetics. Available at
http://bmnh.org/∼pf/p4.html (last accessed date February 02, 2010).

Harmon,L. et al. (2009) geiger: Analysis of evolutionary diversification. R package
version 1.3-1.

Huerta-Cepas,J. et al. (2010) ETE: a python environment for tree exploration. BMC
Bioinformatics, 11, 24.

Kingman,J. (1982) The coalescent. Stochastic Processes Appl., 13, 235–248.
Knight,R. et al. (2007) Pycogent: a toolkit for making sense from sequence. Genome

Biol., 8, R171.
Kullback,S. and Leibler,R. (1951) On information and sufficiency. Ann. Math. Stat.,

22, 79–86.
Margush,T. and McMorris,F. (1981) Consensus n-trees. Bull. Math. Biol., 43, 239–244.
Paradis,E. et al. (2004) APE: analyses of phylogenetics and evolution in R language.

Bioinformatics, 20, 289–290.
Pybus,O. and Harvey,P. (2000) Testing macro-evolutionary models using incomplete

molecular phylogenies. Proc. R. Soc. B: Biol. Sci., 267, 2267.
R Development Core Team (2009) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rannala,B. and Yang,Z. (2003) Bayes estimation of species divergence times and

ancestral population sizes using DNA sequences from multiple loci. Genetics, 164,
1645–1656.

Robinson,D.F. and Foulds,L.R. (1981) Comparison of phylogenetic trees. Math. Biosci.,
53, 131–147.

Swofford,D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Sinauer Associates, Sunderland, MA.

Vos,R. (2008) Data standards in phylogenetics: the nexml project. In Weitzman,A.L.
and Belbin,L. (eds), Proceedings of TDWG (2008), Fremantle, Australia.

1571

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/12/1569/287181 by guest on 24 April 2024

http://bmnh

