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ABSTRACT

Motivation: T-cell epitope identification is a critical immuno-
informatic problem within vaccine design. To be an epitope, a peptide
must bind an MHC protein.
Results: Here, we present EpiTOP, the first server predicting MHC
class II binding based on proteochemometrics, a QSAR approach
for ligands binding to several related proteins. EpiTOP uses a
quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It
identifies 89% of known epitopes within the top 20% of predicted
binders, reducing laboratory labour, materials and time by 80%.
EpiTOP is easy to use, gives comprehensive quantitative predictions
and will be expanded and updated with new quantitative matrices
over time.
Availability: EpiTOP is freely accessible at http://www.pharmfac
.net/EpiTOP
Contact: idoytchinova@pharmfac.net
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
T-cell epitope identification is a challenging immunoinformatic
problem within vaccine design. To be an epitope, a peptide should
bind a major histocompatibility complex (MHC) protein. For MHC
class I, epitopes typically comprise 8–10 residues. The MHC class II
binding site is open-ended, allowing much longer peptides to bind,
although only nine amino acids occupy the site. Many computational
methods have been developed for T-cell epitopes: see Flower
(2008). Many work well and are widely used by immunologists
and vaccinologists.

Most available epitope prediction methods separately address
peptides binding particular MHC proteins, developing models
for a single target allele. For MHC class II, only the generalized
artificial neural network (ANN)-based server NetMHCIIpan uses
both peptide and human leukocyte antigen (HLA) sequence
information (Nielsen et al., 2008). Recently, we developed a
proteochemometrics-based approach to MHC class II prediction
(Dimitrov et al., 2010). Proteochemometrics, a quantitative
structure-activity relationships (QSAR) approach originally
developed by Wikberg (Lapinsh et al., 2001), deals with ligands
binding to several related proteins. In conventional QSAR, the
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X matrix of descriptors includes only information from ligands.
In proteochemometrics, the X matrix contains information from
proteins and ligands. A single proteochemometric model could
potentially predict peptide binding to many MHC proteins.

We have developed and validated several models for binding
to several HLA-DRB1 alleles, and now make the best model
available in the server EpiTOP. It uses a quantitative matrix (QM)
to predict peptide affinity to 12 HLA-DRB1 proteins: DRB1*0101,
DRB1*0301, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*
0701, DRB1*0802, DRB1*0901, DRB1*1101, DRB1*1201,
DRB1*1301 and DRB1*1501.

2 ALGORITHM
The EpiTOP algorithm was described in detail elsewhere (Dimitrov
et al., 2010). Briefly, the QM was derived from 2666 known
binders of different length, binding to 12 HLA-DRB1 alleles, and
which were extracted from the Immune Epitope database (IEDB)
(September 2008) (Peters et al., 2005). Peptides are described
using three z-scales per residue broadly corresponding to volume,
hydrophobicity and polarizability (Hellberg et al., 1987). Nonamers
are encoded by a sequence of 27 z-descriptors (9 positions × 3 z-
scales), forming the L block. HLA-DRB1 alleles are encoded by
54 descriptors (18 positions × 3 z-scales), forming the P block. We
use only polymorphic residues within the binding site that interact
with the peptide. The model also contains cross-terms for adjacent
peptide positions (L12 block) and peptide–protein cross-terms (LP
block). The LP block contains cross-terms for peptide–protein amino
acid interactions in pockets 1, 4, 6, 7 and 9. The affinities of binders
were assessed as pIC50 values.

The QM was derived using the iterative self-consistent (ISC)
algorithm (Doytchinova and Flower, 2003). Briefly, the initial
training set included all nonamers with anchors (Tyr, Phe, Trp, Leu,
Ile, Met and Val) at position 1 (n=10670). This was used to extract
the first model. The optimum number of principal components
(PCs) was derived by cross-validation in seven groups. The first
model was used to predict pIC50s of the initial set and the best
predicted nonamers from each parent peptide formed a second
training set. This second set was used to produce the second model,
which predicts pIC50s of the initial training set. The best predicted
nonamers from each parent peptide were selected and placed in a
third training set. The selection procedure was repeated until the
peptides in consecutive derived training sets were the same at the
99% level.

Protein sequences are submitted to EpiTOP in one letter format.
A protein is divided into overlapping nonamers. Only nonamers
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bearing anchor residues at position 1 are assessed, the rest being
omitted as non-binders. The binding affinities of the nonamers are
predicted using the derived proteochemometric QM. In the results
page, nonamers are arranged in descending order according to
pIC50. Results can be expressed using six different cutoffs: top 5%,
10%, 15%, 20%, 25% and all binders.

