
[17:54 6/7/2011 Bioinformatics-btr331.tex] Page: 2083 2083–2088

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 15 2011, pages 2083–2088
doi:10.1093/bioinformatics/btr331

Structural bioinformatics Advance Access publication June 2, 2011

Identification of cavities on protein surface using multiple
computational approaches for drug binding site prediction
Zengming Zhang1, Yu Li1, Biaoyang Lin1, Michael Schroeder2 and Bingding Huang1,2,∗
1Systems Biology Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, 310029
Hangzhou, China and 2Bioinformatics Group, Biotechnology Center, Technical University of Dresden, 01307,
Dresden, Germany
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Protein–ligand binding sites are the active sites on
protein surface that perform protein functions. Thus, the identification
of those binding sites is often the first step to study protein functions
and structure-based drug design. There are many computational
algorithms and tools developed in recent decades, such as
LIGSITEcs/c, PASS, Q-SiteFinder, SURFNET, and so on. In our
previous work, MetaPocket, we have proved that it is possible
to combine the results of many methods together to improve the
prediction result.
Results: Here, we continue our previous work by adding four more
methods Fpocket, GHECOM, ConCavity and POCASA to further
improve the prediction success rate. The new method MetaPocket
2.0 and the individual approaches are all tested on two datasets of
48 unbound/bound and 210 bound structures as used before. The
results show that the average success rate has been raised 5% at
the top 1 prediction compared with previous work. Moreover, we
construct a non-redundant dataset of drug–target complexes with
known structure from DrugBank, DrugPort and PDB database and
apply MetaPocket 2.0 to this dataset to predict drug binding sites.
As a result, >74% drug binding sites on protein target are correctly
identified at the top 3 prediction, and it is 12% better than the best
individual approach.
Availability: The web service of MetaPocket 2.0 and all the
test datasets are freely available at http://projects.biotec.tu-
dresden.de/metapocket/ and http://sysbio.zju.edu.cn/metapocket.
Contact: bhuang@biotec.tu-dresden.de
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Proteins perform their biological functions in biological processes
mainly by interacting with other molecules such as other proteins,
small molecules, DNAs and RNAs. Usually not all the residues on a
protein surface participate in these interactions. Thus, identification
of these functional sites is of great importance to understanding
the function of a protein and the mechanism of the interactions. In
addition, knowledge of these functional sites can be used to guide
the mutagenesis experiments. There exist a number of cavities or

∗To whom correspondence should be addressed.

pockets on protein surface where small molecules bind. Therefore,
identification of such cavities is often the starting point in protein–
ligand binding site prediction for protein function annotation and
structure-based drug design. Proper ligand binding site detection is a
prerequisite for protein–ligand docking and high-throughput virtual
screening to identify drug candidates in drug discovery processes.

