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ABSTRACT

Motivation: The medical imaging and image processing techniques,
ranging from microscopic to macroscopic, has become one of the
main components of diagnostic procedures to assist dermatologists
in their medical decision-making processes. Computer-aided
segmentation and border detection on dermoscopic images is one
of the core components of diagnostic procedures and therapeutic
interventions for skin cancer. Automated assessment tools for
dermoscopic images have become an important research field
mainly because of inter- and intra-observer variations in human
interpretations. In this study, a novel approach—graph spanner—
for automatic border detection in dermoscopic images is proposed.
In this approach, a proximity graph representation of dermoscopic
images in order to detect regions and borders in skin lesion is
presented.
Results: Graph spanner approach is examined on a set of
100 dermoscopic images whose manually drawn borders by a
dermatologist are used as the ground truth. Error rates, false positives
and false negatives along with true positives and true negatives are
quantified by digitally comparing results with manually determined
borders from a dermatologist. The results show that the highest
precision and recall rates obtained to determine lesion boundaries
are 100%. However, accuracy of assessment averages out at
97.72% and borders errors’ mean is 2.28% for whole dataset.
Contact: skockara@uca.edu

1 INTRODUCTION
Melanoma is the fifth most common malignancy in the US. Invasive
and in-situ melanoma has rapidly become one of the leading
cancers in the world. Malignant melanoma, the most deadly form
of skin cancer, is one of the most rapidly increasing cancers.
62 480 incidences and 8420 deaths are the estimated numbers in
the USA in 2008 (Jemal et al., 2008). In malignant melanoma,
early diagnosis is particularly important since melanoma can be
cured with a simple excision operation. Dermoscopy, also known
as dermatoscopy, is one of the major non-invasive skin imaging
techniques that is extensively used in the diagnosis of melanoma
and other skin lesions. This imaging technique offers more visible
image subsurface structures when compared to conventional clinical
images (Argenziano et al., 2002; Fleming et al., 1998). Dermoscopy
also helps identifying various morphological features; for instance,
blotches, streaks, blue-white areas, dots/ globules and pigment
networks (Menzies et al., 2003). Because of these unique features,
screening errors can be reduced at the inspection. In addition, greater
differentiation between difficult lesions, such as pigmented Spitz
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nevi, clinically equivocal lesions can be provided (Steiner et al.,
1993).

Dermoscopic assessment remains one of the most critical steps
in the diagnosis and subsequent treatment of malignant melanoma.
Recent improvements in imaging techniques have led to the
automated discovery of lesions. Traditionally, assessment of tumor
margins is done manually by a dermatologist. The recognition of
cancerous regions is a time consuming and error prone process, and
it is innate in the nature of the human inspection. Unfortunately,
for inexperienced dermatologists, dermoscopy may actually lower
the diagnostic accuracy (Binder et al., 1995). The use of a fast and
reliable computerized system could markedly increase the number of
examined images for the existence of cancer regions. Moreover, the
computerized image analysis is able to minimize the effect of inter-
and intra-observer variability. Inter-observer variability is defined
in terms of the decisions assigned between different observers on
the same subject. However, intra-observer variability is defined in
terms of the decisions assigned within the observer; for instance,
the same dermatologist judges differently on the same image at
different times. Therefore, unlike inexperienced dermatologists,
when it comes to trying to minimize the chance of diagnostic errors,
it is important to develop computerized image analysis techniques.
These techniques alleviate the difficulty and subjectivity of visual
interpretations which are the major contributors to the diagnostic
errors (Celebi et al., 2009).

In the investigation of melanoma, delineation of region-of-interest
is the first and key step in the automated analysis of skin lesion
images for many reasons. First and foremost, the border structure
provides important information for accurate diagnosis. Asymmetry,
border irregularity and abrupt border cutoff are of many clinical
features calculated based on the border lesion. Furthermore, the
extraction of other important clinical indicators such as atypical
pigment networks, globules and blue–white areas critically depends
on the border detection (Schaefer et al., 2009a, b).

