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ABSTRACT

Motivation: Membrane proteins (MPs) are important drug targets
but knowledge of their exact structure is limited to relatively few
examples. Existing homology-based structure prediction methods
are designed for globular, water-soluble proteins. However, we
are now beginning to have enough MP structures to justify the
development of a homology-based approach specifically for them.
Results: We present a MP-specific homology-based coordinate
generation method, MEDELLER, which is optimized to build highly
reliable core models. The method outperforms the popular structure
prediction programme Modeller on MPs. The comparison of the
two methods was performed on 616 target–template pairs of MPs,
which were classified into four test sets by their sequence identity.
Across all targets, MEDELLER gave an average backbone root mean
square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our
‘easy’ test set, MEDELLER achieves an average accuracy of 0.93 Å
backbone RMSD versus 1.56 Å for Modeller.
Availability and Implementation: http://medeller.info; Implemented
in Python, Bash and Perl CGI for use on Linux systems;
Supplementary data are available at http://www.stats.ox.ac.uk/
proteins/resources.
Contact: kelm@stats.ox.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Membrane proteins (MP) constitute about 30% of all known proteins
and are one of the largest classes of drug targets. They have roles
in a multitude of biological processes such as cell recognition and
neurotransmitter transport (Müller et al., 2008; Wallin and von
Heijne, 1998).

Currently, the Universal Protein Resource (UniProt;
Wu et al., 2006) contains more than 11 million protein sequences.
In comparison, the Protein Data Bank (PDB; Berman et al., 2000)
contains only about 65 thousand known protein structures. Both
numbers have been following an exponential growth trend. For
MPs, the sequence-structure gap is even larger. Over 1.7 million
UniProt entries contain the word ‘membrane’, whereas only 4700
PDB entries match this criterion and only 616 structures are
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specifically annotated as belonging to the SCOP (Murzin et al.,
1995) class ‘membrane and cell surface proteins and peptides’ (the
stated numbers were obtained from the respective databases on
May 19, 2010).

Physically, MPs differ significantly from water-soluble proteins
(Schulz, 2002; Stevens and Arkin, 1999; Ulmschneider and Sansom,
2001). These differences have been used in various computational
methods (Punta et al., 2007), e.g. to identify MPs from sequence
alone (Gromiha et al., 2005; Wallin and von Heijne, 1998). Soluble
proteins often adopt a globular conformation, with their hydrophobic
residues mainly in the protein core and their polar and charged
residues predominantly on the water-exposed surface. Membrane
proteins sit in a lipid bilayer and thus contain stretches of residues
that are exposed to the hydrophobic environment at the core of the
membrane (Eyre et al., 2004). These transmembrane (TM) segments
usually have one of two structure types: α-helices or β-strands.

Many protein structure prediction algorithms have been
developed in order to close the gap between the number of known
sequences and the number of known structures. Current structure
prediction methods can be classified into two main types: template-
based and ab initio modelling. So far, ab initio methods have only
been truly successful for small globular proteins. Template-based
modelling methods, however, have succeeded in producing high
accuracy models, if a good template exists, for proteins of almost
any type or size (CASP; Moult et al., 2009).

Template-based protein structure prediction for any type of
protein can be divided into several steps. For globular, water-soluble
proteins a multitude of programmes are available to perform each
of these separate steps (Eswar et al., 2007; Wallner and Elofsson,
2005). The input to the entire modelling procedure is a single target
sequence, whose structure is to be predicted. The steps of a typical
template-based modelling protocol are briefly described below.

The first step is the identification of a template protein of known
structure. Structural databases are scanned for proteins homologous
to the target protein.

One or more templates are then selected from the homologues.
By choosing one or more template structures, a 3D-fold is implicitly
assigned to the target sequence.

A target–template alignment is then generated. The alignment
between target and template is one of the major contributors to
the accuracy of the final model. An incorrect alignment will almost
always result in an inaccurate model (Sánchez and Sali, 1997).

The final step in modelling is coordinate generation based
on the alignment between template protein structures and the
target sequence. The three main approaches to this problem are
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(i) assembly of rigid bodies (Bates et al., 2001; Deane et al., 2001;
Koehl and Delarue, 1995; Petrey et al., 2003; Schwede et al., 2003),
(ii) segment matching (Levitt, 1992) and (iii) satisfaction of spatial
restraints (Sali and Blundell, 1993).

In order to improve the final model, this entire procedure may be
iterated. This has been shown to produce superior results as well as
being able to correct errors in the initial alignment between target
sequence and template structures (Burke et al., 1999).

