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ABSTRACT

Motivation: Protein-protein interaction (PPI) databases are widely
used tools to study cellular pathways and networks; however, there
are several databases available that still do not account for cell type-
specific differences. Here, we evaluated the characteristics of six
interaction databases, incorporated tissue-specific gene expression
information and finally, investigated if the most popular proteins of
scientific literature are involved in good quality interactions.
Results: We found that the evaluated databases are comparable in
terms of node connectivity (i.e. proteins with few interaction partners
also have few interaction partners in other databases), but may differ
in the identity of interaction partners. We also observed that the
incorporation of tissue-specific expression information significantly
altered the interaction landscape and finally, we demonstrated that
many of the most intensively studied proteins are engaged in
interactions associated with low confidence scores. In summary,
interaction databases are valuable research tools but may lead to
different predictions on interactions or pathways. The accuracy of
predictions can be improved by incorporating datasets on organ-
and cell type-specific gene expression, and by obtaining additional
interaction evidence for the most ‘popular’ proteins.
Contact: kitano@sbi.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Traditionally, studies that assess the cellular metabolism, disease
and cancer development, pathogens infections or drug–protein
interaction have focused on single genes or proteins. While such
studies have created large amounts of data, they typically do not
account for the multiple interactions that regulate cellular networks.

∗To whom correspondence should be addressed.

Recently, high-throughput approaches including yeast two-hybrid
screens (Rual et al., 2005), immunoprecipitation studies followed
by mass spectrometry analysis (Ewing et al., 2007), transcriptomics
(Wilhelm et al., 2008) and metabolomics studies (Braaksma et al.,
2011) have become important research tools to identify protein–
protein interaction (PPI) partners (Krogan et al., 2006) or cellular
factors that are up- or downregulated in response to specific
stimuli (Bhattacharya et al., 2004). With the availability of the
resulting large datasets, the challenge now lies in the generation
of comprehensive and robust interactome maps, ideally capturing
all PPIs within a cell and between cells at any given moment in
time.

The human proteome is estimated to encompass 130 000–650 000
PPIs (Stumpf et al., 2008; Venkatesan et al., 2009). Of those, only
a subset has been described at this point, establishing PPI databases
that provide valuable information about the reactions occurring at
the proteome level. Previous studies analyzed and compared some
of these databases (Mathivanan et al., 2006; Ramirez et al., 2007;
von Mering et al., 2002); however, these analyses were based on the
significantly smaller datasets available at the time of the analysis,
and included only subsets of currently popular PPI databases.
Therefore, we analyzed the following four popular PPI databases
(Table 1): HPRD [Human Protein Reference Database (Prasad et al.,
2009)]; MINT [Molecular INTeraction (Ceol et al., 2010)]; INTACT
(Aranda et al., 2010) and BioGRID [Biological General Repository
for Interaction Datasets (Breitkreutz et al., 2008)]. In addition,
we also included in the comparison a recently published database
named HIPPIE (Human Integrated Protein Protein Interaction
rEference, http://cbdm.mdc-berlin.de/tools/hippie/) (M.Schaefer
et al., submitted for publication). It is assembled through the
compilation of several PPI sources, including the previously
mentioned databases. Lastly, for the sections of this study not
involving network topological characteristics, we also included the
STRING database (Search Tool for the Retrieval of INteracting
Genes/Proteins) (Jensen et al., 2009), a popular resource that in
addition to protein interactions, also contains protein associations
from several pathway databases. MINT, HPRD, BIOGRID and
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Table 1. Database characteristics

HPRD HIPPIE STRINGa MINT INTACT BIOGRID

Proteins 9117 11 835 10 546 5206 8310 9057
Interactions 36 239 72 916 144 099 12 579 33 299 37 469
Average degreeb 8 12 – 4.83 8.01 8.27
Average betweennessc 13 528 15 840 – 8009 11 909 13 639
Diameterd 14 13 – 12 13 12
Average path lengthe 4.25 3.79 – 4.43 3.96 4.21
Clustering coefficientf 0.05 0.05 – 0.03 0.03 0.06

aSTRING is not a PPI database, thus we did not compute the features that are commonly
used for network structure analysis.
bAverage degree describes the average number of interactions.
cAverage betweenness describes the ‘centrality’ of a factor in a network.
dDiameter describes the maximal distance between the two most distant nodes in a
network.
eAverage path length describes the average number of steps that connect any two
components.
f Clustering coefficient describes the tendency of nodes to interact among each other
forming groups.