At the first stage for analysis of dermoscopy images, automated
border detection is usually being applied (Celebi et al., 2007a, b).
There are many factors that make automated border detection
complex, e.g. low contrast between the surrounding skin and the
lesion, fuzzy and irregular lesion border, intrinsic artifacts such
as cutaneous features (air bubbles, blood vessels, hairs and black
frames) to name a few (Celebi et al., 2009).According to Celebi et al.
(2009) automated border detection can be divided into four sections:
pre-processing, segmentation, post-processing and evaluation. Pre-
processing step involves color space transformation (Pratt, 2007),
contrast enhancement (Delgado et al., 2008) and artifacts removal
(Celebi, 2008; Geusebroek, 2003; Lee 1997; Perreault and Hébert,
2007; Schmid, 1999; Wighton 2008; Zhou 2008). Segmentation
step involves partitioning of an image into disjoint regions (Sonka
et al., 2007). Post-processing step is used to obtain the lesion
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border (Celebi, 2007a, b; Melli, 2006; Iyatomi, 2006). Evaluation
step involves dermatologists’ evaluations on the border detection
results. In this study, a proximity graph representation approach to
detect regions and borders in skin lesions for dermoscopic images
is introduced. This approach is based on a soft kinetic data structure
(SKDS): graph spanners.

2 A SKDS
Today the need for processing continuously moving points in a
wide range of application areas such as geographic information
systems, networking, traffic control, weather forecasting and nearest
neighbor search is more pervasive than ever. The ideal solution
for maintaining and processing continuously moving points has
not been thoroughly presented yet. However, there are two recent
approaches for processing moving points; they are dynamic data
structures (DDS) and kinetic data structures (KDS). DDS assume
that the data points change their positions only at explicitly known
time steps; thus, they are not adequate solution for maintaining and
processing continuously moving points. The alternative approach
to DDS is given in the context of computational geometry with
KDS which are recently introduced by Basch et al. (1999). In KDS,
it is assumed that points’ motions are unknown but not arbitrary
since equations of motions are assumed to be algebraic functions
of time (typically linear or polynomially bounded) (Guibas et al.,
1998). In other words, it is assumed that there are no sudden position
leaps that cannot be defined by an algebraic function of time. KDSs
consist of hierarchies of points that keep hierarchy updated for
moving points. Superior form of KDS for dynamic points under
unpredictable motions is called SKDS (Czumaj and Sohler, 2001).
SKDSs are approximate data structures that are used to answer
proximity queries. In the light of abovementioned definition of
SKDS, to our knowledge, deformable spanner (DS) (Gao et al.,
2006) is the first SKDS that maintains its structure under formerly
unknown motion models in 3D.

DS supports all the criteria of uniformity, controllability, locality,
being discrete and proximity based that a good KDS would provide
(Alexandron et al., 2007; Russel and Guibas, 2005). These criteria
facilitate spanner’s usage in different application areas. Locality
of edges is affected by a small subset of the total point set. This
means that changes in one part of the graph do not generally affect
the spanner edges in the other parts. There is only one uniform
combinatorial element in the spanner that is called edge. Spanner
is controllable to allow us to produce controllers (e.g. expansion
ratio) capable of capturing the shape of the object with various
degrees of tightness or looseness. Spanners are discrete; thus, their
description does not include any geometric coordinates. Proximities
in the spanner determine the local interactions and in turn local
interactions determine the behavior of the moving points.

We consider the dermoscopy image’s pixel colors in the context
of computational geometry with SKDS. Our hypothesis is that:
important characteristics (e.g. color combinations) of a skin lesion
image can be obtained in a proximity graph representation by
examining colors and their color-space (e.g. RGB) closeness
relationships. Thus, we represent images as graphs to obtain color
patterns. In order to represent an image as a graph, we take a cue
from Gao et al. (2006) and produce graph spanner approach for
image segmentation. High-level patterns from properties of unique
colors represented in an image are exposed by a hierarchical graph

spanner. SKDS approach we use—hierarchical graph spanner—
representation (in short: balls hierarchy, BH) is explained in Section
2.2. Even though BH is capable of handling dynamic changes in
images (e.g. video stream) in our case of detecting lesion borders in
dermoscopy images; image pixels are static data points in 2D.

There exists numerous innovative graph-based image
segmentation approaches in the literature. Shi et al. (1998) treated
segmentation as a graph partitioning problem, and proposed a novel
unbiased measure for segregating subgroups of a graph, known as
the normalized cut (NC) criterion. More recently, Felzenszwalb
and Huttenlocher (2004) developed a segmentation technique
by defining a predicate for the existence of boundaries between
regions, utilizing graph-based representations of images. However,
our graph spanner method approaches image segmentation problem
as an approximate shortest path finding problem with a given
expansion ratio.