The current computational structure prediction methods may not
be ideal for TM proteins, designed as they are for water-soluble
proteins (Elofsson and von Heijne, 2007). The physical differences
between water-soluble and MPs may mean that many of the steps
in structure prediction should be approached differently.

The successful ab initio fragment assembly method ROSETTA
has been adapted to specifically predict MP structure (ROSETTA
Membrane; Yarov-Yarovoy et al., 2006). The adapted method
included an energy function that modelled a multi-layer artificial
membrane environment. The performance of ROSETTA Membrane
was tested on 12 MPs of known structure, producing complete
models with backbone root mean square deviations (RMSDs)
between 6 Å and 10 Å. Sub-sets of each model (between 51 and
145 residues long) achieved RMSDs of 3–4 Å. More recently, the
method was modified to include experimentally derived constraints,
such as known helix–helix contacts (Barth et al., 2009). The best
models selected by the method had RMSDs of ∼4 Å, with all test
proteins being single chains of at most 230 amino acids. The authors
ventured that for larger proteins, multiple constraints were likely to
be required in order to obtain accurate results. It should also be noted
that, being a combinatorial ab initio method, ROSETTA requires
large amounts of computing time and is typically run across large
(possibly distributed) computing clusters. Homology modelling
methods on the other hand, while relying on the availability of a
template, can be run on a single desktop computer.

In this article, we consider the coordinate generation step
in a homology modelling framework and show how it can be
significantly improved, without the use of experimental information,
by considering the different physical environment of MPs.

Wallner and Elofsson (2005) demonstrated that existing co-
ordinate generators, on soluble proteins, showed little difference
in terms of overall accuracy and none of the methods consistently
produced models that were much closer to the native target structure
than the template. In general, the models were also worse than simply
copying the backbone co-ordinates of the template.

They identified Modeller (Sali and Blundell, 1993) as one of the
best methods, due to its reliability and consistent model quality.
Modeller attempts to satisfy spatial restraints in order to build a
target protein structure. Its probability density function uses data
obtained from the input target–template alignment, as well as
prior knowledge obtained from a database of structural alignments
(Sali and Overington, 1994). This original database contained 105
families of soluble proteins and no MPs. In this article, we use
the most up-to-date version of Modeller (9v7, at the time of the
experiment) as a representative of existing modelling methods and
compare it to our own method.

Modeller’s accuracy for modelling MPs has been tested
previously (Forrest et al., 2006). It was noted that it was possible
to build models whose TM region had <2 Å C-α RMSD to the
native structure, given a template with >30% sequence identity.
The accuracy for the whole protein was much lower than that of

the TM region. This reflected important local differences in the
regions connecting TM segments in MPs with similar topology. This
result indicated that template-based approaches can be successfully
applied to MPs.

However, this result also showed that Modeller (as a
representative of the current standard in homology modelling
software), in its current state, is not ideal for creating complete,
accurate models of MPs. A 2 Å RMSD in the TM region is
surprisingly high, given that the problem of TM protein prediction
should theoretically be simplified by the additional physical
constraints imposed by the presence of the lipid bilayer. Modelling
errors in the TM region can then propagate to the loops that connect
TM segments, thus resulting in even lower accuracy outside the
TM region. Nevertheless, scientists commonly use Modeller, and
comparable methods, to predict MP structure (software reviews:
Reddy et al., 2006; Saxena et al., 2008; example case studies:
Fenosa et al., 2009; Yang et al., 2008).

We present MEDELLER, a new method for coordinate generation
specialized for MPs. The input is a template protein structure and a
sequence alignment between the target and template proteins. This
alignment is not altered by MEDELLER. The most important part of
the method is the identification of the reliable ‘core’ structure shared
by the template and target proteins. First, the template protein’s
membrane insertion is calculated using iMembrane (Kelm et al.,
2009). The ‘core’ is initially restricted to the template residues
buried in the middle layer of the membrane. It is then gradually
extended using a specialized membrane-specific substitution score.
The model is then completed, as far as possible, using the loop
modelling protocols FREAD (Choi and Deane, 2009) and Modeller.

We test the modelling accuracy of our method on four large test
sets, containing a total of 616 target–template pairs of TM proteins.

Our method, MEDELLER, builds highly reliable core models
(which usually correspond to a protein’s TM region). Averaged over
all test sets, MEDELLER produces more accurate core models and
achieves a core model accuracy of 1.97 Å RMSD versus 2.57 Å for
Modeller.