INTACT are manually curated and have thousands of interactions
submitted by the community; thus, since they offer original
interactions used by other databases, we refer to these four databases
as ‘primary resources’. HIPPIE and STRING are composed of
interactions taken from primary databases and other sources; hence,
we refer to HIPPIE and STRING as ‘derived databases’. In addition,
for the purpose of this study we removed all predicted functional
associations present in STRING.

Here, we focused on the human subset of interaction databases,
and as an improvement over most current analyses, we demonstrated
the usefulness of organ or cell type-specific subnetworks. We
analyzed these databases for their basic features including protein
coverage, number of interactions and neighborhood characteristics
(i.e. we compared the number and identity of interactions partners,
and asked whether proteins that are a hub in one database occupy
a similar position in other databases). Finally, using three databases
that assign confidence scores to its interactions, we demonstrated
that there is a lack of interaction data with high confidence scores
for many intensively studied proteins. Additional experimental
evidence for those interactions, either confirming or refuting, would
significantly increase the robustness of current PPI databases.

2 METHODS

2.1 Databases
The databases were obtained from their respective websites in the following
versions or latest updates: HPRD Release 9; HIPPIE 1.1; STRING
8.3; MINT 15.December.2010; INTACT 21.April.2011; BIOGRID 3.1.76.
Before initiating the analysis, the following pre-processing steps were carried
out: (i) we removed all redundant interactions, keeping just the interaction
with the highest score. (ii) For all protein entries, their database-specific
identification tags were converted to a common nomenclature (Entrez Gene
IDs). Proteins that did not have a matching ID in Entrez Gene were discarded.
Approximately 10% of interactions had to be removed from each database.

In the STRING database, we performed additional pre-processing step: we
removed all interactions involving non-human proteins, left only interactions
with experimental evidence or obtained from pathway and other interaction
databases (i.e. removed interactions derived from co-expression, genomic
neighborhood, text mining and other predictive techniques).

2.2 Network and statistical analysis
All interaction databases were converted to an undirected graph and further
analyzed using R (version 2.10.1) and the iGraph library (version 0.5.4).
From this library, we used routines to find the degree, betweenness, diameter,
shortest path, immediate neighbors and clustering coefficient. The other
statistical tests (Welch, Wilcoxon, z-score) were performed using R with
0.95 confidence interval. Pathway and Gene Ontology enrichment analysis
were performed with DAVID (Huang et al., 2008) and ConsensusPath
DB (Kamburov et al., 2011) using the default parameters values. For
the enrichment analysis tests, we used the list of proteins present in the
tissue-specific subnetworks as background.

2.3 Popular genes
The file gene2pubmed from the NCBI public FTP site contains a table with
Pubmed IDs and the genes present in this each abstract (sorted by species).
This file was used to rank the human genes according to the number of
abstracts in which they appear and to select the 10% most popular genes
(2911 entries). The file was obtained on April 22, 2010.

2.4 Gene expression data
We obtained an Affymetrix dataset containing the transcription levels of 84
human tissues and cell lines. This dataset is publicly available for query and
download from the BioGPS project (Su et al., 2004; Wu et al., 2009).

We obtained the normalized expression data [pre-processed using
GCRMA—GeneChip Robust Multiarray Averaging (Gentleman et al.,
2004)] and divided our analysis in the following steps: first, we defined that
each probe must have an absolute intensity >50 for at least one condition,
thus removing any probe not being moderately or strongly expressed in at
least one tissue (the original datasets have no specific background level).
After this cutoff, 16 704 probes remained from the original dataset of 44 775
probes. With the remaining probes, we converted their Affy_ID to Entrez
Gene IDs and in this conversion 3537 probes had no matching ID. In the
end, our dataset consisted of 12 956 probes that mapped to 9214 different
genes. Finally, we calculated the z-score for each probe across all tissues.
Using a z-score cutoff of 0.1, we determined which genes were moderately
to highly expressed in each tissue.