2.1 Notations and preliminaries
A Bi-level hierarchical representation is called clusters of balls (B) or
BH.Apair (χ,d) is called metric space where χ is a point set and d is a
distance function. d :χ×χ → [0,∞) satisfying the d(u,v) = 0 if and
only if points u and v are equal, and symmetry and triangle inequality
hold for distance function d(u,v) = d(v,u), d(u,v)+d(v,z) ≥ d(u,z),
respectively, where u, v and z are nodes in the hierarchy. B is in
the metric (χ, d) and is a sequence of levels B0, B1, ...,Bh where

h=
⌈

logξ R
⌉

. �� indicates upper bound, h represents number of

hierarchical levels, R represents radius at the highest level and ξ

is a constant and called expansion ratio. This value determines how
much a cluster ball will expand from one level to the upper level.
For instance, v at level i+1 is a parent of u at level i is represented as
Pi+1(ui)=v or P(ui)=vi+1, where u∈Bi, v∈Bi+1. Pj(ui)=v, j>i
indicates that u at level i has v as a parent at level j where j ≥ i+1.
Ci(vi+1)=u or C(vi+1)=ui indicates that u at level i is a child of
v at level i+1 or Ci(vj) = u, j> i, v’s i-th level child is u. One node
may have multiple children at the same level and has single parent.
However, one node can be covered by multiple cluster balls from
the upper levels. Neighbors of v where v∈Bi is represented as N(vi),
N(vi) = {ui ∈ Bi, |uivi| ≤ ηrξi−1} where η is neighbor coefficient, r
is minimum radius, and rξiis a radius at the level i. Ball v’s neighbor
at level i is represented as N(vi) = ui.

2.2 BH
Hierarchical representation of graph spanners is approximating the
metric space with a hierarchy of nodes based upon a sampling of
the data subsets. The construction of these sets should be guaranteed
with the following properties (Gao et al., 2006):

(1) Bh—the highest level cluster ball—covers entire set of points
(χ) in the graph G.

(2) Vertex set V initially exists from points where each point is a
center of a cluster ball. Vi represents vertices at level i where
these vertices are cluster balls’ centers at level i. V =

⋃
0≤i≤h

Vi

and Vi ⊆Vi−1.

(3) No cluster ball at the same level covers other ball’s center.
Therefore, d|c(Bk

i )c(Bm
i )| > rξi, where i is level, c(Bk

i ) ∈ V

represents center of a ball k at level i. Bk
i ∈ Bi, rξi or ri is

radius at the level, and k 
= m.
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(4) There is a geometrically decreasing order among the clusters;
Bh, Bh−1, ... ,B0, where B0 is the original point set itself and
only contains a single vertex cluster. The cluster Bi-where
I = 0,1,2,…,h-is a ball with radius ri at level i.

(5) Ball clusters are hierarchical. Bi is refined representation of
one lower level cluster Bi−1. There is no lower level cluster
which is not contained or covered by an upper level cluster.
That means hierarchical representation of clusters is laminar
family of sets.

(6) Each edge in hierarchy connects some neighbor clusters at
the same level in Bi (neighbor edge).

(7) Some children clusters of Bi in Bi−1 are connected by edges
(child edge).

(8) Each Bi−1 cluster is covered by cluster in Bi (Bi−1 ⊆Bi).
Therefore, |Bi−1| ≥ |Bi| where |Bi−1| represents number of
clusters at level i−1. Equality holds only in the situation that
each and every cluster becomes parent cluster of itself.

(9) Maximum number of distance scales (number of levels) is

h=
⌈

logξ t
⌉

where t is maximum distance between any two

nodes.

(10) According to coverage property ∀u∈Bi−1with i ≤ h, ∃v∈Bi.
Every cluster ball’s center is covered by one upper level’s
cluster ball’s center. A cluster ball can be covered by another
concentric ball (u=v) at one upper level.

(11) According to the separation property, u, v∈Bi+1 where u 
= v,
dG(u,v) ≥ rξi, and r is minimum radius (radius at the first
level where i = 0).

(12) Cousin property implies that two close points that belong to
different balls at Bi are children of the same ball at Bk where
i<k ≤ h (h, number of levels in the hierarchy). This implies
that cousins will have common ancestor.