3 IMPLEMENTATION
EpiTOP 1.0 is a web-based application written in PHP and HTML,
and integrating the MySQL database environment. It is freely
accessible via http://www.pharmfac.net/EpiTOP. EpiTOP identifies
peptides binding to HLA-DRB1 alleles within protein sequences,
with options to vary HLA allele and cutoff.

4 PERFORMANCE
Three test sets were used to benchmark EpiTOP performance:
AntiJen, IEDB and Lin’s datasets. The evaluation based on AntiJen
and IEDB datasets was performed under conditions similar to
those an experimental immunologist might use: the complete
protein sequences were submitted to a server and the results
recorded. Five thresholds were used: top 5%, 10%, 15%, 20%
and 25% of predicted binding nonamers. Identified binders are
shown as a percentage of all binders (sensitivity). The predictive
ability of EpiTOP was compared to eight other servers: SVMHC
(Dönnes and Elofsson, 2002), ProPred (Singh and Raghava, 2001),
RANKPEP (Reche et al., 2004), IEDB-ARB (Bui et al., 2005),
IEDB-SMM_align (Nielsen et al., 2007), MHC2Pred (http://www
. imtech.res.in/raghava/mhc2pred/), NetMHCII (http://www.cbs.dtu
.dk/services/NetMHCII) and NetMHCIIpan (Nielsen et al., 2008).
SVMHC, ProPred, RANKPEP, IEDB-ARB, IEDB-SMM_align and
EpiTOP are QM-based methods; MHC2Pred uses SVM, NetMHCII
and NetMHCIIpan are ANN based. Some of the servers do not
predict binding to all DRB1 alleles used in the test sets. Only servers
IEDB, NetMHCIIpan and EpiTOP make predictions for all 12 DRB1
alleles. Although many methods give quantitative predictions, in our
evaluation they were used as classification methods. Each server was
evaluated only on the alleles it predicts.

The evaluation using Lin’s dataset was performed in terms of
receiver operating characteristic (ROC) statistics (Bradley, 1997).
Two variables sensitivity and 1-specificity were calculated at
different thresholds. The area under curve (AUC) is a quantitative
measure of predictive ability and varies from 0.5 for random
prediction to 1.0 for a perfect prediction. The performance of
EpiTOP was compared to that of four other servers: SVMHC,
ProPred, IEDB-SMM and NetMHCIIpan (Nielsen and Lund, 2009).

AntiJen and IEDB datasets used for benchmark are given
as Supplementary Data I. Lin’s dataset is freely accessible at
http://bio.dfci.harvard.edu/DFRMLI. The detailed results are given
as Supplementary Material II.
AntiJen benchmark dataset: the AntiJen dataset consisted of
116 epitopes belonging to 29 proteins and binding to 6 HLA-DRB1
alleles (Supplementary Material I). It was extracted from the AntiJen
database (Toseland et al., 2005). These epitopes bind to DRB1*0101
(22 binders), DRB1*0301 (7 binders), DRB1*0401 (62 binders),
DRB1*0404 (1 binder), DRB1*1101 (2 binders) and DRB1*1501
(22 binders).

Table 1. Sensitivity at different cutoffs for AntiJen dataset

Server Top Top Top Top Top
5% (%) 10% (%) 15% (%) 20% (%) 25% (%)

SVMHC 38 40 40 40 40
ProPred 58 69 69 69 69
RANKPEP 51 53 53 53 53
IEDB-ARB 44 58 64 65 66
IEDB-SMM 12 16 16 19 20
MHC2Pred 56 66 77 82 87
NetMHCII 55 75 87 91 97
NetMHCIIpan 65 80 90 96 97
EpiTOP 44 71 85 89 95

The total number of binders is 116. Time of evaluation: September 2009. Allele-specific
performance is given in Supplementary Material II.

Table 2. Sensitivity at different cutoffs for IEDB dataset

Server Top Top Top Top Top
5% (%) 10% (%) 15% (%) 20% (%) 25% (%)

ProPred 46 55 55 55 55
RANKPEP 44 67 80 88 88
IEDB-ARB 15 25 34 41 47
IEDB-SMM 22 35 45 53 59
MHC2Pred 19 29 38 46 52
NetMHCII 55 73 83 89 92
NetMHCIIpan 55 75 86 92 95
EpiTOP 45 66 80 89 93

The total number of binders is 4540. Time of evaluation: January 2010. Allele-specific
performance is given in Supplementary Material II.