With added high-accuracy loops, MEDELLER remains the more
accurate method in 65% of test cases and at least as good as Modeller
in 77% of test cases, with an average accuracy of 2.62 Å RMSD
versus 3.16 Å for Modeller.

2 METHODS
We have created a homology-based protocol for coordinate generation. The
method is specific to MPs. The algorithm is outlined below, with detailed
explanations of the more complex steps following in separate sub-sections.
Figure 1 gives a flowchart of the algorithm. All algorithm steps are identical,
irrespective of the input protein’s structure type (α-helical or β-barrel),
although the substitution score itself is secondary structure dependent and
will thus differ for residues in helices or β sheets.

2.1 Algorithm overview
2.1.1 User input The input to our coordinate generation method is the
target protein’s sequence, aligned to one or more homologous template
protein sequences, as well as the 3D co-ordinates of those template structures.

2.1.2 Annotation of the sequence alignment iMembrane (Section 2.2;
Kelm et al., 2009) and JOY (Mizuguchi et al., 1998) are run on the template
structure in order to annotate its membrane insertion and secondary structure.
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Fig. 1. Algorithm for modelling from a single template. Progression from the
initial user input to the high-accuracy model. When modelling from multiple
templates, steps up to stage 3 are performed for each template separately. The
data are then combined into a single core model (stage 3) and the algorithm
proceeds as for a single template.

2.1.3 Building the ‘core’model The core is built over four phases (for full
details, see Supplementary Section 1.1). In each of these, a specific set of
masking rules is in place (Section 2.3), alongside our smoothed fragment-
based environment-specific substitution score (section 2.4). Once the four
core modelling stages are considered ‘complete’ the remaining gaps, where
the target and template are not aligned or where the substitution score
is low, are modelled using FREAD (Choi and Deane, 2009). FREAD is
a database search loop prediction method, which selects fragments based
on an environment-specific substitution score and anchor RMSD. FREAD
prioritizes accuracy over coverage and thus may not make predictions for all
the missing segments.

2.1.4 Prioritizing accuracy or coverage Our core building algorithm
and our conservative use of FREAD are designed to give high accuracy
coordinates. However, the model produced may still contain gaps. For the
case where high coverage is required, MEDELLER also produces a ‘high-
coverage’ model, in addition to the default ‘high-accuracy’ model. In this
case, FREAD is used on a less conservative setting, resulting in a larger
number of possibly less accurate loop predictions. Loops longer than 26
residues or terminal gaps cannot be modelled using FREAD. MEDELLER
thus builds a set of backbone coordinates for the majority of the structure. For
convenience, we include an option to fill any remaining gaps using Modeller,
allowing the user to always output a complete all-atom model, including side
chains.

2.2 Insertion of proteins into the membrane
iMembrane is a method to ascertain a protein’s position within the lipid
bilayer (Kelm et al., 2009). It relies on a database of known TM protein
structures, which have been simulated in an artificial lipid bilayer using
molecular dynamics (Scott et al., 2008). iMembrane is used here to annotate
the template protein structure with regards to its membrane insertion.

Since its original publication, iMembrane has been re-implemented and
the output format consolidated. TM align (Zhang and Skolnick, 2005) now
performs the structure superposition and, as a result, all Z-scores have been
replaced by TM scores in the programme’s output. The new version of
iMembrane is included in the MEDELLER distribution and is available as a
web server at http://imembrane.info.

2.3 Alignment column masking
During each phase of the core building procedure, masks are used to prevent
certain alignment columns from being selected. Masked columns may be
those containing a gap in target or template, those annotated as ‘loop’ (where
masking may be dependent on loop length) or those outside the middle
layer of the membrane (where the lipid tails reside). All rules are active
at the beginning of the core building procedure and are then consecutively
deactivated during the following phases of the algorithm (Supplementary
Section 1.2).

2.4 Substitution score
During core building, a smoothed fragment-based environment-specific
substitution score Scand is used to determine the order, by which alignment
columns are added to the model’s core. During the later phases of core
extension, a score cut-off is used at each alignment column selection step,
in order to decide whether the core building process should be halted.