(13) There exists a parent chain from a point u at level i to
its parent at j, where j > i. This chain can be followed by:
Pj(…(Pi+3(Pi+2(Pi+1(ui))))…) = v, u=v when u expands
up to the level j (parent of itself).

(14) There is no unique hierarchy even for the same point set.
Different insertion order of points would result in different
but equally good hierarchy construction.

(15) If Ci(vi+1)=u or C(vi+1)=ui and u 
= v, then N(vi)=ui. If
a ball ui is a child of another ball vi+1 at upper level, then
ui must be neighbor of vi. This implies that a ball cannot
become a child before becoming a neighbor. This is because
no position leap is assumed.

Next section clarifies how these properties are satisfied and applied
to construct BH.

2.3 Hierarchy construction
In this section, survivors, non-survivors and balls represent points.
Ball is used in order to represent point with its radius-covering.
Figure 1 illustrates BH construction steps for 10 points by using
properties given in Section 2.2. In this illustration, hierarchy is
consisting of four levels (property 9). Each level of the hierarchy
is represented in different colors; black, red, blue and green colors,
respectively. Dashed circles represent radius-covering at the level.

Fig. 1. Hierarchy construction steps.

In the first level original data points exist with minimum radius r.
Since minimum distance between closest color pairs (assuming in
3D RGB color space) in an image is 1, r is assigned as 1. As
seen from the first level, since no other ball center is covered by
any other ball, all survive (exist in the level). In the second level,
only five points survive, since other points are covered by survivors
with radius in the second level, R2. Non-survivor points become
children of survivors. This relation is represented by child edges
(see property 7 above) which are illustrated as steady black lines.
R2 is expanded from minimum radius by expansion ratio (ξ); thus,
R2 = rξ1. Superscript 1 represents level difference between level 2
and 1. Steady red lines in the second level represent neighbor edges
(see property 6 above) which represent neighbor relations between
any two survivor points (N(vi) = {ui ∈ Bi, |uivi| ≤ ηrξi−1}). Two
survivors are neighbors if and only if distance between them is
smaller than or equal to the neighbor coefficient (η) times radius
at the level (R2). In the third level, there exist only three balls (blue)
with radius R3 = ξ2r, and a single non-survivor which becomes
a child. Now, there are three neighbors (blue lines) in the third
level. In level 4, there is only a single survivor (green) with two
children. This survivor is called root and covers all existing points.
Notice that in order a non-survivor point to become a child of a
survivor point, it needs to be a neighbor of the survivor point in the
previous level. Once hierarchy is constructed, BH keeps hierarchical
representation of approximate shortest paths among all the existing
points. Hierarchy construction time is O(n log n).

3 THE HIERARCHY REPRESENTATION FOR
DERMOSCOPY IMAGES

Data points for an image are pixel’s RGB colors. Once all pixels
are inserted into the BH, color pixels are segmented as illustrated in
Figure 2. Note that, due to the nature of RGB space similar colors
are close to each other. After the construction, hierarchy is ready
for a proximity query e.g. nearest neighbors. A proximity query
will return any pixel with the specified color and its geometric
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Fig. 2. A sample hierarchy representation of a dermoscopy image.

neighbors in color space (RGB or any color space). Firing a query
is corresponding to tree traversal.

As seen from Figure 2, the suspected cancer regions, borders
and the background are available right after the indexing process.
In Figure 2 each branch of the tree is corresponding to one of
the segments; the background (branch 1), right outside the border
(branch 2), right inside the border including border (branch 3)
and the lesion (inside the border, branch 4), respectively. Once
hierarchy is constructed, the segments can be easily extracted by a
simple hierarchy traversal. Depending on applications, segmentation
also contributes to image regions or border identification. In
dermoscopy images, some edges of the lesions are clearly defined
while some have poorly defined edges such as the basal cell
carcioma. Different significant parts of these images are successfully
identified by performing three unique queries to recognize: (i) cancer
region, (ii) cancer region border and (iii) the entire background.
It is observed after the experiments that smallest number of
children branch under the root node always indicates border. Since
dermatologists focus on borders for diagnosis, we also return borders
(branch 3 in Fig. 2) as a result of border query. Note that this
hierarchy indexing method does not require any initial seed point
which means that BH is a global approach.

Most often networks and points in nature are dynamic. Points
are moving towards or against applied stimuli. Therefore, dynamic
update operations such as insert and expand in the BH have profound
impact on adapting hierarchy for motions. The following section will
introduce insert and expand operations in the pseudo codes.