Many computational algorithms and tools have been developed
in last two decades to identify pocket for protein–ligand binding
site prediction. Most of the existing methods can be classified into
two types: geometry based and energy based. The geometry-based
methods can be further classified into grid based, sphere based
and α-shape based (Kawabata, 2010; Yu et al., 2010). In the grid-
based methods, the protein structure is projected into a 3D grid
and the grid points are categorized into different types according to
their positions related to the protein. Then the solvent grid points
are clustered using some geometry attributes and those grid points
near the pocket sites can be recognized. LIGSITE (Hendlich et al.,
1997), LIGSITECS (Huang and Schroeder, 2006), PocketPicker
(Weisel et al., 2007), GHECOM (Kawabata, 2010) and ConCavity
(Capra et al., 2009) are the representatives of this type of method.
In the sphere-based approaches, the common strategy is to fulfill
protein surface with spheres of different radius layer by layer and
a cutting method is applied during the fulfilling process. The final
pocket sites are those regions that are rich with fulfilled spheres.
This kind of methods include SURFNET (Laskowski, 1995), PASS
(Brady and Stouten, 2000), PHECOM (Kawabata and Go, 2007) and
POCASA (Yu et al., 2010). Approaches based on α-shape theory
(Edelsbrunner and Mucke, 1994) include CAST (Binkowski et al.,
2003; Dundas et al., 2006) and Fpocket (Le Guilloux et al., 2009).
CAST computes the triangulations of the protein’s surface atoms
and these triangulations are grouped by letting small-sized ones flow
toward the neighboring larger one. The pocket sites are the collection
of empty triangles. Different from CAST, Fpocket uses the idea of
α-sphere which is a sphere contacting four atoms on its boundary
and containing no inside atom. The next step is to identify clusters of
spheres close together and those clusters are potential pocket sites.
In comparison to geometry-based method, Q-SiteFinder (Laurie and
Jackson, 2005) aims to find pocket sites by computing the interaction
energy between protein atoms and a small molecule probe. In
Q-SiteFinder, layers of methyl (–CH3) probes are initialized on
protein surface to calculate the van der Waals interaction energy
between the protein atoms and the probes. Then the probes are
clustered into many groups and are ranked by the total energy of
probes. Those clusters with high energy will be the potential ligand
binding sites. SiteHound (Ghersi and Sanchez, 2009; Hernandez
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et al., 2009) is similar to Q-SiteFinder but it includes Lennard-Jones
and electrostatics energy terms and uses different types of probes to
calculate interaction energy. However, it is difficult to compare their
performance systematically because of different evaluation criteria
and dataset being used. In our previous work (Huang and Schroeder,
2006), we compared LIGSITEcs, SUFNET, PASS and Q-SiteFinder
using the same dataset and criteria. Later on, we combined these four
methods and introduced a new consensus tool called MetaPocket
to improve the prediction success rate (Huang, 2009). Because
there are many new tools developed recently, we continued our
work on MetaPocket by including four more free available tools:
Fpocket, GHECOM, ConCavity and POCASA. These tools were
chosen because they are freely available either with source code or
executable binary. In this work, we improve the workflow and the
way of mapping ligand-binding residues and propose a new dataset
for drug–target complexes. The web server design architecture is
also improved as we developed a new on-line visualization system.
We named the new version MetaPocket 2.0 (MPK2), in contrast to
the old version of MetaPocket 1.0 (MPK1).

We demonstrated that MPK2 performed better than MPK1
and each of the individual methods by extensive validation and
comparison. First, we applied MPK2 to the original three datasets
of 48 bound/unbound and 210 bound complexes as we used before
in our previous work (Huang, 2009; Huang and Schroeder, 2006).
We proved that MPK2 improved the success rate up to 6% than
MPK1. Second, we built a novel dataset of drug–target complexes
and applied both MPK1 and MPK2 to this new dataset. MPK2
also showed better performance than its previous version with
an improvement of up to 6% for the success prediction rate.
Furthermore, we compared MPK2 to each single method and
showed that MPK2 achieved >12% success rate over the best single
method.

2 METHODS

2.1 MetaPocket algorithm
This section describes the algorithm and workflow of MPK2 for predicting
ligand binding sites and mapping binding residues from protein 3D
structures, as well as the design and architecture of the web server of
MPK2. As mentioned above, MPK2 is a consensus method in which the
predicted pocket sites from eight methods, LIGSITECS, PASS, Q-SiteFinder,
SURFNET, Fpocket, GHECOM, ConCavity and POCASA, are combined
together to improve the prediction success rate. There are three steps in
MetaPocket 2.0 procedure: calling-based methods, generating meta-pocket
sites and mapping ligand-binding residues. The whole working procedure of
MPK2 is illustrated in Figure 1 and is described in details below.

Calling-based methods: in this step, the given protein structure is sent
to all the based methods parallel and separately. For LIGSITECS, PASS,
SURFNET, GHECOM, Fpocket and ConCavity, their executable binary
programs are run locally to do the prediction. For Q-SiteFinder and
POCASA, python scripts are implemented to submit the protein structure
to their web servers and the results are retrieved from the remote servers
automatically. As results, LIGSITECS, PASS and SURFNET output different
clusters of grid points and the mass center of these clusters is used to represent
the pocket site. For the other five methods, pocket sites are indicated by
clustered probes. Thus, the mass center of each cluster is calculated and then
is used as the representative point of the identified pocket sites. As we note
that, each identified pocket site from every method is ranked by different
scoring functions. To make them comparable, the z-score is calculated
separately for each site in different methods, as used in our previous work
(Huang, 2009).