2.4.1 Environment-specific substitution tables (ESSTs) Using the
membrane layer annotation provided by iMembrane (Section 2.2) and the
secondary structure annotation provided by JOY, we have created 12 ESSTs
specific to various structural environments in MPs (e.g. ‘helix residues
in the membrane tail region’). The procedure of creating these ESSTs is
similar to SUBST by Kenji Mizuguchi (Shi et al., 2001) and newer methods
based on it (Lee and Blundell, 2009). In our procedure, we count the
substitutions between one protein of known structure and many sequence
homologues. This drastically increases the number of observed substitutions
in MPs, where few resolved 3D structures are available. Our programme
(JSUBST, written in Java) is available upon request. For further detail see
Supplementary Sections 1.3–1.4.

2.4.2 Calculating the smoothed fragment-based environment-specific
substitution score Scand Our ESSTs are used to assign a raw score Sraw

(Supplementary Section 1.4) to every column in the sequence alignment. Sraw

is smoothed over a window (of three residues, by default) to form Ssmoothed

(Equation 1). Scand is the score given to a candidate alignment column. It is
the sum of the smoothed scores Ssmoothed of all alignment columns already
in the selected fragment, plus the candidate’s own smoothed score.

Ssmoothed,i =
w
�

j=−w
Sraw,i+j

/
L (1)

Scand,i =Ssmoothed,i +
Flast
�

j=Ffirst

Ssmoothed,j (2)

where i, j, Ffirst and Flast are alignment column indices; i is the index of
the alignment column, whose score is to be determined; W is a constant
dependent on the window size (V ), which is 3, by default; W = (V −1)/2; L
is the actual number of scores inside the window (L = W in the normal case,
but can be smaller if the window contains alignment gaps or extends past
an end of the sequence); Ffirst and Flast are the indices of the first and last
columns of the fragment to be extended, respectively.
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2.4.3 Calculating the substitution score cut-off The substitution score cut-
off Scutoff for each core extension phase is dependent on the previous phase
and is calculated as follows:

Scutoff = 2
3 Smean,prev + 1

3 Slast,prev (3)

where Smean,prev is the mean score of the previous phase and Slast,prev is the
score of the last-added residue in the previous phase.

2.4.4 Using Scand to determine selection order Assume an alignment with
several fragments (consecutive stretches of alignment columns) already
selected. During a core extension iteration, one of the many fragments is
extended by a single residue. In order to decide which fragment is extended
by which residue, the following steps are taken: (i) identify all possible
candidates (unselected alignment columns adjacent to an already selected
column); (ii) discard any masked candidates; (iii) calculate the substitution
score of each remaining candidate (Equation 2) ; and (iv) discard all but
the best-scoring candidate—this alignment column is now selected. In the
later phases of the core extension procedure, if the candidate score Scand is
below a defined score cut-off (Equation 3), the candidate is rejected and core
extension halted (Section 2.4.5).

2.4.5 Halting core extension When core extension is halted, it regresses
(i.e. columns are removed in the reverse order they were added) until a local
Scand score maximum is reached.

2.5 Multiple templates
MEDELLER allows the user to provide more than one template protein.
In this case, the same algorithm (Section 2.1.3) is run for each template
separately, in order to identify the fragments that constitute the common
core between the target protein and each template. Then, the fragments
from all templates are pooled and the top-scoring subset of fragments is
chosen to build the core model. Two fragments are allowed to overlap only
if (i) the overlapping region is shorter than half the length of the smaller
fragment, (ii) there are no alignment gaps in the overlapping region and
(iii) the backbone RMSD of the overlap is lower than 1 Å. Overlapping
coordinates are melded (Choi and Deane, 2009). After assembling the single
best-scoring core model, the algorithm proceeds as for a single template
(Section 2.1.4).

2.6 Testing the modelling accuracy
Modelling accuracy was tested using the all-backbone-atom (C-α, N, C, O)
RMSD between a model and the ‘native’ target X-ray structure, as found in
the PDB. In addition, we report GDT_TS (Zemla et al., 1999) scores in the
Supplementary Material. We also analysed the models’ TM region in terms
of tilt angle and rotation angle and shift (as number of residues) relative to
the native structure. The accuracy of the models generated by our method
was compared to the ‘top’model out of 10 equivalent models generated using
Modeller with default settings. In every case, both methods started from an
identical ‘ideal’ sequence alignment, generated from a structure alignment
between the template and the native target structure. The ‘top’ Modeller
model was selected using Modeller’s own DOPE energy score (Eswar et al.,
2007). To make the comparison fair, we calculated Modeller’s RMSD using
only that sub-set of residues present in the MEDELLER model. Two models
with RMSDs to the native structure that differ by no more than 0.05 Å were
deemed to be equally accurate. We also conducted identical tests using the
‘best’ Modeller model, which was selected from the set of 10 as the one with
the lowest RMSD to the native target X-ray structure.