2.5 Protein degree categorization
We classified the proteins into three categories (high-, middle- and low
degree) according to their number of interactions. To define the appropriate
ranges, we ranked the proteins in decreasing order according to their number
of interactions. With this list, we used a procedure which selected two random
numbers: the first in the interval [80, 98] (we refer to it as value1) and the
second in the interval [60, value1] (we call it value2). Subsequently, we
considered high-degree proteins as those that occupied a position among
the top value1% of the ranked list. Middle-degree proteins were those that
occupied a position in the interval [value2, value1]% of the ranked list and
finally, the low-degree proteins were on the [1, value2]% of the list. For a
visual explanation of the procedure, please refer to Supplementary Figure S1.
To verify the robustness of the results, this procedure was repeated 100 times
for each pair of databases being compared and the mean and SDs determined.
We used this procedure instead of defining a fixed number of neighbors that
a protein should have to belong to each category. The differences in the
network sizes would cause the results to be unfairly dependent on the ranges
selected.

3 RESULTS

3.1 Database features
Table 1 compares the features of the six databases included in the
analysis. The number of proteins (nodes) in these databases ranges
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from ∼5200 to ∼12 000. STRING and HIPPIE contain the largest
numbers of proteins since they include data from several other
databases in addition to their own unique data.

For all databases except STRING, the total number of interactions
ranges from ∼12 500 to ∼73 000 (Table 1). MINT has relatively
few proteins and interactions, all of which are covered by one or
several of the other databases. In contrast, >140 000 interactions are
reported in STRING, which comes close to the number of estimated
interactions in the human proteome (Stumpf et al., 2008; Venkatesan
et al., 2009). We found that 4361 proteins and 5589 PPIs were
reported in at least two different databases, with the largest overlap
between STRING and HIPPIE (Supplementary Table S1). Only
1453 proteins and 1619 PPIs are reported in all six databases. These
interactions are reported in primary resource databases and are likely
to stem from the same portion of literature that was manually curated
by the authors (Turinsky et al., 2010).

Next, we compared the average degree and betweenness of the
proteins in each database. The average degree (average number of
interactions per protein) ranges between 5 and 12, with HIPPIE
showing the highest average number of neighbors for each protein
(Supplementary Fig. 2A shows the distributions of degree and
betweenness in each database). Betweenness, in a broader sense
describes the significance of a node (i.e. a protein in a PPI network)
for the flow of information between different points in the network.
It is calculated as follows:

B(v)=
∑ sij(v)

sij
, with i �= j, v �= i and v �= j (1)

where sij is the number of shortest paths between the nodes i and
j and sij(v) is the fraction of those shortest paths passing through
node v. High betweenness thus indicates that the respective protein
has a ‘central’ position in the network, and that the perturbation of
this protein may significantly affect the flow of information through
the network. The average betweenness of the analyzed databases are
similar (Table 1), with the exception of MINT, which has a slightly
lower value. This was expected for all networks since they have
similar structure, observed in their clustering coefficients, average
degree and path lengths. The majority of proteins in all databases
have medium to high betweenness values (defined here as 4.5 to
10.5 on a natural logarithm scale; see Supplementary Fig. 2B),
even though the number of interaction partners may be limited for
these proteins. This suggests that even proteins with few interaction
partners occupy important intermediate positions in a network (Joy
et al., 2005).

Finally, several measures of the overall network structure were
compared for each database. The ‘diameter’ of a network defines
the maximal distance between the two most distant nodes in the
network while the average path length (APL) is the mean distance
between all protein pairs in the network. As summarized in Table 1,
the diameters and APLs of each network are comparable.

These findings collectively show that the databases have a similar
network structure, although primary (MINT, INTACT, HPRD) and
the derived database (HIPPIE) have a considerable difference in the
number of interactions.

3.2 Conserved topological characteristics between
databases

After characterizing the basic features of the databases selected
for this study, we next assessed their topological characteristics.