Fig. 1. The illustration of the MetaPocket 2.0 procedure. MPK2 takes the
standard PDB file as input and output the prediction meta-pocket sites and
also the prediction pocket sites from all the successfully running based
single methods. The ligand binding residues for each meta-pocket are also
listed. (Step A) Based methods execution. The given protein structure will
be sent to all the based methods to do prediction. P1, P2, Pi and PN indicate
the based methods (predictors). All the predictors are called in parallel to
save running time. (Step B) Meta-pockets generation. This step includes z-
score calculating, clustering pocket sites and final clusters ranking. (Step C)
Residue mapping: identification of the potential ligand binding residues for
each meta-pocket.

Generating meta-pocket sites: after calling each method, MPK2 only take
the first three pocket sites from each method into account. Thus, totally there
are 24 pocket sites and these pocket sites are somehow overlapped spatially.
To identify those overlapped pocket sites, we use hierarchical clustering
approach to cluster these 24 sites according to their spatial similarity. The
distance cut-off threshold is set to 8 Å here. Then the total z-score for each
cluster is calculated and serve as the final scoring function to re-rank the
final meta-pocket sites. In the end, the mass center for each final cluster is
calculated and is represented as the final meta-pocket site in MPK2.

Mapping ligand-binding residues around the meta-pocket site: the purpose
of this step is to identify the functional residues around the identified meta-
pocket site which could be the potential ligand binding sites on protein
surface. As illustrated in Figure 2, MPK2 uses a synthetical way to identify
those residues which might contribute to protein–ligand interaction. As we
mentioned above, each method outputs a cluster of probe points for each
pocket site. In this step, MPK2 merges the probe points from each single
method in the same meta-pocket site. Then a big cluster of probe points is
obtained for each meta-pocket site. Those surface residues, which are within
a certain distance (5 Å used here) to the probe points in the cluster, are the
potential ligand-binding residue. The surface residues are defined using the
NACCESS program whose relative solvent accessible surface area is >20%.

2.2 Test datasets
Four different datasets are used in this work. The first three datasets are 48
bound/unbound and 210 bound datasets, which were first introduced in our
previous work (Huang and Schroeder, 2006). To compare MPK2 to the other
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Fig. 2. The ligand-binding residues mapping procedure in MPK2. The
smaller spheres are the pocket sites generated by different single methods.
The bigger sphere is the meta-pocket site generated by MPK2. The regions
surrounded by thin dotted lines out of protein are the original clusters of
corresponding pocket sites generated by the corresponding single methods.
The region surrounded by the thicker solid line is the cluster for the meta-
pocket generated by MPK2 after merging all the clusters of single methods.
The dotted line in the protein indicates the potential ligand-binding residues
around the meta-pocket site, calculated by a distance threshold DMIN.

methods and previous version of MetaPocket (MPK1), we still use these three
datasets. In order to identify drug binding sites, we built a novel dataset of
drug–target complex structures available in PDB. To our knowledge, the
DrugPort database (http://www.ebi.ac.uk/thornton-srv/databases/drugport/)
contains the information of protein–ligand complexes where the bound
ligands are approved drugs reported in DrugBank (Wishart et al., 2006,
2008). In the first step, we derive all drug–target pairs from DrugPort web
site. For each pair, we retrieve the UniProt ID for the target and link it to
PDB and get the PDB file to check whether it contains both protein target
and drug ligand. Only one complex structure is selected for each drug–target
pair and we only keep the single chain where ligands bind. At the end of this
step, we obtained 217 pairs and 96 types of drugs. In the next step, we used
CD-HIT (Huang et al., 2010; Li and Godzik, 2006) program to remove the
redundancy of protein targets using 40% similarity threshold. Finally 198
drug–target complexes are obtained. This dataset is freely available from the
web site of MPK2.