2.7 Sequence identity and coverage measures
Sequence identity (ID) is calculated as the number of identical residues
divided by the total number of alignment columns. On this scale, a value
of ∼20% identity corresponds to the ‘twilight zone’ of sequence identity

(Rost, 1999). Target coverage (Cov) is the number of residues, for which
the model provides 3D coordinates, divided by the total length of the target
sequence. Target ‘core coverage’ (CoreCov) is calculated as above, except
that the sequence is shortened to exclude any N- or C-terminal stretches of
unmodelled residues.

2.8 Creation of the test sets
A list of MP structures was compiled by combining data from several
publicly available databases: all PDB entries annotated with the SCOP class
‘membrane proteins’, the OPM database (Lomize et al., 2006), the PDB
TM database (Tusnády et al., 2005) and the CGDB database (Scott et al.,
2008). A list of unique PDB entries was compiled and filtered to include
only X-ray structures with a resolution ≤3 Å. These structures were split
into single protein chains. The protein sequences were extracted and made
non-redundant at a level of 80% sequence identity using CD-HIT (Li and
Godzik, 2006). Thus, none of the target proteins in any of our test sets share
>80% sequence identity. The remaining protein chains were run through
iMembrane, in order to identify possible template structures in the CGDB
database. The ‘structure search’ option was used; this method searches
iMembrane’s database for homologous structures using pairwise structure
alignment. All iMembrane search hits with a TM score (TM align; Zhang
and Skolnick, 2005) above 0.50 were kept. Some target proteins did not
receive any iMembrane hits and were thus removed from the dataset. Pairs
where target and template were of the same protein chain were also removed.
The remaining protein pairs were then classified into four test sets of varying
sequence identity ranges. The test set for modelling multiple templates is a
subset of the above set and contains targets associated with at least two
templates.

3 RESULTS

3.1 Test sets
Our complete test set contains 616 pairs of protein chains (target–
template pairs). Proteins of both the α-helical (413) and the β-barrel
(203) type are included. The target–template pairs were classified, by
their sequence identity, into four test sets representing four different
levels of modelling difficulty:

• ‘easy’ set: 128 protein pairs, 40–100% sequence identity.

• ‘medium’ set: 115 protein pairs, 20–40% sequence identity.

• ‘hard’ set: 102 protein pairs, 10–20% sequence identity.

• ‘hardest’ set: 271 protein pairs, 0–10% sequence identity.

A target may be paired with more than one template. Conversely, a
template may also be paired with more than one target. The full list
of target–template pairs is given in Supplementary Section 2.1.

Our test set is roughly two-thirds of the size of that used by
Wallner and Elofsson (2005; 1036 representative protein pairs from
different protein families) for testing co-ordinate generation in
soluble proteins, and ∼17 times larger than the HOMEP set by
Forrest et al. (2006; 36 pairs of MPs).

3.2 Modelling from a single template
We ran our new coordinate generator, MEDELLER, as well as
Modeller on all target–template pairs in our test set. Modelling
accuracy and target coverage were compared. The average accuracy
of both methods as well as MEDELLER’s coverage are summarized
in Table 1. The distribution of both methods’ accuracy over all
target–template pairs in the ‘easy’ test set is shown in Figure 2.
On average, our method outperforms Modeller on the entire test set,
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Table 1. Accuracy of MEDELLER’s high-accuracy model versus Modeller

Test More Less MED MOD Diff CoreCov Cov
set acc (%) acc (%) RMSD (Å) RMSD (Å) RMSD (Å) (%) (%)

All 65 23 2.62 3.16 −0.54 92 71
Easy 68 13 0.93 1.56 −0.63 99 88
Med. 59 23 1.92 2.40 −0.48 92 80
Hard 49 39 2.82 2.97 0.15 90 70
Hardest 72 21 3.64 4.32 −0.68 88 58

Rows correspond to test sets. The ‘all’ test set is the union of all the test sets. ‘More acc’
and ‘Less acc’ are the percentages of test cases where MEDELLER (MED) is more or
less accurate, respectively, than Modeller (MOD). If the two methods’ accuracies are
within 0.05 Å RMSD of each other, they are deemed equal. ‘MED rmsd’ and ‘MOD
rmsd ‘are accuracy values measured using the RMSD between the native structure
and the MEDELLER or Modeller model, respectively. ‘Diff rmsd’ is the difference
in accuracy between the two methods. Cov is the percentage coverage of the target
sequence by the MEDELLER model. CoreCov is equivalent to Cov, but disregards
uncovered terminal regions. All values are averaged over an entire test set.