The results from the evaluation based on AntiJen test set are
shown in Table 1. For the top 5% cutoff, EpiTOP is sixth in
sensitivity, for the top 10%—fifth and for the top 15–25%—third
after NetMHCIIpan and NetMHCII.
IEDB benchmark dataset: the dataset extracted from the Immune
Epitope database (December 2009) consisted of 4540 epitopes,
originating from 167 proteins (Supplementary Material I). The
peptides from this set bind to 12 DRB1 alleles: DRB1*0101 (2051
binders), DRB1*0301 (190 binders), DRB1*0401 (392 binders),
DRB1 *0404 (159 binders), DRB1*0405 (244 binders),
DRB1*0701 (336 binders), DRB1*0802 (153 binders), DRB1*0901
(160 binders), DRB1*1101 (275 binders), DRB1*1201 (24 binders),
DRB1*1302 (243 binders) and DRB1*1501 (313 binders).

The results from the evaluation based on IEDB are given in
Table 2. At the time of the evaluation (January 2010), SVMHC was
not accessible and it was excluded from the study. For the top 5%
cutoff, EpiTOP is third in sensitivity; for the top 10% it is fourth; for
the top 15%, third together with RANKPEP; and for the top 20%
and 25%, it is second after NetMHCIIpan.
Lin’s benchmark dataset: Lin’s dataset (http://bio.dfci.harvard
.edu/DFRMLI/) consists of 103 overlapping peptides derived from
four protein antigens—bee venom phospholipase A2, dog lipocalin,
tumor antigen LAGE-1 and viral antigen HIV NEF (Lin et al., 2008).
The binding affinities to seven HLA-DR molecules (DRB1*0101,
*0301, *0401, *0701, *1101, *1301 and *1501) were measured
using a competition assay. We excluded allele DRB1*1301 as
several servers did not predict binding to it.

Results from this evaluation are shown in Table 3. AUC values for
SVMHC, ProPred, IEDB-SMM and NetMHCIIpan are taken from
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Table 3. AUC values for Lin’s dataset

DRB1 allele SVMHC ProPred IEDB-SMM Net MHCII EpiTOP

*0101 0.86 0.89 0.81 0.90 0.72
*0301 0.69 0.70 0.71 0.78 0.89
*0401 0.75 0.75 0.79 0.84 0.84
*0701 0.74 0.74 0.67 0.75 0.73
*1101 0.83 0.83 0.84 0.85 0.79
*1501 0.66 0.66 0.67 0.79 0.74
Average 0.76 0.76 0.75 0.82 0.79

The total number of peptides is 103. Results for SVMHC, ProPred, IEDB-SMM and
NetMHCII are taken from Nielsen and Lund (2009). Time of evaluation: April 2010.
Protein-specific performance is given in Supplementary Material II.

Table 4. Identification of peptide binding core

DRB1 PDB Peptide TEPI IEDB- NetMHCIIpan NetMHCII EpiTOP
allele code TOPE SMM

*0101 2fse AGFKGEQGPKGEPG
√ √ √ √ √

*0101 2iam GELIGILNAAKVPAD
√ √ √ √ √

*0101 1sje PEVIPMFSALSEGATP
√ √ √ √

X
*0101 1dlh PKYVKQNTLKLAT

√ √ √ √ √
*0101 1aqd VGSDWRFLRGYHQYA

√ √ √ √ √
*0101 1pyw AFVKQNAAALA

√
X

√ √ √
*0101 1t5w AAYSDQATPLLLSPR

√ √ √ √ √
*0301 1a6a PVSKMRMATPLLMQA

√ √ √ √
X

*0401 2seb AYMRADAAAGGA
√ √

X X X
*0401 1j8h PKYVKQNTLKLAT

√ √ √ √ √
*1501 1bx2 ENPVVHFFKNIVTPR

√ √ √ √ √

Binding core is given in bold. Results for TEPITOPE, IEDB-SMM, NetMHCIIpan and
NetMHCII are taken from Nielsen and Lund, 2009. Time of evaluation: April 2010.
Detailed scores for EpiTOP are given in Supplementary Data II.

a previous study (Nielsen and Lund, 2009). EpiTOP has the second
best result after NetMHCIIpan.
Identification of the peptide binding core: EpiTOP was tested to
identify the peptide binding core on a set of X-ray data for peptide-
DRB1 allele complexes (Nielsen et al., 2008). EpiTOP performance
was compared to those of TEPITOPE (Sturniolo et al., 1999), IEDB-
SMM, NetMHCIIpan and NetMHCII, published by Nielsen and
Lund (2009; Table 4).

EpiTOP identified 8 out of 11 binding cores correctly (73%). Two
of the misaligned cores (MRMATPLLM and MRADAAAGG) are
second best binders with predicted pIC50 values very close to the
best binders (Supplementary Material II).