2.3 Evaluation criteria
To evaluate and compare MPK2 with MPK1 and other individual-based
methods fairly, the same performance measurement should be used. It is
noted that for some proteins in the datasets, more than one ligand is bound.
These ligands might be separated in different pocket sites but sometimes
occupy the same region on protein surface, for example, those co-factors
and substrates. First, we define the real ligand binding sites (RBSs), which
are those regions on protein surface where one or more ligands are bound. If
two ligands are closed to each other (distance threshold 5 Å), they are defined
to share the same RBS. Here, we define that one RBS is predicted correctly
if it is located at the identified pocket sites, i.e. any atom of the ligand is
within 4 Å to the mass center of this pocket, as we used in our previous work
(Huang and Schroeder, 2006). We also define that a prediction is a hit if at
least one RBS in the given protein is detected correctly in a certain number
of top predictions. The top 1 to top 3 identified pocket sites from MPK2 and
other methods are evaluated separately in this work. Thus, to compare the
performance of different approaches quantitatively, the success rate (SR) is
calculated according to the following formulas:

Success_Rate= NHIT

NP

Where NP is the total number of proteins in the dataset; NHIT is the total
number of hit prediction. The success rate is calculated for all the methods
for the top 1, top 2 and top 3 predictions, respectively.

Table 1. The comparison of MPK2 to MPK1 on success rate (%) for different
datasets

Dataset Version Top 1 Top 2 Top 3

48 (bound) MPK2 85 92 96
MPK1 83 94 96

48 (unbound) MPK2 80 90 94
MPK1 75 85 90

210 (bound) MPK2 81 91 95
MPK1 75 89 94

198 drug–target MPK2 61 70 74
MPK1 55 65 68

3 RESULTS

3.1 MPK2 improves the prediction success rate by
combining eight individual prediction methods

In our previous work, only four methods are included in MPK1:
LIGSITEcs, SUFNET, PASS and Q-SiteFinder (Huang, 2009).
Recently, there are four more free available tools: Fpocket,
GHECOM, ConCavity and POCASA, as described above. We
therefore developed a MetaPocket 2.0 (MPK2) to combine these
eight methods of detection. We evaluated MPK2 and MPK1 on the
three old datasets used before (Huang, 2009) and the dataset of
198 drug–target complexes which we developed in this work, and
compared the success rates of MPK2 and MPK1. Table 1 shows the
detailed comparison results. In the first three old datasets, MPK2
improved the success by up to 6% at the top 1 prediction in 210
bound and in 48 unbound dataset. For the novel dataset of 198
drug–target complexes, the improvement of MPK2 over MPK1 is
significant, ranking from 4% to 6% for all the top 3 predictions.
Overall, after including four new methods, MPK2 improves the
whole performance of prediction.

3.2 MPK2 outperforms all the single methods
Table 2 shows the success rates for MPK2 and the eight single
methods for the drug–target dataset. Overall, MPK2 archived better
result than each of the eight single methods. In the top 1 and top
2 prediction, LIGSITECS performed best among the eight single
methods and MPK2 increased the success rate by 13%. In the top 3
predictions, Q-SiteFinder is the best method and MPK2 also receives
12% improvements. The reason why MPK2 improves the success
rate is that it takes the overlapping prediction results from different
approaches. One pocket site has higher probability to be a RBS if
it was picked out by multiple methods as top predictions. This is
not surprising as different pocket detection methods use different
scoring functions to rank these cavities and MPK2 clusters all the
identified pocket sites according to their spatial distance and re-ranks
them by summing up the z-scores of different methods.

3.3 How many cavities occur on protein surface?
In the combining procedure of MetaPocket 2.0, only the top 3 pocket
sites from each of 8 single methods are taken into account, and these
24 pocket sites are clustered into different clusters (so called meta-
pocket site) according to their spatial similarity. In the evaluation
of MPK2 on the drug–target dataset, the number of final clusters
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Table 2. The success rates (%) of the top 3 predictions by MPK2 and eight
different methods on the drug–target dataset

Method Top 1 Top 2 Top 3

MPK2 61 70 74
LIGSITECS 48 57 61
PASS 35 50 56
Q-SiteFinder 40 54 62
SURFNET 24 30 34
GHECOM 39 51 56
ConCavity 47 53 56
Fpocket 31 48 57
POCASA 43 54 56

The values in bold and italic indicate they are the best values.