Fig. 2. Distribution of modelling accuracy for the ‘easy’ dataset, when
modelling from structure-based sequence alignments. Backbone RMSD to
the native structure achieved by MEDELLER’s high-accuracy (MED HiAcc)
and complete (MED Compl) models and the corresponding coordinates in
the Modeller model (MOD HiAcc, MOD Compl). MEDELLER’s accuracy
distribution peaks at ∼0.6 Å for both high-accuracy and complete models,
compared with a 1.0 Å and a 1.5 Å peak for Modeller’s equivalent coordinates
to the two model types.

in terms of accuracy, by 0.60 Å RMSD for the core model and by
0.54 Å RMSD for the high-accuracy model. On our ‘easy’ dataset,
the difference in average modelling accuracy between the methods is
the most visible, with 0.71 Å versus 1.46 Å RMSD for the core model
and 0.93 Å versus 1.56 Å RMSD for the high-accuracy model. This
can also be seen in terms of GDT_TS with MEDELLER achieving
a GDT_TS of 0.94 for high-accuracy models in the easy test set,
whereas Modeller achieves 0.85. GDT_TS scores for all the sets
that are given in Supplementary Section 2.2.

The major advantage of MEDELLER lies in its highly reliable
core models. Compared with Modeller, our core models are at least
0.05 Å more accurate in 66% of test cases and at least as good
(±0.05 Å) in 88% of test cases. With added high-accuracy loops,
MEDELLER remains the more accurate method in 65% of test cases
and at least as good as Modeller in 77% of test cases.

The worst core models made by the two methods have respective
RMSDs of 5.40 Å (MEDELLER) and 10.47 Å (Modeller). Mostly,

these inaccurate models are where target and template have different
beta barrel diameters or considerable local changes in helix bundle
geometry. With added ‘high accuracy’ loops, the worst accuracy
values are 13.72 and 13.33 Å, respectively. Any errors in the core
models are propagated and result in a worse loop accuracy overall.
In terms of loop accuracy, both globally and locally, MEDELLER’s
high-accuracy models outperform Modeller, with average RMSDs
of 5.9 Å (global) and 1.32 Å (local). This relatively high global
RMSD is mainly due to a number of loops whose general shape
is correct, but which are at a wrong angle to the rest of the model,
resulting in a very high RMSD. Both MEDELLER and Modeller
show relatively poor performance if all loops are built (complete
model) with global RMSDs of over 11 Å.

In terms of coverage, Modeller always provides a complete model.
However, its loop regions tend to be unreliable. MEDELLER,
on the other hand, provides four models: a core model with
only highly conserved regions, a high-accuracy model containing
high-confidence loops, a high-coverage model that includes low-
confidence regions and a complete model. MEDELLER’s modelling
confidence is shown in the output using an atom’s B-factor
(Figure 3B). All our tests were repeated when selecting the ‘best’ out
of the 10 Modeller decoys using the RMSD to the native structure,
instead of Modeller’s DOPE energy score. This did not change the
overall trend of the results.

For further details, see Supplementary Section 2.2.

3.3 Modelling from pure sequence alignments
All accuracy values reported in Section 3.2 are achieved when
modelling from an ‘ideal’ alignment, based on a structure
superposition between target and template. Whether such values
can be achieved in a real modelling case always depends on the
quality of the input alignment. As a practical ‘worst case’ scenario,
we report accuracy values achieved when modelling from a simple
pairwise sequence alignment, generated using MUSCLE (Edgar,
2004). As expected, the resulting model accuracy was reduced
for both MEDELLER and Modeller. On average MEDELLER’s
high-accuracy model achieved a backbone accuracy of 0.96 Å
compared with 1.78 Å for the equivalent Modeller coordinates, on
the ‘easy’ test set. For further details, see Supplementary Section 2.3.
In practice, users will most likely use a more sophisticated alignment
method, such as FUGUE (Shi et al., 2001), yielding somewhat better
accuracies.

It should, of course, be understood that, even when using
MUSCLE alignments as input, we still base our results on the
prior knowledge that the chosen template is adequate for homology
modelling (target template TM score >0.50; see Section 2.8). In the
regular modelling case, this knowledge is not available and one has
to rely on the accuracy of homology detection methods.