‘Topology’describes the arrangements in which nodes are connected
to each other in a database. Important topological parameters are the
number and the identity of interaction partners. Such information
is critical for the identification of hubs, which are often targeted
for the identification of possible lethal genes (Albert et al., 2000;
Coulomb et al., 2005; Jeong et al., 2001), the development of novel
drugs (Hase et al., 2009; Yildirim et al., 2007) or network disruption
(Quayle et al., 2007).

To this end, we adopted a strategy used for drug target
identification and protein essentiality studies in which proteins
are grouped into one of three categories based on the number
of interactions (Han et al., 2004; Hase et al., 2009; Patil and
Nakamura, 2006). We ranked the proteins according to their number
of interactions and classified them as high-, middle- or low-degree
proteins (Section 2). STRING was excluded from this analysis
because it comprises not only protein interactions but also other
types of non-physical, protein associations derived from pathway
databases, in addition to co-expression of genes and genomic
neighborhood.

After categorizing all proteins, we assessed the percentages of
proteins that fall into the same or different categories in pair-wise
database comparisons. Figure 1 shows that 60–80% of the proteins
shared between two databases fall into the same category in both
databases. This shows that although the databases differ in the
number of proteins and interactions, their shared proteins still have
similar connectivity levels.

In our pair-wise comparisons, we matched the smaller database
(with fewer interactions; e.g. HPRD) against the larger database
(with more interactions; e.g. HIPPIE) (Fig. 1). As a result, most
proteins that fall into different categories between the databases
shift into a higher degree category (e.g. the protein shifts from
‘low degree’ to ‘middle degree’). However, we observed that when
INTACT is matched against HPRD and BIOGRID, ∼10% of the
proteins that are in the ‘middle degree’ category in the smaller
database (i.e. INTACT) shift to the ‘low degree’ category in the
larger database (i.e. HPRD or BIOGRID) (Fig. 1). Most likely,
this is a consequence of the different experimental datasets used
in the different databases and we observed that those proteins show
enrichment for translational elongation and RNA processing Gene
Ontology categories (P<0.01).

Notably, very few proteins changed between the ‘high degree’and
‘low degree’ categories (or vice versa) when comparing databases
(Fig. 1). This further supports our notion that the five databases
included in this analysis are in fairly good agreement regarding the
connectivity of the proteins.

The only exception is the comparison of MINT with HIPPIE
and other larger databases, with almost 10% of the proteins falling
into the ‘low degree’ category in MINT, but into the ‘high degree’
category in HIPPIE. We attribute this finding to the different sizes
of databases, with MINT and HIPPIE representing the smallest and
largest datasets analyzed (both in terms of numbers of proteins and
interactions, Table 1).

3.3 Neighborhood characteristics of datasets
The topological characteristics of a protein in a database are not
only defined by the number of interaction partners, but, perhaps
even more importantly, by the identity of interaction partners.
We therefore assessed whether proteins have similar or different
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Fig. 1. Proteins were grouped into three categories: low-, middle- and high degree (see Section 2). Then, we assessed the percentages of proteins that fall
into the same (or different) categories in pair-wise comparisons of two databases. For most comparisons, 60–80% of proteins fall into the same category in
both databases compared. (A) HPRD-HIPPIE; (B) MINT-HPRD; (C) INTACT-HPRD; (D) BIOGRID-HPRD; (E) MINT-HIPPIE; (F) INTACT-HIPPIE; (G)
BIOGRID-HIPPIE; (H) MINT-INTACT; (I) MINT-BIOGRID; (J) INTACT-BIOGRID.

Fig. 2. Shared and exclusive interaction partners in a pair-wise comparison
of PPI databases. For proteins shared between two databases, we identified
their interaction partners in each of the databases, and then compared the
interaction partners. Yellow and blue represent the indicated databases.
Shown in red are the interaction partners predicted in both databases.

interaction partners in the databases analyzed. For our analysis, we
focused on the ‘shared’proteins, i.e. those listed in the two databases
being compared. For these proteins, we identified their interaction
partners in each of the databases, and then compared the interaction
partners between the databases (Fig. 2; see also Supplementary
Fig. S3 for the absolute numbers).