4 IMPLEMENTATION
The most important operation in hierarchy construction is insert
operation. To do that, first, expand operation is given as below.

A range of precision and computation time trade-offs have been
implicated for using two different insertion schemes; optimum

insertion and best optimum insertion respectively. Since precision
is more important for us, we implemented best optimum insertion
scheme as seen in Algorithm 2 below. This insertion scheme inserts
new point into the best optimum place instead of the first optimum
place found. In the best optimum insertion, the closest point among
all other points is found by simply traversing the tree. To do that,
in Algorithm 2 node Q’s all children must be traversed. When the
closest node is found among all the children, this closest node
must be traversed recursively until no covering node (see property
3 in Section 2.2) is found. The last found node is called the best
optimum place for insertion. Best optimum insertion scheme as a
result succinctly provides higher precision and in turn leads to a
better range query e.g. nearest neighbors.

5 RESULTS
BH method is tested on a set of 100 dermoscopy images obtained
from the EDRA Interactive Atlas of Dermoscopy (Argenziano et al.,
2002). These are 24-bit RGB color images with dimensions ranging
from 577×397 to 1921×1285 pixels. The benign lesions include
nevocellular nevi and dysplastic nevi.

Two unique queries are used to extract the desired region of the
images. The first query is performed by looking for an entire branch
of a directly related child node (DRCN) of the root node (RN).
According to Figure 2, node 1, 33, 572 and 916 are DRCNs. Node
zero is the RN. Each DRCN along with all their children nodes form
one branch of the hierarchy. The hierarchy segments an image based
on distance between colors and stores the pixel values in separated
branches. Therefore, by querying each branch of the hierarchy,
different color segment of an image can be obtained separately.
For instance, the border of an indexed image can be archived by
querying the entire branch of 33 in Figure 2. The second query is
very similar to the first query except that the neighbors of children
of all DRCN are included. This query yields an additional region of
the image: the background. According to Figure 2, children of one
are neighbors of 916’s children.

The BH based border detection errors are objectively quantified
using dermatologist-determined borders as the ground truth. The
BH detected border images overlaid on top of the dermatologist-
determined border images. Quantative error metrics such as
true/false positive/negative ratios found according to the overlay
images. Figure 4 shows sample original images [which are selected
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among 100 images with the highest, lowest, and on average border
error (BE) ratios]. The BH detected borders and interiors (e.g.
combination of branches 3 and 4 of Fig. 2), overlaid images, and
dermatologist-determined region are all illustrated, respectively, in
Figure 4.

Second, accuracy of our method is quantified by digitally
comparing results with manually determined borders from a
dermatologist. We evaluated border detection error of BH. Manual
borders were obtained by selecting a number of points on the lesion
border, connecting these points by a second-order B-spline and
finally filling the resulting closed curve (Celebi, 2008). Using the
dermatologist-determined borders, the automatic borders obtained
from the BH are compared using three quantitative error metrics:
BE, precision and recall. BE is developed by Gao et al. (1998) and
Schaefer et al. (2009a, b), and given by

BE = [(AB⊕MB)/MB]×100,

where ⊕ is exclusive OR operator, essentially underlines
disagreement between target (ManualBorder, MB) and predicted
(AutomaticBorder, AB) regions. Referring to information retrieval
terminology, nominator of the BE means summation of false positive
(FP) and false negative (FN). Denominator is obtained by adding
true positive (TP) to false negatives (FN). An illustrative example
is given in Figure 3. In the figure, assume that red and blue borders
are drawn by a dermatologist and a non-expert, respectively. TP
indicates correct lesion region found automatically. Similarly, TN
shows healthy region (background) for both manual and computer

Fig. 3. Accuracy and error quantification.

Fig. 4. Overlay images.

assessment agreed on. FN and FP are labels for missed lesion and
erroneous positive regions, respectively. Addition to BE, we also
reported precision (positive predictive value) and recall (sensitivity)
for each experimental image in Table 2. Note that all definitions run
over number of pixels in the particular region.

Precision = TP/TP+FP,Recall = TP/TP+FN.