5 DISCUSSION
We undertook a rigorous evaluation of the performance of EpiTOP
across three datasets, comparing it to that of either four or eight
other servers, using either recall statistics or ROC analysis. Overall,
EpiTOP compares very favourably with other more specialized
models. For the AntiJen and IEDB datasets, EpiTOP performs sub-
optimally only at the highest specificity; since it is strongly inclusive
and much broader in its predictive potential, other much more highly
focused, allele-specific models outperform it at this highly stringent
level. At more permissive thresholds, and within statistical error,
EpiTOP performs identically to best-in-class servers.

For Lin’s dataset, the five tested binders were much close in
performance: within the limits of error, EpiTOP performs sub-
optimally only for DRB1*0101. It is interesting to note that EpiTOP
is very much the best model for DRB1*0301.

For the identification of binding cores, EpiTOP again performs
well, but interestingly core identification correlates inversely with
overall statistical perform, perhaps suggesting that much remains to
be understood regarding class MHC–peptide interaction.

Taken together, results from these various benchmarking exercises
both validate EpiTOP and indicate that development of a synergistic
meta-server, which integrates results from several servers should
prove a useful exercise, hopefully yielding significant overall
enhancements.

6 CONCLUSION
EpiTOP is the first proteochemometrics-based server for T-cell
epitope prediction. It is a tool for performing preliminary
computational analyses of large datasets for accelerated epitope-
based vaccine design. It is easy to use, gives comprehensive
quantitative predictions and will be expanded and updated with
new QMs.

Funding: National Science Fund of Ministry of Education and
Science, Bulgaria (02-115/2008); Wellcome Trust (WT079287MA).

Conflict of Interest: none declared.

REFERENCES
Bradley,A.P. (1997) The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognition, 30, 1145–1159.
Bui,H.H. et al. (2005) Automated generation and evaluation of specific MHC binding

predictive tools: ARB matrix applications. Immunogenetics, 57, 304–314.
Dimitrov,I. et al. (2010) Peptide binding to the HLA-DRB1 supertype: a

proteochemometrics analysis. Eur. J. Med. Chem., 45, 236–243.
Dönnes,P. and Elofsson,A. (2002) Prediction of MHC class I binding peptides, using

SVMHC. BMC Bioinformatics, 3, 25.
Doytchinova,I.A. and Flower,D.R. (2003) Towards the in silico identification of class

II restricted T-cell epitopes: a partial least squares iterative selfconsistent algorithm
for affinity prediction. Bioinformatics, 19, 2263–2270.

Flower,D.R. (2008) Vaccines: data driven prediction of binders, epitopes and immunog
enicity. In Flower,D.R. (ed), Bioinformatics for Vaccinology, Wiley-Blackwell,
Chichester, UK, pp.167–216.

Hellberg,S. et al. (1987) Peptide quantitative structure-activity relationships, a
multivariate approach. J. Med. Chem., 30, 1126–1135.

Lapinsh,M. et al. (2001) Development of proteo-chemometrics: a novel technology for
the analysis of drug-receptor interactions. Biochim. Biophys. Acta, 1525, 180–190.

Lin,H.H. et al. (2008) Evaluation of MHC-II peptide binding prediction servers:
applications for vaccine research. BMC Bioinformatics, 9, S22.

Nielsen,M. et al. (2007) Prediction of MHC class II binding affinity using SMM-align,
a novel stabilization matrix alignment method. BMC Bioinformatics, 8, 238.

Nielsen,M. et al. (2008) Quantitative predictions of peptide binding to any HLA-DR
molecule of known sequence: NetMHCIIpan. PLoS Comput. Biol., 4, e1000107.

Nielsen,M. and Lund,O. (2009) NN-align. An artificial neural network-based alignment
algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 10,
296.

Peters,B. et al. (2005) The immune epitope database and analysis resource: from vision
to blueprint. PLoS Biol., 3, e91.

Reche,P.A. et al. (2004) Enhancement to the RANKPEP resource for the prediction of
peptide binding to MHC molecules using profiles. Immunogenetics, 56, 405–419.

Singh,H. and Raghava,G.P.S. (2001) ProPred: prediction of HLA-DR binding sites.
Bioinformatics, 17, 1236–1237.

Sturniolo,T. et al. (1999) Generation of tissue-specific and promiscuous HLA ligand
databases using DNA microarrays and virtual HLA class II matrices. Nat.
Biotechnol., 17, 555–561.

Toseland,C.P. et al. (2005) AntiJen: a quantitative immunology database integrating
functional, thermodynamic, kinetic, biophysical and cellular data. Immunome Res.,
1, 4.

2068

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/16/2066/216830 by guest on 23 April 2024