As expected, the highest percentage of shared neighbors was
detected for the comparison of derived resources (STRING and
HIPPIE) to primary resources (MINT, BIOGRID and INTACT).
However, for comparisons that do not involve the HIPPIE database,
no more than 40% of interaction partners are shared. As described
earlier, STRING comprises not only protein interactions, but also
other functional associations originating, for example, from pathway
databases (Jensen et al., 2009; von Mering et al., 2005). This results

in a large number of interactions that are not covered by the other
databases and transforms the interactions of the other databases into
a subset of those reported by STRING.

Collectively, our analysis revealed considerable differences
in predicted interaction partners between the databases. These
differences likely stem from differences in the size of databases,
algorithms used, and differences in the portion of the literature used
by primary database curators. Researchers should take these issues
into account when attempting to identify critical interaction partners
of their protein(s) of interest.

3.4 Quality of interactions of key protein sets
STRING, HIPPIE and MINT assign quality scores to each interaction
and this is used to assess the confidence level of an analysis; HIPPIE
and MINT calculate the confidence score based on accumulated
experimental evidence of protein interactions (M.Schaefer et al.,
submitted for publication) (Ceol et al., 2010). This stringent
approach leads to scores below 0.5 for more than 75% of
the interactions reported in these databases (Fig. 3A). STRING
calculates its confidence score based on the likelihood that two
proteins have a functional association that is as specific as the
association between an average pair of proteins present in the same
KEGG pathway (Kanehisa et al., 2010; Szklarczyk et al., 2011).
In addition, higher scores are assigned to associations supported
by several sources of evidence. Consequently, intensively studied
interactions are more likely to be supported by higher confidence
scores. Indeed, we find that more than 80% of the STRING
interactions have scores above the acceptable cut off of 400 (defined
by the authors in the program website).

Next, we asked whether heavily studied proteins are
correspondingly covered by good quality interactions in the
PPI databases. To address this question, we selected the 10%
most popular human genes/proteins from the literature (that is,
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Fig. 3. (A) Three databases assign quality scores for protein interactions
(HIPPIE, MINT) or functional associations (STRING). MINT and HIPPIE
have a stringent quality score based on cumulative evidence from multiple
sources and therefore the majority of its interactions have scores below 0.5.
STRING on the other hand assigns a high score for proteins that are reported
in pathway databases (Szklarczyk et al., 2011). (B) Confidence scores of
interactions that involve intensively studied proteins. We observed that in
general there is no agreement between the database scores, with the exception
that among the 31 229 interactions shared between STRING and HIPPIE,
4539 have high confidence score in both databases. In addition, in both
comparisons involving STRING, no proteins had high confidence score in
MINT or HIPPIE and low confidence score in STRING.

2921 genes/proteins), and ranked them by popularity based on the
number of PubMed entries mentioning these genes (Supplementary
Table S2); of those, 2790 were present in HIPPIE, 2460 in STRING
and 1653 in MINT database.

We performed pair-wise comparisons of the confidence levels
of the interactions shared between databases, and that involve the
10% most intensively studied proteins (Fig. 3B; Supplementary
Table S3). We observed a lack of agreement between the scores
calculated in the databases, i.e. several interactions reported as
high confidence in one database are reported as low confidence
interactions in the other. In the comparison between STRING and
HIPPIE, ∼70% of the interactions involving the 10% most studied
proteins have a high confidence score in STRING but low confidence
score in HIPPIE. On the other hand, we observed that 14% of shared
interactions had a score above cut off in both databases. An example
is the interaction between TP53 and HMGB1 (Jayaraman et al.,
1998), with a score of 0.83 in HIPPIE and 932 in STRING.

As mentioned before, STRING and HIPPIE are derived databases,
thus several interactions shared between them were originally
reported in MINT. However, each database assign different scores
to those interactions, resulting in no correspondence between the
scores of different databases. Therefore, to search for tendencies or
biases of each scoring scheme, we considered interactions involving
at least one popular protein and with conflicting scores between
the databases. With these interactions, we created four groups
with distinct characteristics (Table 2) and evaluated a sample of
100 interactions (25 from each group), by manually searching
experimental evidence supporting these interactions in the scientific
literature (Supplementary Table S4).