Figure 4 demonstrates how our method is compared quantitatively
against dermatologist drawn image. In the figure left is original
image, middle is dermatologist drawn image, and right (red area)
is automatically found border image which is overlaid on top of
the manually drawn image. In the experiments for 100 dermoscopy
images dataset, the expansion ratio constant is determined by
randomly chosen three sample images as shown in Table 1. As a
result, the expansion ratio is chosen as 1.5 since this value was
maximizing both precisions and recalls for three sample images as
seen in Table 1. In Table 2 results for 100 images are displayed. For
100 images, BH’s BE’s mean is 2.28% (and σ = 3.01), precision’s
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Table 1. Benchmark results for different expansion ratios for three sample
images

Expansion ratio 1.2 1.5 2.0

Precision Image 1 0.927 0.975 0.976
Image 2 0.881 0.882 0.878
Image 3 0.977 0.939 0.930

Recall Image 1 1 0.995 0.995
Image 2 0.999 1 0.999
Image 3 1 1 0.999

mean is ∼1.0 (and σ = 0.001) and recall’s mean is 0.97 (σ = 0.003).
The results show that accuracy of assessment averages out at
97.72%. A rough comparison of our findings with Schaefer et al.
(2009a, b) and Celebi et al. (2008) showed that the mean errors of
our method are obviously less than their results.

6 COMPARISON AND DISCUSSION
In this section, existing graph based image segmentation methods
NCs method (Shi and Malik, 1997), the efficient graph based
segmentation method (EGS) (Felzenszwalb and Huttenlocher,
2004), and the BH are compared with respect to efficiency on lesion
border detection and computation complexities on dermoscopy
images. C++ source codes for NC and EGS obtained from authors’
websites. In Figure 5, results for a single lesion image generated from
NC, EGS and BH overlaid, respectively, on the physician drawn
ground truth image. As shown in Figure 5, much better results are
obtained from BH.

In NC, minimization of the normalized cost function is NP
hard. This method down-samples the original image then conducts
initial segmentation in down-sampled image and finally initial
segmentation is expanded to the original image. Its computation
complexity is O(n3). Therefore, it only works on small sized images
(e.g. 100×90). NC is a supervised method which requires expected
number of clusters as a parameter. It is efficient on finding global
segments; however, its efficiency reduces greatly if there are noises
or tiny blemishes in the image. As seen in Figure 5, that degrades
efficiency of the method for border detection in lesions since border
regions have similar features with noise. Overall average precision
of NC for 100 dermoscopy image dataset is 100%; however, average
recall is 67% which makes NC inefficient for border detection in
dermoscopy images.

However, EGS is able to preserve details in low-variability
image regions (e.g. shadow regions) while ignoring details in
high variability regions. Therefore, as seen from illustration in
Figure 5, high variability regions in the interior of border (holes)
are segmented as different regions. In this approach, results will
be considerably affected by outliers since even two segments with
low weight edge between them are combined as a single segment.
Even though the computational complexity is O(n log n), in order to
make the method more robust to outliers; definition of the difference
between two regions needs to be changed. However, finding correct
definition of difference is NP hard. The threshold function is the
key element to determine the size of the segments. Variability
on threshold changes results drastically. In this approach, when
threshold is low, accuracy becomes high and computation speed

Original Image NC Overlay Image EGS Overlay Image BH Overlay Image

Fig. 5. Segmentation results from NC, EGS and BH from left to right.

reduces significantly. Overall average precision of EGS for 100
dermoscopy images is 100%; however, average recall is 55% which
makes EGS also inefficient for border detection in dermoscopy
images.

The BH is capable of accurately locating segments and has
following features. First, it locates all local, non-local and global
segments in a single hierarchical structure. Global segments are
represented at higher levels in the hierarchy, non-local segments are
represented in middle levels of the hierarchy, and local segments
are represented in lower levels of the hierarchy. Second, it is a
seedless and non-supervised method which does not require prior
knowledge about expected number of clusters. Third, it is dynamic.
Since it is a SKDS, it is capable of updating hierarchy according
to dynamic changes. This dynamic nature may lead to analyzing
dynamic behavior of changes in segments by time. Fourth, inherently
hierarchical classes of special structures are hold in the hierarchy.
There is inherent hierarchical structuring in nature. For instance,
in a scene object parts exist in objects and lower-level features
exist in object-parts in a hierarchical fashion. Although these spatial
patterns (objects, object-parts, etc.) are quite different, they are
manifested in different levels of the BH. Finally, unlike EGS and
NC, BH has single parameter which is called expansion ratio. As
seen from Table 1, change in expansion ratio does not affect results
significantly unlike in EGS. The complexity of the BH is O(n log n);
however, it runs in near linear time with respect to number of graph
edges. In addition, the complexity of dynamic update operation
is O(log n). Detail precision, recall, BE rates are listed for BH in
Table 2.