3.4 Comparison to the naïve model
When modelling from an ‘ideal’ alignment, the core selected by
MEDELLER is on an average smaller but has a far lower RMSD
(1.97 Å for MEDELLER versus 2.77 Å for the naïve model). The
high-accuracy MEDELLER model covers on average a very similar
fraction of the model (excluding terminal gaps) to the naïve model
and the average RMSD (2.62 Å) is still lower than the naïve
model. The same trend is observed when modelling from a pure
sequence alignment (0.93 and 0.96 Å for MODELLER’s core and
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Fig. 3. Example model of human adenosine A2A receptor (PDB 3EML,
chain A). (A) Progression of model accuracy through the modelling process.
The modelling phases corresponding to the different MEDELLER models
[Core, High Accuracy (HiAcc) and High Coverage (HiCov)] are labelled.
(B) MEDELLER’s high-coverage model, coloured by modelling confidence
in a blue-to-red spectrum, aligned to the native X-ray structure (transparent
orange). (C) MEDELLER’s high-coverage model, coloured by membrane
insertion using iMembrane [red, middle hydrophobic (tail group) layer;
white, peripheral polar (head group) layers; blue, aqueous (non-membrane)
layers].

high-accuracy models versus 1.15 Å for the naïve model, on the
‘easy’ test set). For further details, see Supplementary Section 2.4.

3.5 Main chain bumps and transmembrane geometry
The model quality assessment software WHATCHECK (Hooft
et al., 1996) was run on the complete MEDELLER and Modeller
models. On average, both methods had a significantly higher
amount of bumps between main chain atoms than the template and
target structures. Modeller produces slightly fewer bumps, thanks
to its model refinement function. For details, see Supplementary
Section 2.5.

Using iMembrane, we also compared the accuracy of TM
helix/β sheet geometry, relative to the native X-ray structure. While
both methods behaved very similarly, on average MEDELLER
produced slightly better geometries. MEDELLER and Modeller,
respectively, had average TM shifts of 1.9 versus 2.3 residues, tilt
angle deviations of 2.4◦ versus 3.4◦ and rotation angle deviations

of 31.2◦ versus 36.0◦. For further details, see Supplementary
Section 2.6.

3.6 Modelling from multiple templates
We tested both MEDELLER and Modeller on a set of 35 target
proteins with at least two templates per target. On average,
MEDELLER’s core model achieves an accuracy of 3.24 Å RMSD,
compared with 3.32 Å for the corresponding Modeller coordinates.
This average is heavily biased by two outliers, where both methods
each produced one ‘less bad’ model but both methods’ accuracy
was worse than 9 Å. After discarding these two test cases, the two
methods’ average accuracies are 2.20 Å for MEDELLER and 2.44 Å
for Modeller. In almost every test case, both MEDELLER and
Modeller could create a better core model when given only a single
template structure (e.g. the one with the highest sequence identity
to the target). For further details, see Supplementary Section 2.7.

3.7 Example model: human adenosine A2A receptor
The human adenosine A2A receptor (PDB 3EML, chain A) is a
G-protein coupled receptor (GPCR). The structure was resolved
at a resolution of 2.6 Å and contains only a single gap in a loop
connecting two TM helices. In 2008, this protein was the subject of
a CASP-style blind prediction competition (Michino et al., 2009) in
order to assess the current state in GPCR MP structure prediction.
The most direct comparison possible is between values for TM helix
accuracy from Michino et al. (2009) and our MEDELLER ‘core’
models, which are roughly equivalent.

Our test set contains three models of 3EML (all from the ‘hard’
set), with core accuracies (C-α RMSD) of 2.1, 2.3 and 2.5 Å. The
model in Michino et al. (2009) to best predict the TM helices had a
C-α accuracy of 2.1 Å (the model submitted by Davis, Barth and
Baker). The average TM helix (C-α) accuracy for all submitted
models was 2.8 ± 0.5 Å. This places MEDELLER’s models at the
top end of the scale. Of course, this comparison is not entirely fair, as
our models are based on a structure alignment to the native structure.
However, Michino et al. (2009) reported that alignment did not seem
to be a problem due to the conserved TM sequence patterns.

The high-coverage MEDELLER model with a core (C-α)
accuracy of 2.5 Å is shown in Figure 3. The template structure is
Opsin (PDB 3CAP, chain A), another GPCR. The MEDELLER
model is more accurate than the corresponding co-ordinates of the
top Modeller model. MEDELLER’s backbone RMSD was 2.64, 2.65
and 3.57 Å for its core, high-accuracy and high-coverage models,
respectively. Modeller achieved an RMSD of 4.70, 4.83 and 5.11 Å
for the corresponding coordinates.