We observed that a protein association had high confidence score
only in STRING (and low scores in the other two databases),

Table 2. Groups of interactions

High scorea Low scoreb Interactionsc

STRING HIPPIE 22 177
STRING HIPPIE and MINT 2225
STRING and HIPPIE MINT 448
STRING and MINT HIPPIE 353

aHigh scores considered for STRING, MINT and HIPPIE were values greater than 400,
0.5 and 0.5.
bLow scores for STRING, MINT and HIPPIE were values lower than or equal to 400,
0.5 and 0.5.
cAll interactions included at least one popular protein.

and the experimental evidence supporting an association could
not be readily identified, reflecting that the scoring scheme used
by STRING—assigning a high score to proteins belonging to
the same pathway—may be difficult to validate. On the other
hand, interactions with high score in MINT or HIPPIE could be
confirmed by supporting evidence in one or more publications;
although HIPPIE has a very strict scoring scheme: occasionally
more than one publication reported an interaction but it still received
a low score. Lastly, as part of the iMEX curation guidelines
(Orchard et al., 2007), the scoring scheme used by MINT was very
accurate: interactions with scores >0.5 could be readily confirmed
by manuscripts often containing the identity of both interacting
partners in its title and specifically investigating that interaction.

Summarizing, we observed that although there are differences in
the calculations of the quality score, interactions that are highly
trustable are those that are supported by different experimental
systems (especially low-throughput methods), and are manually
curated from literature. Ideally, interaction studies should be carried
out in different experimental systems to overcome technique-
specific bias (Braun et al., 2009; Chen et al., 2010; von Mering
et al., 2002).

3.5 Subnetworks based on organ- and cell type-specific
expression data

PPI databases are used to address a wide range of questions that
span different organisms, cell types, developmental stages and/or
phases of the cell cycle. To date, no public PPI database takes these
issues into account, with the exception of the HPRD team, which
in the long term may also incorporate tissue-specific expression
information. Some private companies, e.g. Ingenuity, provide tissue-
specific network construction, but as they limit the size of the PPI
networks to be on the order of hundreds of nodes, these are not the
most suitable tools for the whole network studies. Here, we assessed
how the incorporation of organ- and cell-type-specific expression
data influence network analysis.

Using a gene expression dataset of 84 human organs and cell types
(Su et al., 2004; Wu et al., 2009), we first selected all genes with
moderate to high expression levels in each cell type (see Section 2).
Next, we evaluated the coverage of each database for the proteins
expressed from these genes. STRING and HIPPIE cover ∼60% of
the organ/cell type-specific proteins, whereas the coverage reaches
about 40–50% in the other databases (Supplementary Fig. S4). It
is also interesting to note that all databases have a relatively even
coverage of all organs and cell types, although the number of genes
expressed varies significantly between the different organs/cell types
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(Supplementary Fig. S5). For example, ten times more genes are
expressed in liver and heart as compared to the ovary; yet, the percent
coverage in the PPI databases is comparable for these three organs.

To create organ/cell type-specific PPI networks, we then identified
in the PPI database interactions for which both partners are expressed
in the same organ/cell type (while eliminating interactions between
proteins that are expressed in different organs/cell types). Each
organ/cell type subnetwork was then built from the resulting dataset
and we included 570 housekeeping proteins that are believed to
be expressed in all tissues (Eisenberg and Levanon, 2003). As
expected, the resulting organ/cell type-specific subnetworks possess
significantly fewer interactions than the original PPI databases
(between 1% and 25%) (Supplementary Fig. S6). In addition,
these subnetworks are considerably more fragmented than the
parent networks, resulting in several smaller connected components
(Supplementary Fig. S7). We observed significant differences
between the numbers of interactions for organ/cell type-specific
subnetworks, which strongly correlated with the number of genes
expressed in the respective organ/cell type (Supplementary Fig. S8).
For example, more than 6000 different genes are expressed in BDCA
dendritic cells (DCs), resulting in a subnetworks that retained 20%
of the interactions found in the respective parental PPI databases.
In contrast, fewer than 700 genes are expressed in ovary or skin,
which reduced the specific subnetworks to just 0.4% of interactions
reported in the parental networks (Supplementary Fig. S6).