7 CONCLUSION
In this study, a novel approach for automatic detection of skin
lesions: BH is presented. The BH is a SKDS that keeps proximity
graph representation in hierarchical form. It maintains geometric
closeness relations among the point sets (colors). This data structure
builds a hierarchical decomposition of a connected graph with
certain properties (see Section 2.2 for properties).

Our approach is examined on a set of 100 dermoscopy
images. Error rates: false positives and false negatives along
with true positives and true negatives are quantified by digitally
comparing results with manually determined borders from a
dermatologist as the ground truth. The assessments obtained from
our method are quantitatively analyzed with respect to BEs,
precisions and recalls. Moreover, visual outcome showed that our
method effectively delineated targeted lesions. Results proved that
accuracy of automated assessments with the BH averages 97.72%
which is higher than previously proposed methods. Also, BH is
compared against well-known graph based segmentation methods
on dermoscopy images and BH outperformed these methods. As a
result, our approach finds both the lesions and the lesion borders
with high precision rates.
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Table 2. Border errors, precision and recall of BH

Img. ID Border error (%) Precision Recall Img. ID Border error (%) Precision Recall

1 1.30 1 0.98 51 3.09 1 0.96
2 1.46 1 0.99 52 1.86 1 0.99
3 0.90 1 0.999 53 2.60 1 0.96
4 2.10 1 0.98 54 0.00 1 1
5 1.10 1 0.98 55 0.02 1 1
6 2.30 1 0.99 56 4.81 1 0.96
7 0.50 1 1 57 2.60 1 0.98
8 0.75 1 1 58 2.03 1 0.98
9 0.44 1 1 59 1.67 1 0.99
10 0.00 1 1 60 0.00 1 1
11 0.00 1 1 61 1.00 1 0.99
12 1.70 1 0.97 62 2.43 1 0.98
13 3.60 1 0.93 63 1.93 1 0.99
14 0.00 1 1 64 0.17 1 1
15 2.30 1 0.96 65 0.05 1 1
16 1.99 1 0.98 66 3.10 1 0.96
17 2.98 1 0.95 67 3.10 1 0.96
18 2.00 1 0.99 68 1.13 1 0.99
19 2.67 1 0.98 69 0.27 1 1
20 2.40 1 1 70 2.68 1 0.96
21 1.98 1 0.99 71 4.80 1 0.89
22 2.76 1 0.98 72 2.68 1 0.94
23 2.85 1 0.98 73 0.56 1 0.99
24 4.95 1 0.91 74 3.10 1 0.94
25 2.00 1 0.96 75 3.00 1 0.92
26 5.30 1 0.92 76 5.30 1 0.9
27 3.20 1 0.98 77 1.00 1 0.98
28 3.30 1 0.96 78 7.45 1 0.89
29 2.30 1 0.98 79 6.36 1 0.9
30 2.78 1 0.97 80 4.43 1 0.9
31 2.98 1 0.99 81 0.43 1 0.99
32 3.05 1 0.96 82 3.50 1 0.92
33 0.90 1 1 83 4.78 1 0.91
34 0.89 1 1 84 1.00 1 0.99
35 0.00 1 1 85 2.94 1 0.98
36 1.23 1 0.98 86 4.10 1 0.9
37 1.00 1 0.99 87 2.56 1 0.95
38 2.20 1 0.98 88 2.99 1 0.94
39 0.05 1 1 89 1.34 0.99 0.98
40 1.23 1 0.98 90 4.20 1 0.91
41 3.56 1 0.99 91 2.72 1 0.93
42 0.78 1 1 92 2.23 1 0.97
43 2.80 1 0.99 93 0.55 1 0.99
44 5.59 1 0.93 94 8.24 1 0.9
45 1.89 1 0.97 95 1.42 1 0.99
46 0.10 1 1 96 2.86 1 0.93
47 1.58 1 0.99 97 4.00 1 0.93
48 0.00 1 1 98 0.84 1 0.97
49 2.60 1 0.98 99 6.17 1 0.89
50 3.10 1 0.97 100 0.62 1 0.99
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