Loops modelled using FREAD had the right general shape, even
in the high-coverage model, whereas Modeller’s loops tended to
be at the wrong angle relative to the core of the protein. Only one
very long loop was not modelled by FREAD. Modeller produced
coordinates for this loop but these were far from the loop’s position
in the X-ray structure.

One particular mistake was made by both methods: failure to
predict a helix kink that was present in the native structure but not
in the template. For further details, see Supplementary Section 2.8.

4 DISCUSSION
We present MEDELLER, a new template-based coordinate
generation protocol for MPs. First, a common core between target
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and template proteins is defined, using membrane insertion and
secondary structure information. Then, any gaps in this core model
are completed, as far as possible, using FREAD, a database
search loop modelling algorithm. Finally, any remaining gaps are
filled using Modeller. This results in four models with increasing
target coverage: the ‘core’, ‘high-accuracy’, ‘high-coverage’ and
‘complete’ models. In the output, coordinate reliability is indicated
using B-factors. MEDELLER’s algorithm speed is comparable to
that of Modeller (Supplementary Section 2.9).

MEDELLER’s core and high-accuracy models are potentially
incomplete. However, the level of certainty in these coordinates
is high. We have shown that MEDELLER’s core models (1.97 Å
RMSD) are consistently more accurate than their corresponding
coordinates in the Modeller models (2.57 Å RMSD). Even adding
high-accuracy loops, MEDELLER still outperforms Modeller in
most cases. MEDELLER’s high-coverage model represents a trade-
off between accuracy and coverage. At this coverage level, the two
methods are, on average, approximately equal, with MEDELLER
better in the ‘easy’ set and Modeller better in the ‘hard’ set. Where
complete coverage is required, we also produce a complete model by
filling any remaining gaps using Modeller. However, the accuracy
of such coordinates is unreliable. Here both methods have average
RMSDs of over 10 Å, mainly due to large regions of the targets not
aligned to a template in the ‘hard’ and ‘hardest’ test sets. Only on the
easy set, where unaligned regions are short, MEDELLER’s complete
models have a clear advantage with 2.80 Å RMSD versus 3.39 Å
for Modeller. In the ‘medium’ set, Modeller’s complete models lead
with 5.33 Å versus 5.84 Å for MEDELLER.

The fact that MEDELLER’s core models are consistently better
than Modeller’s, even though MEDELLER employs no structure
optimization methods, suggests that Modeller’s probability density
function, which was created to model soluble proteins, may distort
the template structure of a MP.

The high quality of MEDELLER’s core models is achieved by
reliably selecting parts of the template structure that are similar to the
correct target coordinates. This is made possible by using membrane
insertion annotation and an environment-specific substitution score
along with the rule-based MEDELLER algorithm (Sections 2.1–
2.4).

In terms of loop modelling, MEDELLER is the first software to
use the recently revised FREAD algorithm (Choi and Deane, 2009).
For soluble proteins, FREAD guarantees consistent loop quality
independent of loop length as long as the anchor structures are
correctly modelled. The high accuracy of our core models allows
FREAD, in many cases, to produce accurate loop structures (‘high-
accuracy’ models). In our test set, FREAD sometimes does not
correctly filter out loops which are similar in shape to the native
structure but are attached at a wrong angle to the model core. We
have not observed this phenomenon when modelling loops in soluble
proteins. Future versions of MEDELLER will introduce MP-specific
loop selection procedures to deal with such errors.

MEDELLER’s loss in accuracy in the higher coverage models,
especially at low target-template sequence identity, is due to small
local structure differences in the MP ‘core’ region. These errors are
amplified when adding loops to the model, based on such erroneous
anchor structures. Modeller lessens this dependency using its model
refinement method. This has two opposing effects, however: smaller
errors at low target-template identity (which is desirable) and also
worse core models overall (which is not).

The obvious way to improve model accuracy would be to
either greatly reduce the size of the model core or to create a
refinement method that corrects local structural differences such as
helix kinks. Helix kink prediction will allow better core accuracy,
even with templates that are locally different from the correct
target structure. Future versions of MEDELLER will include such
refinement methods, as well as a more accurate ab initio loop
modelling protocol that should allow for better ‘high-coverage’ and
‘complete’ models.
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