Fig. 3. The MetaPocket 2.0 prediction success rates at the top 3 versus
the number of clusters (meta-pocket sites). The number of proteins is also
indicated.

for each protein and the prediction success rates of MPK2 on those
proteins are quite diverse. Figure 3 shows the distribution of the
number of proteins with different number of clusters on the drug–
target dataset, and the success rates for those proteins having the
same number of clusters. Overall, the number of clusters ranges
from 4 to 14, which means there are 4 to 14 cavities (meta-pocket
sites) on protein surfaces generally. There are 5 cases in which those
24 pockets are clustered into 4 clusters, meaning that those 5 proteins
only have 4 big cavities on their surfaces and all the 8 methods
correctly picked them up at their top 3 predictions. In these five
cases, MPK2 all predicted the ligand binding sites correctly. There is
only one case that the number of final clusters is 14, which indicates
that this protein has 14 cavities on its surface and each of 8 methods
picked up different pockets at their top 3 predictions. The real ligand
binds to one of those 14 cavities and MPK2 failed to recognize it
correctly at the top 3 predictions. As shown in Figure 3, most of
the proteins have 7 (43 cases) or 8 (56 cases) cavities on surface
generally and there is no correlation between the number of cavities
and the prediction success rate of MPK2.

3.4 Most of ligands bind to large pockets
In order to check whether ligands bind to large pockets on protein
surface, we conducted a statistical analysis to assess the possibility
that a RBS locates at the top 3 prediction pockets. The identified
pocket sites are classified into four different classes: the actual ligand
binding site locates at the first, the second, the third pocket or at none
of these top 3 pockets (Table 3). In the top 3 predictions of MPK2,

Table 3. Number of hit proteins in each pocket prediction class on the drug–
target dataset

Method First pocket Second pocket Third pocket None

MPK2 121 17 9 51
LIGSITECS 95 18 7 78
PASS 69 30 11 88
Q-SiteFinder 79 28 16 75
SURFNET 46 11 8 133
GHECOM 78 22 10 88
ConCavity 93 12 6 87
Fpocket 61 34 17 86
POCASA 83 23 4 88

Fig. 4. The real ligand (red) binding site and the identified pockets on
glutathione S-transferase (PDB code: 1PX7). The pocket sites of LIGSITECS

(purple), PASS (cyan), SURFNET (brown), Q-SiteFinder (blue), Fpocket
(pink), ConCavity (orange), GHECOM (yellow) and POCASA (wheat) are
all from their top 1 predictions and are located in the same cavity where
ligand binds. The meta-Pocket site from MPK2 is shown in red sphere.

there were 121 (61%) cases that the top 1 predicted pocket is the
RBS. There were 17 and 9 cases that the RBS was located at the
top 2 and top 3 predicted pocket, respectively. However, there were
51 cases for which the MPK2 failed to detect the RBS among the
top 3 predictions. Among the 121 cases that ligands were predicted
to bind to the first pocket site in MPK2, in 94 (78%) cases, the
predictions overlap with one of the top 3 identified pockets identified
by all the 8 single methods and in 17 (14%) cases the predictions
overlap with one of the top 3 identified pockets identified by 7 out
of the 8 single methods. Only in 12 of the 121 cases, the real-ligand
binding sites were predicted by all 8 single methods as the top 1
prediction. Figure 4 shows a representative case for such situation
for Glutathione S-transferase (PDB code: 1PX7).

3.5 Dealing with difficult cases for which ligand
binding does not occur in the large cavities

Although MPK2 significantly outperforms its previous version and
each of the individual methods, it could not correctly detect those
binding sites where the ligands do not occur in the large cavities
on protein surface. We investigate all the 51 cases for which MPK2
fails to detect the RBSs within its top 3 predictions and categorized
them into four classes according to the following reason: flat RBS;
RBS too small to be detected; RBS at the interface of two domains;
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Fig. 5. Examples of difficult structures in drug–target dataset. For each
structure, protein is illustrated in green surface or cartoon; ligands are
illustrated in red stick; identified pocket sites are illustrated in small spheres.
(A) The flat binding site (triggering receptor expressed on myeloid cells, PDB
code: 1q8m_A). The ligand binds to the flat region on protein surface, not the
expected pocket shape region. (B) The RBS is too small to be detected in the
first three predictions. (Oxidoreductase, PDB code: 1yxm_B). (C) Ligand
binds at the interface of two chains or domains (HMG-CoA Reductase, PDB
code: 1hwk_A, the other chain is also shown in magenta). (D) The RBS is
inside the protein and thus cannot be detected (cystathionine beta-synthase,
PDB code: 1m54_A).