To assess the potential value of organ/cell type-specific
subnetworks, we analyzed the interaction of cellular proteins with
two medically relevant human viruses, hepatitis C virus (HCV) and
human immunodeficiency virus (HIV). First, we obtained a list of
481 human proteins that interact with HCV proteins (de Chassey
et al., 2008) and compared these to the HIPPIE subnetwork created
for liver. The HIPPIE database was chosen because it contains
a relatively large number of interactions and covers most of the
other databases; we focused on the liver subnetwork because of the
relevance of this organ in HCV infection (Patrick, 1999).

From the original list of 481 HCV interactors, 98 proteins were
present in the liver-specific subnetwork and they interacted with
394 different host proteins (Supplementary Table S5). Comparing
the pathway membership of these 492 proteins (interactors and
neighbors) with proteins specifically expressed in the liver as a
background set, we observed appreciable enrichment in complement
and coagulation cascades (P-value: 0.04), apoptosis (P-value: 2.94e-
4), Chemokine signaling pathway (P-value: 0.0009) and focal
adhesion (P-value: 1.03e-7). In contrast, when we used the complete
HIPPIE database, 372 of 481 HCV interactors mapped to the
database and were involved in 8489 interactions with 3317 different
proteins. Using the same analysis that we used for the subnetwork
analysis, the HCV interactors and their neighbors fell into many
different categories, and no specific pathways or Gene Ontology
categories were significantly enriched, making it very difficult
to identify critical pathways for the HCV pathogenesis. Hence,
organ/cell type-specific subnetworks may aid in the identification
of nodes that are critical in specific biological processes.

As a second example of subnetwork analysis, we studied the
interaction of HIV with host cells. From the HIV-1 Human Protein
Database (Ptak et al., 2008), we obtained a dataset of 1432
host proteins that interact with viral proteins. Next, we created
subnetworks containing housekeeping genes and genes expressed
in BDCA DCs, CD14+ monocytes and CD4+ T-cells (all datasets

were derived from the HIPPIE database). These datasets were chosen
since these cell types play critical roles in HIV infections (Dragic
et al., 1996; McDonald et al., 2003; Zhu et al., 2002).

From the original list of 1432 cellular proteins that interact with
HIV proteins, 72 were exclusively found in the DC subnetwork
and had 55 neighbors not present in the other two subnetworks.
According to the pathway databases, these proteins are present in
the systemic lupus erythematosus pathway (P-value: 0.001) and in
the B-cell receptor signaling pathway (P-value: 0.01). In contrast,
65 cellular HIV interactors were restricted to the CD14+ monocyte
subnetwork (interacting with 31 exclusive neighbors), and showed
an enrichment for the apoptosis pathway (P-value: 0.08), focal
adhesion (P-value: 0.007) and Fc gamma R-mediated phagocytosis
(P-value: 0.04). Finally, 58 cellular HIV interactors (and 39
neighbors) were only detected in the CD4+ T-cell subnetwork, with
an enrichment for T-cell receptor signaling (P-value: 6.8e-5) and
primary immunodeficiency pathway (P-value: 0.05). These analyses
demonstrate cell type-specific interactions between HIV and cellular
proteins that may be critical for the infection process. The complete
list of cell-specific HIV interactors and neighbors is available in
Supplementary Table S6.

4 DISCUSSION
In this study, we compared six widely used public PPI databases
for their basic characteristics, neighborhood features and overlap
with the other databases analyzed. In addition, we demonstrated
that predictions could be significantly improved by the analysis
of cell/tissue-specific subnetworks, and by obtaining additional
experimental verification for the interaction partners of the most
intensively studied genes from the literature.