and RBS inside the protein. We show a representative case for each
class in Figure 5. In the first class, ligands bind to a flat region
on protein surface. Therefore, geometry approaches that identify
pockets cannot detect such binding site correctly. Of total, 26 out of
51 proteins belong to this class. In the second class, many cavities on
protein surface are all likely to be ligand binding sites but the X-ray
structures show that the ligands bind to small pockets rather than
to big pockets. Thus, the RBSs were not predicted among the top 3
identified pockets (10 cases). For the third class, two proteins (chains
or domains) form a complex and the binding pockets are located at
the interface between them. But these pockets do not exist when the
two proteins are separated from each other. Because we used the
single protein for prediction, MPK2 could not detect such pockets.
There are nine such cases in the drug–target dataset. However, when
the whole complex structures for such cases were used in MPK2
prediction, the RBSs were correctly recognized for 8 out of 9 cases
except PDB code: 1F3A. In the complex structure of 1F3A, there is
a big pocket-shape region in the interface between two proteins and
MPK2 successfully detected this pocket. The ligand was predicted
to bind at the edge of the pocket but not inside the pocket, as shown
by X-ray structure. Therefore, MPK2 failed to recognize the RBSs
correctly in this case. In the fourth class, the RBSs are inside proteins
as shown in the X-ray structure and MPK2 cannot handle this case
since it only pick up the pockets on protein surface (6 cases).

4 DISCUSSION
Although many computational approaches have been developed
to identify pocket for ligand binding sites prediction, there are a
few methods that predict protein druggability (Cheng et al., 2007;
Hajduk et al., 2005a; Schmidtke and Barril, 2010; Sugaya and Ikeda,
2009). How to discriminate druggable cavities from non-druggable
ones is still a challenge problem (Hajduk et al., 2005b). Nayal and
Honig used the program SCREEN (Nayal and Honig, 2006) to locate

and analyze the surface cavities of a non-redundant set of 99 proteins
co-crystallized with drugs and they found that using cavity size
alone as a criterion predicted drug binding sites with 72% coverage.
With aid of Random Forests and 408 physicochemical, structural
and geometric features, the prediction coverage was improved to
89% (Nayal and Honig, 2006). In another recent work, different
pocket descriptors including pocket volume/size, solvent accessible
surface area, hydrophobicity score, etc., have been integrated as a
drug score in the Fpocket program package to score the druggability
of cavities (Schmidtke and Barril, 2010). As shown in Table 2,
MetaPocket 2.0 can detect about 74% of the drug binding sites at
the top 3 predictions using a simple scoring function (Z-Score).
In order to gain better druggability prediction accuracy, we are
planning to develop new druggability prediction method which will
consider many physical–chemical and structural/sequence features.
This is beyond the scope of this work and hence is not described
here. Nevertheless, we proposed a dataset of drug–target complexes
with available structures in this work, which can be further used to
evaluate new structure-based drugability prediction methods.

To make our tool available to the community, we developed a new
web server for MPK2 with better design and software architecture.
In the new web server, eight single methods are called in parallel to
reduce computational time. Each of eight single methods is treated
as a plug-in in MPK2 and thus it is easy to add other new predictors
when available. With this design pattern, the new web server is
much more extensible than its previous version. It is important to
mention that some of the eight methods might fail to return any
prediction results for some reasons. This plug-in pattern makes our
server automatically detect the failed methods and the algorithm is
only applied to those results from successful methods. This feature
makes MPK2 server more robust than MPK1. The users can provide
a PDB ID and a chain ID or upload their own structures. The server
will output the prediction results from eight single methods and the
meta-pocket sites of MPK2 based on those results. The predicted
pocket sites and those surrounding residues can be downloaded as
standard PDB files or directly be visualized in the server based
on JMOL (http://www.jmol.org) plug-in. It only takes about 10 s
to 0.5 min to finish pocket identification depending on the size of
protein. We envisage that our web server will become an all-in-one
tool for protein–ligand binding site prediction to the community
and provide useful guide to structure-based functional annotation,
site-directed mutagenesis experiments, protein–ligand docking and
large-scale virtual screening.
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