The six databases compared here have different levels of
coverage, in regard to both the number of proteins and the number
of PPIs. Nonetheless, they assign similar topological positions to
particular proteins within the network; hence, proteins with few or
many interaction partners in one database are likely to have few or
many interaction partners in the other databases analyzed. However,
the identity of these interaction partners may differ between the
databases, resulting in great uncertainty in model building. These
differences reflect the differences in the algorithms, portion of
literature curated by the different groups (Turinsky et al., 2010)
and the experimental techniques used to build the databases.

Many PPI datasets are generated by expressing the two proteins
of interest in one cell (for example, in the yeast two-hybrid system).
In such in vitro assays, proteins may be co-expressed and interact,
but in reality their expression may be dependent on cell type,
different experimental stages and/or during different phases of the
cell cycle/organism development. As a result, the currently available
PPI databases are believed to contain a significant percentage of
false positive entries (Deane et al., 2002). To address this weakness,
PPI databases could be combined with the increasing number of
transcriptomics or proteomics datasets that assess the expression of
genes or proteins in a specific organ, cell type, developmental or
cell cycle stage. We here provide two examples that demonstrate
the potential of this approach.

In one example, we show that the host cellular interaction
partners of HCV proteins are not enriched for particular Gene
Ontology categories or pathways in an analysis based on the entire
HIPPIE database; in contrast, three KEGG pathways (apoptosis,
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focal adhesion, complement and coagulation cascades) are highly
enriched when the HIPPIE database was analyzed in combination
with a liver-specific gene expression dataset. Regulation of
apoptosis may play a critical role in HCV infection to establish
chronic or persistent infections (Bantel and Schulze-Osthoff, 2003).
Activation of the complement and coagulation pathways has been
described for HCV infections (Ueda et al., 1993), and it was
verified that hepatic inflammation can be reduced by administering
CD55, a regulator of the complement pathway (Chang et al.,
2009). However, the significance of proteins involved in focal
adhesion for HCV infections is currently not known, which may
be addressed in further investigations. This example demonstrates
how the generation of subnetworks may help in the prioritization
of pathways for future studies.

In the second example, we show that each cell type subnetwork
has exclusive proteins that interact with HIV. Among the exclusive
proteins from each cell type are some representing critical processes
studied and validated experimentally. Apoptosis induced by HIV
proteins was reported to be a critical aspect of its pathogenicity
(Castedo et al., 2002; Rasola et al., 2001; Zheng et al., 2007). Cases
of patients with concomitant systemic lupus erythematosus and
HIV have been reported (Calza et al., 2003; Gould and Tikly, 2004),
and the interplay between autoimmune diseases and retroviruses
is an active topic of research (Balada et al., 2010). In addition,
the association between HIV-infection and the downregulation of
Fc-gammaR-mediated phagocytosis in HIV-infected macrophages
was observed (Kedzierska et al., 2002).

Some studies have generated subnetworks to address medical
questions. In one example, subnetworks from normal and cancer
cells have been established to identify PPIs that are characteristic
of cancer development and could be targeted to ‘rewire’ these
cells (Quayle et al., 2007). In the context of a metabolic study, the
creation of tissue-specific subnetworks helped to elucidate post-
transcriptional regulation of genes from 10 different tissues that are
involved in metabolic diseases (Shlomi et al., 2008). Collectively,
these and our own analyses demonstrate that cell/tissue-specific
subnetworks can be used to increment the biological relevance of
PPI datasets.

Our analysis also revealed that current databases possess many
interactions that are characterized by low confidence scores, a
finding that is of particular concern for intensively studied proteins.
While it is not feasible to verify all predicted interactions with
different techniques, we suggest here focusing PPI evaluation
efforts on the verification of low confidence interactions of selected
proteins widely used in research models but lacking high confidence
interactions. Toward this goal, we created a priority list of
interactions that include highly investigated proteins such as TP53
(described earlier), MAPK1 (mitogen-activated protein kinase 1),
BCL2 (B-cell CLL/lymphoma 2) or TNF (tumor necrosis factor
F), among many others. Additional experimental data confirming or
revealing new interactions of these ‘key players’ with their predicted
cellular interaction partners will push PPI databases a step closer to
becoming a reliable, daily-use tool for researchers, in the same way
sequence analysis and protein structure databases already are.
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